
Authors:
Miriam Allalouf, Itai Segall, Muli Ben-Yehuda and
Julian Satran
IBM – Haifa Research Labs

MSST 2010, May, 2010

Block Storage Listener for
Detecting File-Level Intrusions

© 2010 IBM Corporation2

Intrusion Detection System

 IDS - Intrusion detection system in an appliance or application that monitors

network and/or system activities for malicious activities or policy violations.

 There are two main types of IDS systems:

– Network-based IDS - Sensors are located at points in the network to be

monitored.

• Captures all network traffic and analyzes the content of individual

packets in order to detect malicious traffic.

– Host-based system IDS - Sensors consist of a software agent that monitors

all activity of the host on which it is installed, including file system, logs and

the kernel.

 Our Goal: To build Storage-Base IDS - Providing security features into the

storage controller is essential when hosts are compromised or in case when

multiple hosts share an attack that can be detected only by the central storage.

– There are no storage-based IDS at the SAN block controller that can alert

the administrator or the hosts on the appearance of suspicious events.

– The very few storage systems that do maintain online IDS in storage

systems are accessed via file-level protocols, such as CIFS or NFS.

© 2010 IBM Corporation3

IDS for Storage

Host

Familiar with FS

iSCSI initiator

SAN Controller

iSCSI target

Host

Familiar with FS

iSCSI initiator

Intrusion Detection

for Storage

Intrusion Detection

for Host

Checks at File Level

Block-level commands

FS view

Handles block-level threats as

Block level Access violation

Block level data integrity

Protocol iSCSI/SCSI violation
Example: prevents too long names that can cause buffer overflow

Handles file-level threats as

 Tripwire-like storage IDS with the following examples
and more:

• Detect unexpected changes to important system
files and binaries as /bin/ps (or other executable)

• Detect patterns of changes like non-append
modification (e.g., of system log files) and reversing
of inode times.

• Format-specific changes as /etc/passwd

 Data Leakage Protection (DLP)

 On-access trigger incremental anti-virus scan

© 2010 IBM Corporation4

IDSTor – Research Challenges and Contributions

 Build block-to-inode inverse map
Current file-system metadata structure enables answering host-
level requests:

list the blocks that belong to a certain inode
list the files that belong to a certain directory

•In order to to find file-view having block-level commands, we need
to answer questions such as:
given a block number, which inode owns it?
what is the file name and parent directory of this inode?

 Online infer file-level commands from a block-level command

sequence

 Find file-level access pattern by tracking block-level access

pattern

 Enables File-level intrusion detection

© 2010 IBM Corporation5

 Building Storage IDS at listener appliance
 IDS limitations within the controller‟s I/O path:

 Adding SW to the I/O path of a controller is a complicated and
error-prone task, with heavy development expenses.
 CPU capacity at the controller is designed to handle the
arriving I/O requests and may not be able to perform additional
computation tasks

 Offload to a listener appliance solves the problem
 As a listener it is easier to market,
The solution is not controller-specific and can be used with
many different kinds of controllers.
A centralized listener appliance per several parallel storage
connections

IDSTor – Research Challenges and Contributions (2)

© 2010 IBM Corporation6

Host idstorB

Idstor17 – Storage IDS

at Listener Appliance

iSCSI target (controller)

iSCSI Layer

Parse

Handle Block-

level threats

Block-To-File Layer

Host idstorA

iSCSI Initiator

iSCSI packest

FS ext3 Metadata
Data Blocks

“New” content

b_to_f map
inode‟s attributes
Full name info

Security Layer

Storage IDS at listener appliance - Prototype

© 2010 IBM Corporation7

Offline builder: Read the FS (ext3)

metadata from the disk

 To find an inode owning a block, one must

traverse the entire inode table until an inode that

contains the required block is found.

 To find the filename of an inode, and since the

directory hierarchy is kept separately from the

inode information, additional mapping has to be

resolved.

Ext3: Solution Outline

Online Update: Update the

block-to-file data

structure by analyzing

the incoming commands

 Problem is crucial when

considering the online model:

– Captured block level

commands, while requiring as

little memory as possible, and

acting as a listener.

– Each file-level command is

composed of several „small‟

iSCSI commands. In order to

infer host-level command a few

iSCSI commands have to be

gathered.

