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Consider fraction of disk Traditional replication & RAID codes 
that each available disk 
must read for recovery.

p
(MDS codes) offer a specific tradeoff 
as stripe width (k) increases.
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Consider fraction of disk 
that each available disk 
must read for recovery.
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Other code constructions 
offer different tradeoffs!offer different tradeoffs!

©2010 HP5



Contributions

– Efficient recovery of erasure-coded data
N   d  (fl t XOR d )– New erasure codes (flat XOR-codes)

• MD Combination codes
St d C bi ti  d• Stepped Combination codes

• Flattened parity-check array codes

R  ti  & h d l  f  XOR d– Recovery equations & schedules for XOR-codes

– Analytic comparison
• Apples-to-apples analysis of many codes
• For key properties of erasure-coded storage
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Background
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Replication

0Two-fold replication 1

Three-fold replication 0 1 2

0 1 2 3Four-fold replication

– Blue fragments are “data”

– Green fragments are “parity”

– For replication, “parity” and “data” are the same…
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For replication, parity  and data  are the same…



RAID

0RAID4 1 2 3

RAID6 0 1 2 3 4

– Ignore rotation (e.g., RAID5)

– Ignore details of how “parity” is calculated
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MDS (Maximally Distance Separable) codes

0 1 k 1 k k+1 k+ 10 1 k-1 k k+1 k+m-1

k m
– Replication, RAID4, and RAID6 are all MDS

MDS d   ll  ff

k m

– MDS codes are optimally space-efficient

– I.e., each parity disk increases fault tolerance

– Notation: k data and m parity fragments

– An MDS code is m disk fault tolerant (DFT)
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– An MDS code is m disk fault tolerant (DFT)



Recovery equations for MDS codes
k = 3, m = 2

10 2 3 40 1 21 1

k =1, m = 2

10 2 3 40 1 21 1

0 0 2 3

2 0 2 4

0 3 40 3 4

2 3 4

– Any k fragments can recover a failed fragment

– E.g., consider if fragment 1 fails
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Recovery equations for MDS codes

10 2 3 4

RAID63-fold replication

0 1 21 110 2 3 40 1 21 1

0 0 2 3

2 0 2 4

0 3 40 3 4

2 3 4

– Any k fragments can recover a failed fragment

– E.g., consider if fragment 1 fails
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Recovery schedules for MDS codes
3-fold replication

0 1 21 10 2 3 4

RAID6

10 1 21

0

10 2 3 41

0 2 3

2 0 2 4

0 3 40 3 4

2 3 4

– Use multiple recovery equations simultaneously

– Reduces read recovery load on available disks
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Recovery schedules for MDS codes
3-fold replication

0 1 21 If di k  f il  th  0 1 21

0

If disk one fails, then 
each of disk zero and 
disk two only need to 

2
y

read half the stripes.

– Use multiple recovery equations simultaneously

– Reduces read recovery load on available disks
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Recovery schedules for MDS codes

10 2 3 4

RAID6

110 2 3 41

0 2 3
For this RAID6  each 

0 2 4

0 3 4

For this RAID6, each 
available disk must 
read ¾ of the stripes. 0 3 4

2 3 4

– Use multiple recovery equations simultaneously

– Reduces read recovery load on available disks
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Flat XOR-codes
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Flat code vs Array code

RAID6 0 1 2 3 4RAID6 0 1 2 3 4

Flat code

0 0 0 00 0 0

RDP

0
0

0
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0
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0
4

1
0

1
1

1
3

1
4

0
0

0
1

0
3

Parity check array code

0 1 3 4
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Flat code vs Array code

RAID6 0 1 2 3 4RAID6 0 1 2 3 4

Flat code

0 0 0 00 0

RDP
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0
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Parity check array code

0 1 3 40 1
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Flat XOR-based erasure codes
Three-fold replication

0 0

RAID4

1 20 0 1 2

Each parity is XOR of a subset of data fragments

1 2 3

– Each parity is XOR of a subset of data fragments

– Can be illustrated with a Tanner graph

– Replication and RAID4 are MDS flat XOR-codes

– Other flat XOR-code constructions not MDS
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Chain codes

0 1 2 3 4

65 7 8 965 7 8 9

– Two- and three-disk fault tolerant constructions

– Example two-disk fault tolerant Chain codea p e wo d s  au  o e a  C a  code
• Each parity XOR of two subsequent data fragments
• Non-MDS: k = m = 5
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Chain codes

0 1 2 3 4

65 7 8 9

– Chain code is variant of prior constructions

65 7 8 9

– Chain code is variant of prior constructions
– Related constructions

• Wilner/LSI codes [patent 6 327627  2001]• Wilner/LSI codes [patent 6,327,627, 2001]
• Weaver(n,2,2) codes [Hafner FAST, 2005]
• SSPiRAL codes [Amer et al. SNAPI, 2007]
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Minimum Distance (MD) Combination codes

0 1 2 3 4 5

76 8 9

– Lets construct a 2 DFT MD Combination code

76 8 9

Lets construct a 2 DFT MD Combination code
• Each data must connect to 2 parities
• Every data must connect to distinct set of parities

