High Performance Solid State
Storage Under Linux

Eric Seppanen, Matthew T. O’'Keefe, David |. Lilja
Electrical and Computer Engineering
University of Minnesota

April 20, 2010

NIVERSITY OF MINNESOTA M



Units x1000

5500
5000
4500
4000
3500
3000
2500
2000
1500
1000

500

Motivation

Fusion-io unveils 80GB ioXtreme PCI| Express
SSD

By Matthew DeCarlo, TechSpot.com
Published: June &, 2009, 8:15 AM EST

Fusion-io is launching a new “Fatality” branded product as they deliver an enthusiast-

< ° oriented PCI Express solid state drive. The ioXtreme SSD will make use of the PCI-E x4
S rea lng t I Oug 1 I l tO [ l ew interface and bear a non-olatile 80G8 capacity based on MLC NAND technology

applications

Why C are ab Out anothﬁr S S D ? OCZ gets official with Z-Drive PCI-Express

Faster! IM IOPS, GBps+

FC mSAS mSATA mPCle

.
2008 2009 2010 2011 2012 2013

Source: Preliminary Gartner estimates, 12/09

SsD

Darren Murph

PhotoFast G-Monster PCI Express SSD [1TB PClIe SSD

Boasts750M B/S Transfer SDEEdS] k at CeBIT in March. but it's just now
nd hard specifications, the Z-Drive is
listering transfer rates to anyone who buys

Posted March 26th 2009 by Andrew in Computers + Hard Disks & Solid State Drives

PCI Express 2.0 Training Comcast Official Site

MindShare eLearning Course e Learning Get 250 Cash Back When You Sign Up
Module Training For Comcast Business Class Services
Ads by Google




Contents

What's New:
PCle SSD.
Performance.

SSD Benchmarking:
Goals, observations,
and pitfalls.

Fast SSDs and Linux:
How to go fast?
What needs changes.




Solid State Drive Hardware

System

Memory

Micron PCle SSD prototype

NAND flash storage

PCI Express 1.0 x8
Onboard flash management
AHCI compatible +

Deep command queue

Chipset

PCle SSD

SATA HBA



Random Read Throughput

1200 -

1000 -

Real hardware!
No simulations.

MB/s

600 |-
400 |-

200 _ __________ ______________________ _

| |
512 1024 2048 4096 8192 16384
transfer size (bytes)




Random Write Throughput

500 ! ! | | ! !

450

400

350

300

250

MB/s

200
150
100

50

0

512 1024 2048 4096 8192 16384
transfer size (bytes)



Part 2: SSD Benchmarking
or, How Not to Fall Off a CIiff:

4k rarlldom writeé —

IOPS (thousands)

0 10 20 30 40 50 60
time (seconds)



Measuring SS

D Performance

Be skeptical: use realistic but difficult workload.

Test areas where SS]

Don't measure an SSD |

Ds perform poorly

1ke a disk.

Account for new SS]

D performance factors

Include parallelism 1n benchmark

(beware of Bonnie, IOZone, traces)



SSDs and Parallelism

Disk hardware only capable of reading/writing one
location at a time; SSDs can be reading/writing
many places at once.

Disks hold multiple requests 1n a queue: 1.e. SATA
disks have a 32-command queue.

SSDs can process requests 1n parallel; we'll still call
it a queue, but 1t's not used as one.



SSD vs Disk

Disks are well-understood: seek time + rotational
latency.

SSDs have many more factors:

Native block size
Overprovisioning / empty space
FTL tasks can be nondeterministic

The difference between maximum and minimum
performance can be huge.

10



SSD performance over time

Disk SSD
Earlier /O displaces drive head (ms) V
Rotating platter causes latency (<1ms) V

Earlier 1/O ties up buses and flash planes
(<1ms)

Earlier I/O causes Garbage Collection tasks to
run (~15 sec?)

Earlier 1/0O patterns caused data fragmentation
(weeks?)

«“ € € «

Earlier I/O usage consumed empty space
(months?) i



Simplified Pessimistic Benchmark

Test under difficult conditions:

Use lots of parallel I/0
Use random 1I/0
Perform small transfers
Fill the drive

Measure steady-state performance

12



Part 3: The Linux Kernel
or, How to Reach a Million IOPS

13



Extracting Best Performance

CPU to device relationship has changed.

Allow everything in parallel.
Kernel I/O layers add significant overhead.

Interrupt management becomes very important.

14



CPUs and devices

New problem: the number of operations handled by
one device 1s so high, it can't be managed by a
single CPU core.

It multiple CPU cores are needed, this atfects the
architecture of the device and interface software.

15



CPUO

Aggregation of Slow Devices

CPU 1

CPU 2

CPU3

Driver

A

Driver

B

Driver

C

Driver

D

= Achieve high
throughput and
parallelism by adding
more devices.

= It's possible to manage
I/O submit/retire with
a single CPU.

16



Consolidation Onto Fast Device

CPUO

CPU 1

CPU 2

CPU 3

Kernel

driver

High-performance
storage device

Kernel, driver and
device must perform
parallel operations
efficiently.

Must be designed to
interface with many

CPUs.

17



Linux 1/O Architecture

Linux I/O subsystem
has layers that add
latency and limits
parallelism.

Try bypassing layers to
find performance
bottlenecks.

Application }w

A/

VFS

v v v

| |
Filesystems

v v v

Block layer request

v

request
queue

v
scsl
J ATA
Y

driver

e

18



Linux 1/O Architecture, continued

Bypass SCSI, ATA layers
to reduce CPU
overhead

Bypass request queue
layers

Reduce CPU overhead

Get n1d of disk-oriented
optimizations

Skip locking that hurts
parallelism

Application

|

v

Application

|

VFS

v

v

v

v

VFS

| |
Filesystems

v

v

v

v

v

Filesystems

Block layer request

v v

v

v

request
queue

v
scsl
ATA
A

driver

.

Block layer request

19



Interrupt Management

Problem 1: Interrupt load can
overwhelm a single CPU.

Solution: spread interrupt load
over multiple CPUs.

Problem 2: Interrupts sent to a
distant CPU can cause cache
miss slowdowns.

Solution: Redirect interrupt to
nearby CPU if possible.

Local Memory

Cache miss

CPUO Local CPUn
Cache

Start 1/0 /O Completion
Interrupt

High-performance
storage device

20



Driver Evolution

Block driver, 128

Block driver, 32 @ G command queue,
command queue, bypass request
bypass request ? queue

queueZ;}
Block driver,
a 128 command
queue

Block driver,
32 command
queue

Standard AHCI
(32 command
queue)

21



MBps

Driver Evolution

1400 | | I |

1200 I -- |0 0.5Kreads|----------------- e
B 4K reads

1000

800

600

400

200

22



Conclusions

High-performance SSDs can deliver significantly
higher performance than commodity SSDs.

Careful benchmarking 1s important to reveal worst-
case performance.

SSDs use parallelism to reach maximum
performance.

Linux kernel and driver improvements may be
necessary to get best results.

23



End of Presentation

Thank you

24