© 2010 IBM Corporation8

Host-level command that creates a new inode

is translated into block-level commands:

1. Updates the superblock fields specifying the number of allocated

blocks and inodes,

2. Updates the field in the group descriptor of the appropriate block

group specifying the number of free inodes,

3. Sets the relevant bit in the inode bitmap to true,

4. Sets the relevant bits in the data bitmap to true, corresponding to

the additional data blocks that were allocated for this file,

5. Creates a new inode structure in the inode table,

6. Updates the access time fields in the parent directory‟s inode

structure (assuming the file system was not mounted using the no

atime switch) ,

7. Adds the file name to the relevant data block of the parent inode,

8. Writes the data blocks of this inode.

Example

© 2010 IBM Corporation9

 IDStor considers an inode to be valid

– Written in the inode table, dtime==0

– inode bitmap was written, set to true

“New File” or “New Directory” command

 An inode is considered deleted

– Written in the inode table, with dtime<>0

– inode bitmap was written, set to zero

 “Delete File” or “Delete Directory” command

 A data block is valid

– A write command updating this data block.

– A write command updating the address to

this block- direct or indirect

– The bit in data bitmap was set

 A data block is declared deleted after it was

deleted in the data bitmap only.

– Looking for any other evidence for this

deletion requires storing the list of the

blocks that belong to a certain inode.

– For our inverse map it suffices to keep only

the block to inode pointer.

State Machine and algorithm assuming no interleaving

© 2010 IBM Corporation10

Flow and Data Structure Key points for inferring a single host-level command

 Capture the block level commands

– sequential layout of device blocks (e.g., 512B) File: name and logical blocks size

(e.g., 4KB)

 Identify the type of the iSCSI command and the type of the block in the command,

 Maintain state machines per each inode and data block -- Insert the relevant information

to the kept state machine and add the block-to-inode information to the inverse map.

 Each iSCSI command can refer to many inodes and many blocks

 The old content could be stored at the listener, which would require an

amount of memory equal to the size of the disk.

We are parsing the arriving metadata blocks to update the new state

 inode’s status and block’s status can be learned by collecting the

information from the iSCS commands

 For example inode is Valid only after the arrival of inode data, inode bitmap

Inferring a single host-level command

© 2010 IBM Corporation11

mount –t ext3 –o data=journal /dev/sda1 /mnt/tmp

#! /bin/bash

cd /mnt/tmp; mkdir test ; stat -c "test : %i" test

cd test ; echo "Creating files and directories, and writing some data..."

mkdir son1dir ; stat -c "test/son1dir : %i" son1dir

echo " new file " > son2file ; echo " file b " > son3file ;

echo "new file caaa under son1dir" > son1dir/gson11file

echo "new file caaa under son1dir" > son1dir/gson12file

mkdir son1dir/gson13dir ; stat -c "test/son1dir/gson13dir : %i" son1dir/gson13dir

stat -c "test/son2file : %i" son2file ; stat -c "test/son3file : %i" son3file

stat -c "test/son1dir/gson11file : %i" son1dir/gson11file

stat -c "test/son1dir/gson12file : %i" son1dir/gson12file

echo "new file caaa under gson13dir" > son1dir/gson13dir/ggson131file

stat -c "test/son1dir/gson13dir/ggson131file : %i" son1dir/gson13dir/ggson131file

sync

echo "Done creating directories and files. Press enter to continue..."

read

echo "Appending some more data..."

dd if=/dev/urandom of=son3file bs=4096 count=3 oflag=append conv=notrunc

dd if=/dev/urandom of=son1dir/gson11file bs=4096 count=2 oflag=append

conv=notrunc

sync

echo "Done appending data. Press enter to continue..."

read

echo "Truncating some data..."

truncate son3file 4500

sync

echo "Done truncating. Press enter to continue..."

read

cd ..

#sync

rm -rf test

sync

Prototype example - Perform on idstora

test

son1dir son2file son3file

gson11file gson12file gson13dir

ggson131file

Script that create the following tree:

© 2010 IBM Corporation12

Screen snapshot of idstora, idstorb and idstor17

© 2010 IBM Corporation13

Shell Script @ idstorA

#! /bin/bash ; cd /mnt/tmp

mkdir test ; cd test

mkdir son1dir

echo " new file " > son2file

echo " file b " > son3file

echo "new file caaa under son1dir" >

son1dir/gson11file

echo "new file caaa under son1dir" >

son1dir/gson12file

mkdir son1dir/gson13dir

echo "new file caaa under gson13dir"

>

son1dir/gson13dir/ggson131file

sync

echo "Done creating directories and

files.