– How large a code can we construct with 4 parities?
• If m = 4, then there are 6 combinations of 2 parity
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Minimum Distance (MD) Combination codes

0 1 2 3 4 5

76 8 9

– More details in the paper

76 8 9

More details in the paper
• 2 & 3 DFT constructions
• Bounds on k relative to mBounds on k relative to m
• Proof that constructions achieve desired DFT
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Even more details in the paper…

– Stepped Combination code
• Extension of MD Combination code• Extension of MD Combination code
• 2 & 3 DFT variants, bounds on k & m, proof

Flattening– Flattening
• Converts parity-check array codes into flat XOR-codes
• E g  SPC  RDP  EVENODD  STAR• E.g., SPC, RDP, EVENODD, STAR

– Related work
Oth  MDS d  t ti• Other non-MDS code constructions

• Other recovery techniques
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Efficient recovery
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Efficient recovery example

0 1 2

43 543 5

– 2 DFT flat XOR-code

– k=m=3

– Chain and MD Combination codes equivalent
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Chain and MD Combination codes equivalent



Recovery equation example

0 1 2 0 1 30

43 5

2 43

2 543 5 2 5

1 4 5

– Recovery equations for fragment zero?

– Some recovery equations less than k in size!
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Chain code recovery schedule example I

1 2 43 50

1 31 3

2 43

2 5

1 4 5

– Use all four recovery equations simultaneously

1 4 5

Use all four recovery equations simultaneously
– Each available disk reads 0.5 disk’s data

A total of 2 5 disk’s data is read to recover
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– A total of 2.5 disk s data is read to recover



Chain code recovery schedule example II

1 2 43 50

1 31 3

2 5

– Use two shortest recovery equations simultaneouslyUse two shortest recovery equations simultaneously
– Four of the five available disks read 0.5 disk’s data

A total of 2 0 disk’s data is read to recover
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– A total of 2.0 disk s data is read to recover



Efficient recovery of flat XOR-codes

– Short recovery equations
• Recovery equations smaller than k• Recovery equations smaller than k
• Read less total data to recover than MDS

Recovery schedules distribute read load– Recovery schedules distribute read load
• Each available disk reads less data to recover than MDS
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More details in paper…

– Recovery equations algorithm for flat XOR-codes

Al ith  t  d t i   h d l– Algorithms to determine recovery schedules

– Discuss rotated codes (e.g., RAID5)

– Complements prior techniques
• Parity declustering & chained declustering
• Distributed sparing
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Analytic comparison
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Analytic comparison

– Focus on 3-DFT codes

A l  f ll i  d– Analyze following codes
• MDS
MD C bi ti  (MDC b)• MD-Combination (MDComb)

• Chain

C id  t i  ith k f  1 t  30– Consider stripes with k from 1 to 30
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Relative storage overhead

Storage overhead relative to one replica– Storage overhead relative to one replica

– MDS codes: (k+m)/k

– Non-MDS have greater overhead than MDS codes
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Fourfold replication = 4.0

Chain code = 2.0

MDComb code approach MDS

MDS code = (k+3)/k
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Average shortest recovery equation size

Determine shortest recovery equation per fragment– Determine shortest recovery equation per fragment

– Average size over all fragments
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MDS code = kMDS code = k

MDComb code 
Varies between

Chain code = 3

©2010 HP37



Average recovery read load

Optimal recovery schedule per lost fragment– Optimal recovery schedule per lost fragment

– Average over all fragments

©2010 HP38



MDS code = k/(k+2)

MDComb code
i bvaries between

Chain code = 3/(2k-1)
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Fraction of 4-disk faults leading to loss

Since flat XOR codes are non MDS– Since flat XOR-codes are non-MDS

– They may tolerate specific sets of 4 disk failures!

– (Or, even more than 4 disk failures.)
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MDS code = data loss

ca
le

!

Inversely related to 
storage overheadLo

g
 s

c
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Analytic comparison at k=15

Storage
overhead

Avg. short 
rec  eq  size

Avg. read 
rec  load

4-disk fault 
data lossoverhead rec. eq. size rec. load data loss

MDS 1.2 15.0 0.88 100.0%
MDComb 1.4 6.5 0.32 3.5%
Chain 2.0 3.0 0.10 1.1%

As storage overhead increases, 
other metrics improveother metrics improve
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More analysis in the paper

– More codes
• 2DFT codes• 2DFT codes
• Stepped-Combination
• Flattened parity-check array codesFlattened parity check array codes

– More metrics
• Discussion of encode/decode performance • Discussion of encode/decode performance 
• Analyze small write costs
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Summary

• Novel flat XOR-code constructions
• MD-Combination codes• MD Combination codes
• Stepped Combination codes

• Efficient recoveryy
• Recovery equations
• Recovery schedules

• Analytic comparison
• Storage overhead, small writes, 
read recovery load  fault toleranceread recovery load, fault tolerance

• Believe Chain & Comb codes 
delimit XOR-code tradeoff space
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delimit XOR code tradeoff space
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Q&A
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