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Consider fraction of disk

that each available disk
must read for recovery.
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Average recovery read load
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Other code constructions
offer different tradeoffs!




Contributions

— Efficient recovery of erasure-coded data

— New erasure codes (flat XOR-codes)
» MD Combination codes
- Stepped Combination codes

+ Flattened parity-check array codes
— Recovery equations & schedules for XOR-codes

— Analytic comparison

- Apples-to-apples analysis of many codes

- For key properties of erasure-coded storage



Background




Replication

Two-fold replication n
Three-told replication n

Fourtold replication n

— Blue fragments are “data”

— Green fragments are “parity”

— For replication, “parity” and “data” are the same...
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— Ignore rotation (e.g., RAIDS)

— Ignore details of how “parity” is calculated



MDS (Maximally Distance Separable) codes
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— Replication, RAID4, and RAID6 are all MDS

— MDS codes are optimally space-efficient

— l.e., each parity disk increases fault tolerance

— Notation: k data and m parity fragments
— An MDS code is m disk fault tolerant (DFT)



Recovery equations for MDS codes
k=1 m=?2 k=3, m=2
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— Any k fragments can recover a fmled fragment
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- E.g., consider if fragment 1 fails



Recovery equations for MDS codes
3-fold replication RAID6
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— Any k fragments can recover a failed fragment
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- E.g., consider if fragment 1 fails



Recovery schedules for MDS codes
3-fold replication RAID6
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— Use multiple recovery equations simultaneously

— Reduces read recovery load on available disks



Recovery schedules for MDS codes

3-fold replication

n If disk one fails, then

n each of disk zero and

disk two only need to
read half the stripes.

— Use multiple recovery equations simultaneously

— Reduces read recovery load on available disks
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Recovery schedules for MDS codes
RAIDS

0
o
For this RAID6, each
available disk must n
read 3 of the stripes.

0

— Use multiple recovery equations simultaneously

— Reduces read recovery load on available disks



Flat XOR-codes




Flat code vs Array code

s Q0B 00

Flat code

0 0O y
1 3 4
1 1 1 1
0 1 3 4

Parity check array code

RDP



Flat code vs Array code
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Flat XOR-based erasure codes
Three-fold replication RAID4

— Each parity is XOR ot a subset of data fragments
— Can be illustrated with a Tanner graph

— Replication and RAID4 are MDS flat XOR-codes
— Other tlat XOR-code constructions not MDS



Chain codes

— Two- and three-disk fau

— Example two-disk fault -

t tolerant constructions

olerant Chain code

» Each parity XOR of two su
« Non-MDS: k=m=5

psequent data fragments



Chain codes

— Chain code is variant of prior constructions

— Related constructions
» Wilner/LSI codes [patent 6,327,627, 2001]
- Weaver(n,2,2) codes [Hafner FAST, 2005]
- SSPIRAL codes [Amer et al. SNAPI, 2007]



Minimum Distance (MD) Combination codes

— Lets construct a 2 DFT MD Combination code

« Each data must connect to 2 parities

- Every data must connect to distinct set of parities

— How large a code can we construct with 4 parities?

« It m = 4, then there are 6 combinations of 2 parity

. le., k < (4 choose 2) = 6



Minimum Distance (MD) Combination codes

— More details in the paper
« 2 & 3 DFT constructions
. Bounds on k relative to m

« Proof that constructions achieve desired DFT



Even more details in the paper...

— Stepped Combination code

. Extension of MD Combination code

. 2 & 3 DFT variants, bounds on k & m, proot
— Flattening

. Converts parity-check array codes into flat XOR-codes
- E.g., SPC, RDP, EVENODD, STAR

— Related work
. Other non-MDS code constructions

» Other recovery techniques



Efficient recovery




Efficient recovery example

— 2 DFT flat XOR-code
— k=m=3

— Chain and MD Combination codes equivalent
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Recovery equation example
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— Recovery equations for fragment zero?

— Some recovery equations less than k in size!



Chain code recovery schedule example |

u
— Use all four recovery equations simultaneously

— Each available disk reads 0.5 disk’s data

— A total of 2.5 disk’s data is read to recover




Chain code recovery schedule example |I
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— Use two shortest recovery equations simultaneously
— Four of the five available disks read 0.5 disk’s data

— A total of 2.0 disk’s data is read to recover



Efficient recovery ot tlat XOR-codes

— Short recovery equations

» Recovery equations smaller than k

. Read less total data to recover t

— Recovery schedules distribui

nan MDS

e read load

. Each available disk reads less o

ata to recover than MDS



More details in paper...

— Recovery equations algorithm for tlat XOR-codes
— Algorithms to determine recovery schedules

— Discuss rotated codes (e.g., RAID5)

— Complements prior techniques

+ Parity declustering & chained declustering

+ Distributed sparing



Analytic comparison




Analytic comparison

— Focus on 3-DFT codes

— Analyze following codes
- MDS

» MD-Combination (MDComb)
. Chain

— Consider stripes with k from T to 30



Relative storage overhead

— Storage overhead relative to one replica

— MDS codes: (k+m)/k
— Non-MDS have greater overhead than MDS codes

@



Relative storage overhead

Fourfold replication = 4.0 DS

MDComb |
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Average shortest recovery equation size

— Determine shortest recovery equation per fragment

— Average size over all fragments

36 ©2010 HP
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Average recovery read load

— Optimal recovery schedule per lost fragment

— Average over all fragments

38 ©2010 HP



Average recovery read load

MDComb
Chain

MDComb code
varies between




Fraction of 4-disk taults leading to loss

— Since flat XOR-codes are non-MDS

— They may tolerate specitic sets of 4 disk failures!

— (Or, even more than 4 disk failures.)
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Analytic comparison at k=15

Storage | Avg. short | Avg. read | 4-disk fault
overhead rec. eq. size| rec. load | data loss

15.0 0.88
MDComb 1.4 6.5 0.32
Chain 2.0 3.0 0.10

As storage overhead increases,

other metrics improve

42 ©2010 HP
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More analysis in the paper

— More codes
« 2DFT codes
» Stepped-Combination

+ Flattened parity-check array codes

— More metrics
- Discussion of encode/decode performance

» Analyze small write costs



Summary

» Novel flat XOR-code constructions
« MD-Combination codes

. Stepped Combination codes
» Efficient recovery

« Recovery equations

» Recovery schedules
* Analytic comparison
- Storage overhead, small writes,
read recovery load, fault tolerance

+ Believe Chain & Comb codes
delimit XOR-code tradeoff space




Relative storage overhead

Average recovery read load
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