Press enter to continue...“
read

IDStor infers Host-level command @ listener

14:57:51 INFER: new dir /test (inode 310689)

14:57:51 INFER: block 630784 valid, belongs to /test (inode

310689)

14:57:51 INFER: new dir /test/son1dir (inode 310690)

14:57:51 INFER: new file /test/son2file (inode 310691)

14:57:51 INFER: new file /test/son3file (inode 310692)

14:57:51 INFER: block 634880 valid, belongs to /test/son1dir

(inode 310690)

14:57:51 INFER: new file /test/son1dir/gson11file (inode 310693)

14:57:51 INFER: new file /test/son1dir/gson12file (inode 310694)

14:57:51 INFER: new dir /test/son1dir/gson13dir (inode 310695)

14:57:51 INFER: block 638976 valid, belongs to

/test/son1dir/gson13dir (inode 310695)

14:57:51 INFER: new file /test/son1dir/gson13dir/ggson131file

(inode 310696)

14:57:51 INFER: block 628736 valid, belongs to /test/son2file

(inode 310691)

14:57:51 INFER: block 628737 valid, belongs to /test/son3file

(inode 310692)

14:57:51 INFER: block 628738 valid, belongs to

/test/son1dir/gson11file (inode 310693)

14:57:51 INFER: block 628739 valid, belongs to

/test/son1dir/gson12file (inode 310694)

14:57:51 INFER: block 628740 valid, belongs to

/test/son1dir/gson13dir/ggson131file (inode 310696)

Prototype real run - test Script snapshot

© 2010 IBM Corporation14

Shell Script @ idstorA

echo "Appending more data...“

dd if=/dev/urandom of=son3file

bs=4096 count=3

oflag=append

conv=notrunc

dd if=/dev/urandom

of=son1dir/gson11file

bs=4096 count=2

oflag=append

conv=notrunc

truncate son3file 4500

Sync ; cd ..

rm -rf test

sync

IDStor infers Host-level command @ listener

15:01:07 INFER: block 628741 valid, belongs to /test/son3file (inode

310692)

15:01:07 INFER: block 628742 valid, belongs to /test/son3file (inode

310692)

15:01:07 INFER: block 628743 valid, belongs to /test/son3file (inode

310692)
15:01:07 INFER: block 628744 valid, belongs to /test/son1dir/gson11file (inode

310693)

15:01:07 INFER: block 628745 valid, belongs to /test/son1dir/gson11file (inode

310693)

15:01:42 INFER: block 628742 no longer in use

15:01:42 INFER: block 628743 no longer in use

15:01:59 INFER: block 628736 no longer in use

15:01:59 INFER: block 628737 no longer in use

15:01:59 INFER: block 628738 no longer in use

15:01:59 INFER: block 628739 no longer in use

15:01:59 INFER: block 628740 no longer in use

15:01:59 INFER: block 628741 no longer in use

15:01:59 INFER: block 628744 no longer in use

15:01:59 INFER: block 628745 no longer in use

15:01:59 INFER: block 630784 no longer in use

15:01:59 INFER: block 634880 no longer in use

15:01:59 INFER: block 638976 no longer in use

15:02:00 INFER: file /test/son2file (inode 310691) deleted

15:02:00 INFER: file /test/son3file (inode 310692) deleted

15:02:00 INFER: file /test/son1dir/gson11file (inode 310693) deleted

15:02:00 INFER: file /test/son1dir/gson12file (inode 310694) deleted

15:02:00 INFER: file /test/son1dir/gson13dir/ggson131file (inode 310696) deleted

15:02:00 INFER: dir /test/son1dir/gson13dir (inode 310695) deleted

15:02:00 INFER: dir /test/son1dir (inode 310690) deleted

15:02:00 INFER: dir /test (inode 310689) deleted

Prototype real run - test Script snapshot - continue

© 2010 IBM Corporation15

 Information can be delayed in cache at the host and flushed

to the disk or storage at any order, and usually after some

delay.

– an ambiguous inode identification by our online parser.

 For example,

 Assume block 1000 is currently assigned to inode x. Inode

a is truncated, thus block 1000 is freed but was not flushed

to disk yet.

 Now a large amount of data is added to inode y, such that it

needs an indirect addressing block, and block 1000 is

assigned for that. Two things should happen:

 a) block 1000 has to be written with the indirect data,

 b) the inode of y has to be written to update that 1000 is

an indirect block belonging to it.

 If b) happens before a), It is OK!!

 if a) happens before b), our inverse map still holds block

1000 as a valid pure data block belonging to inode x, so we

ignore it. Now when b) happens we mark 1000 as indirect,

but wait for the data (which has already arrived, and will

therefore not arrive again).

