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Motivation

Fusion-io unveils 80GB ioXtreme PCI| Express
SSD

By Matthew DeCarlo, TechSpot.com
Published: June &, 2009, 8:15 AM EST

Fusion-io is launching a new “Fatality” branded product as they deliver an enthusiast-

< ° oriented PCI Express solid state drive. The ioXtreme SSD will make use of the PCI-E x4
S rea lng t I Oug 1 I l tO [ l ew interface and bear a non-olatile 80G8 capacity based on MLC NAND technology
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PhotoFast G-Monster PCI Express SSD [1TB PClIe SSD

Boasts750M B/S Transfer SDEEdS] k at CeBIT in March. but it's just now
nd hard specifications, the Z-Drive is
listering transfer rates to anyone who buys
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Solid State Drive Hardware

System

Memory

Micron PCle SSD prototype

NAND flash storage

PCI Express 1.0 x8
Onboard flash management
AHCI compatible +

Deep command queue

Chipset

PCle SSD

SATA HBA
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Random Write Throughput
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Part 2: SSD Benchmarking
or, How Not to Fall Off a CIiff:

4k rarlldom writeé —
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Measuring SS

D Performance

Be skeptical: use realistic but difficult workload.

Test areas where SS]

Don't measure an SSD |

Ds perform poorly

1ke a disk.

Account for new SS]

D performance factors

Include parallelism 1n benchmark

(beware of Bonnie, IOZone, traces)



SSDs and Parallelism

Disk hardware only capable of reading/writing one
location at a time; SSDs can be reading/writing
many places at once.

Disks hold multiple requests 1n a queue: 1.e. SATA
disks have a 32-command queue.

SSDs can process requests 1n parallel; we'll still call
it a queue, but 1t's not used as one.



SSD vs Disk

Disks are well-understood: seek time + rotational
latency.

SSDs have many more factors:

Native block size
Overprovisioning / empty space
FTL tasks can be nondeterministic

The difference between maximum and minimum
performance can be huge.
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SSD performance over time

Disk SSD
Earlier /O displaces drive head (ms) V
Rotating platter causes latency (<1ms) V

Earlier 1/O ties up buses and flash planes
(<1ms)

Earlier I/O causes Garbage Collection tasks to
run (~15 sec?)

Earlier 1/0O patterns caused data fragmentation
(weeks?)

«“ € € «

Earlier I/O usage consumed empty space
(months?) i



Simplified Pessimistic Benchmark

Test under difficult conditions:

Use lots of parallel I/0
Use random 1I/0
Perform small transfers
Fill the drive

Measure steady-state performance
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Part 3: The Linux Kernel
or, How to Reach a Million IOPS
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Extracting Best Performance

CPU to device relationship has changed.

Allow everything in parallel.
Kernel I/O layers add significant overhead.

Interrupt management becomes very important.
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CPUs and devices

New problem: the number of operations handled by
one device 1s so high, it can't be managed by a
single CPU core.

It multiple CPU cores are needed, this atfects the
architecture of the device and interface software.
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CPUO

Aggregation of Slow Devices

CPU 1

CPU 2

CPU3

Driver

A

Driver

B

Driver

C

Driver

D

= Achieve high
throughput and
parallelism by adding
more devices.

= It's possible to manage
I/O submit/retire with
a single CPU.

16



Consolidation Onto Fast Device

CPUO

CPU 1

CPU 2

CPU 3

Kernel

driver

High-performance
storage device

Kernel, driver and
device must perform
parallel operations
efficiently.

Must be designed to
interface with many

CPUs.
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Linux 1/O Architecture

Linux I/O subsystem
has layers that add
latency and limits
parallelism.

Try bypassing layers to
find performance
bottlenecks.
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Linux 1/O Architecture, continued

Bypass SCSI, ATA layers
to reduce CPU
overhead

Bypass request queue
layers

Reduce CPU overhead

Get n1d of disk-oriented
optimizations

Skip locking that hurts
parallelism
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Interrupt Management

Problem 1: Interrupt load can
overwhelm a single CPU.

Solution: spread interrupt load
over multiple CPUs.

Problem 2: Interrupts sent to a
distant CPU can cause cache
miss slowdowns.

Solution: Redirect interrupt to
nearby CPU if possible.

Local Memory

Cache miss

CPUO Local CPUn
Cache

Start 1/0 /O Completion
Interrupt

High-performance
storage device
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Driver Evolution

Block driver, 128

Block driver, 32 @ G command queue,
command queue, bypass request
bypass request ? queue

queueZ;}
Block driver,
a 128 command
queue

Block driver,
32 command
queue

Standard AHCI
(32 command
queue)
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MBps

Driver Evolution
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Conclusions

High-performance SSDs can deliver significantly
higher performance than commodity SSDs.

Careful benchmarking 1s important to reveal worst-
case performance.

SSDs use parallelism to reach maximum
performance.

Linux kernel and driver improvements may be
necessary to get best results.
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End of Presentation

Thank you
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