Flat XOR-based erasure codes in storage systems: Constructions, efficient recovery, and tradeoffs

Kevin M. Greenan ParaScale Xiaozhou Li HP Labs

Jay J. Wylie
HP Labs

MSST Research Track May 7, 2010

Contributions

Contributions

- Efficient recovery of erasure-coded data

- New erasure codes (flat XOR-codes)
 - MD Combination codes
 - Stepped Combination codes
 - Flattened parity-check array codes
- Recovery equations & schedules for XOR-codes
- Analytic comparison
 - Apples-to-apples analysis of many codes
 - For key properties of erasure-coded storage

Background

Replication

- Two-fold replication 0 1

 Three-fold replication 0 1 2

 Four-fold replication 0 1 2 3
- Blue fragments are "data"
- Green fragments are "parity"
- For replication, "parity" and "data" are the same...

RAID

RAID4 0 1 2 3

RAID6 0 1 2 3 4

- Ignore rotation (e.g., RAID5)
- Ignore details of how "parity" is calculated

MDS (Maximally Distance Separable) codes

- Replication, RAID4, and RAID6 are all MDS
- MDS codes are optimally space-efficient
- I.e., each parity disk increases fault tolerance
- Notation: k data and m parity fragments
- An MDS code is *m* disk fault tolerant (DFT)

Recovery equations for MDS codes

$$k = 1, m = 2$$

$$k = 3, m = 2$$

- Any k fragments can recover a failed fragment
- E.g., consider if fragment 1 fails

Recovery equations for MDS codes

RAID6

- Any k fragments can recover a failed fragment
- E.g., consider if fragment 1 fails

Recovery schedules for MDS codes

3-fold replication

0 1 2

RAID6

- Use multiple recovery equations simultaneously
- Reduces read recovery load on available disks

Recovery schedules for MDS codes

3-fold replication

If disk one fails, then each of disk zero and disk two only need to read half the stripes.

- Use multiple recovery equations simultaneously
- Reduces read recovery load on available disks

Recovery schedules for MDS codes

RAID6

For this RAID6, each available disk must read 3/4 of the stripes.

- Use multiple recovery equations simultaneously
- Reduces read recovery load on available disks

Flat XOR-codes

Flat code vs Array code

Parity check array code

Flat code vs Array code

Parity check array code

Flat XOR-based erasure codes

Three-fold replication

RAID4

- Each parity is XOR of a subset of data fragments
- Can be illustrated with a Tanner graph
- Replication and RAID4 are MDS flat XOR-codes
- Other flat XOR-code constructions not MDS

Chain codes

- Two- and three-disk fault tolerant constructions
- Example two-disk fault tolerant Chain code
 - Each parity XOR of two subsequent data fragments
 - Non-MDS: k = m = 5

Chain codes

- Chain code is variant of prior constructions
- Related constructions
 - Wilner/LSI codes [patent 6,327,627, 2001]
 - Weaver(n,2,2) codes [Hafner FAST, 2005]
 - SSPiRAL codes [Amer et al. SNAPI, 2007]

Minimum Distance (MD) Combination codes

- Lets construct a 2 DFT MD Combination code
 - Each data must connect to 2 parities
 - Every data must connect to distinct set of parities
- How large a code can we construct with 4 parities?
 - If m = 4, then there are 6 combinations of 2 parity
 - I.e., $k \le (4 \text{ choose } 2) = 6$

Minimum Distance (MD) Combination codes

- More details in the paper
 - 2 & 3 DFT constructions
 - Bounds on k relative to m
 - Proof that constructions achieve desired DFT

Even more details in the paper...

- Stepped Combination code
 - Extension of MD Combination code
 - 2 & 3 DFT variants, bounds on k & m, proof
- Flattening
 - Converts parity-check array codes into flat XOR-codes
 - E.g., SPC, RDP, EVENODD, STAR
- Related work
 - Other non-MDS code constructions
 - Other recovery techniques

Efficient recovery

Efficient recovery example

- 2 DFT flat XOR-code
- -k = m = 3
- Chain and MD Combination codes equivalent

Recovery equation example

- Recovery equations for fragment zero?
- Some recovery equations less than k in size!

Chain code recovery schedule example I

- Use all four recovery equations simultaneously
- Each available disk reads 0.5 disk's data
- A total of 2.5 disk's data is read to recover

Chain code recovery schedule example II

- Use two shortest recovery equations simultaneously
- Four of the five available disks read 0.5 disk's data
- A total of 2.0 disk's data is read to recover

Efficient recovery of flat XOR-codes

- Short recovery equations
 - ullet Recovery equations smaller than k
 - Read less total data to recover than MDS
- Recovery schedules distribute read load
 - Each available disk reads less data to recover than MDS

More details in paper...

- Recovery equations algorithm for flat XOR-codes
- Algorithms to determine recovery schedules
- Discuss rotated codes (e.g., RAID5)
- Complements prior techniques
 - Parity declustering & chained declustering
 - Distributed sparing

Analytic comparison

Analytic comparison

- Focus on 3-DFT codes
- Analyze following codes
 - MDS
 - MD-Combination (MDComb)
 - Chain
- Consider stripes with k from 1 to 30

Relative storage overhead

- Storage overhead relative to one replica
- MDS codes: (k+m)/k
- Non-MDS have greater overhead than MDS codes

Average shortest recovery equation size

- Determine shortest recovery equation per fragment
- Average size over all fragments

Average recovery read load

- Optimal recovery schedule per lost fragment
- Average over all fragments

Fraction of 4-disk faults leading to loss

- Since flat XOR-codes are non-MDS
- They may tolerate specific sets of 4 disk failures!
- (Or, even more than 4 disk failures.)

Analytic comparison at k=15

	Storage overhead	Avg. short rec. eq. size	Avg. read rec. load	4-disk fault data loss
MDS	1.2	15.0	0.88	100.0%
MDComb	1.4	6.5	0.32	3.5%
Chain	2.0	3.0	0.10	1.1%

As storage overhead increases, other metrics improve

More analysis in the paper

- More codes
 - 2DFT codes
 - Stepped-Combination
 - Flattened parity-check array codes
- More metrics
 - Discussion of encode/decode performance
 - Analyze small write costs

Summary

- Novel flat XOR-code constructions
 - MD-Combination codes
 - Stepped Combination codes
- Efficient recovery
 - Recovery equations
 - Recovery schedules
- Analytic comparison
 - Storage overhead, small writes, read recovery load, fault tolerance
 - Believe Chain & Comb codes delimit XOR-code tradeoff space

Q&A