 Parsing order is different than arrival order!! We must

parse the data block after parsing the relevant metadata

blocks

Inferring host-level commands assuming interleaving of commands (1)

Arrival Order

Start Epoch

d1) D

....

d2) D

d3) MD

d4) D

d5) MD

d6) D

d7) MD

End Epoch

Parsing Order

Start Epoch

d3) MD

d4) MD

d5) MD

d6) D

d7) D

d1) D

....

d2) D

End Epoch

a1)

a2)

© 2010 IBM Corporation16

 How is it different for ext3?

– How to identify the epoch? By using ext3

Journaling - The Journal and Ordered modes

can guarantee the start of the transaction epoch

by capturing the T_FINISH command

– How to distinguish between Pure Data and Fake

data?

 Algorithm:

– Parse the Metadata and delay the data (pure

and faked)

Use each parsed metadata for the state machine

calculation

Maintain a list of the unhandled data blocks that

are referred

by the metadata

Maintain a list of the delayed data blocks

– Go over the unhandled data block list and fetch

them from the delayed list until

Start Epoch

d1) D (actually PureD)

d2) D (actually PureD)

d3) MD

d4) D (actually FakeD)

d5) MD

d6) D (actually FakeD)

d7) MD

End Epoch - T_FINISH

Parsing Order

b1) Arrival Order

Start Epoch

d3) MD

d5) MD

d7) MD

d1) D (actually PureD)

d2) D (actually PureD)

d4) D (actually FakeD)

d6) D (actually FakeD)

End Epoch

b2)

Inferring host-level commands assuming interleaving of commands (2)

© 2010 IBM Corporation17

 Na¨ıve solution: store amount of memory equal to the size of the disk.

 Inodes hash table holds all the inodes that exist in the system, valid and

semi valid.

– For each inode: inode structure that reflects the inode state,

– The keys are the inode numbers and the values are pointing to the appropriate

inode structures.

 Block-to-inode ranged BTree Holds the numbers of all the allocated data

blocks in the file system, their role in the file system (e.g., pure data, or

indirect addressing), and their owning inodes.

– Contains only valid blocks, pointing to valid inodes.

 Data block tracker list holds the data blocks that were encountered so far

(during a period of time) and that cannot yet be associated with any of the

inodes with certainty.

– Kept temporarily - state and its content - until its ownership and type are verified.

– Content can be deleted once it is parsed.

 Our data structure is mostly independent of the file system.

 The data structures described above are first initialized and then updated

online.

Data Structure at the listener site

© 2010 IBM Corporation18

 Most of the file system metadata space is occupied by the inode table

information where a structure is held per each inode (free and not free).

– Our inode structure holds only those fields in the file system data structure that

are necessary for the block-to-inode inference.

 No need to keep data blocks, both pure and fake ones,

– Enough to maintain a list of block numbers, each with a pointer to the owning

inode we keep at most 8 bytes per each data block.

– For example, for a logical block size of 4KB, the ratio between the amount of

memory we require for data blocks and their actual size on disk will be the 4KB

divided by 8, which is 500.

 Overestimation due to the range-aware BTree data structure since the

keys represent a series of consecutive blocks rather than a single block

number.

 Additional memory is kept for the data block tracker list.

– Each block is kept for a short interval as the time it takes for the journal

mechanism to be flushed to disk.

– For example, consider a flush period of 5 seconds, 2500 data block commands

per second, each block size of 4K bytes. In this case, we need to keep

4000*5*2500 = 50Mbytes for temporary data.

Memory Consumption – for the block-to-inode mapping

© 2010 IBM Corporation19

Do we need to answer the question: “What was the exact file name that is related to a certain
inferred host-level command, given an inode?”.

 When using hard links – several filenames per inode

 Requires a lot of memory since

– should holds the directory hierarchy information with all the filenames.

– Otherwise It is hard to infer the addition or the deletion of another file name to an inode

List of Rules – pairs of the form <identifier; rule>,

– For existing files, their associated inodes can be fetched easily from the file system.

– For files that do not yet exist, the rule requires the filenames and full paths of inodes

identification as they are created or renamed, even if the rules are identified using inode

IDs.

– a directory is renamed: affects the full path of all files underneath it. keep the whole

directory hierarchy.

inode-to-filename mapping

© 2010 IBM Corporation20

Current Research

Online infer of file-level information by listening to block protocol

Future Works

 Extend the security layer work

 Storage-based Intrusion Prevention

 Storage-based IDS In the Databases world

 Use the file system view algorithm for other application as:

– Data replication

– Backup

 Integration with other devices that use block interface – as

the hypervisor

© 2010 IBM Corporation21

Thank You!

