MSST 2010

Self-similarity in Parallel I/Os

Qiang Zou, Yifeng Zhu, Dan Feng

Huazhong University of Science and Technology, China University of Maine

I/O Arrivals in Scientific Applications

- Understanding I/O behavior of parallel scientific applications is important for tuning, managing, or optimizing parallel file systems;
- F. Wang et al (Ref. [8]) examine the I/O burstiness of parallel I/O workloads using a simple methodology. They measure the cumulative distribution functions (CDF) of I/O inter-arrival times and conclude that *I/O activities in the LLNL traces are very bursty in the ior2 benchmark and the f1 application*.

Motivation

➢ Is it appropriate to use a Poisson or Markov model to characterize or predict parallel I/O arrivals with the presence of intensive burstiness in scientific applications?

- ✓ In order to model parallel I/O workloads, prior studies usually assumed that *I/O arrival process follows a Poisson distribution*, and I/Os can be generated by using the Markov Model;
- ✓ However, the Markov model does not accurately characterize the *burstiness* in parallel I/O workloads;
- ✓ There are very bursty I/O activities as evidenced in the LLNL application workloads, such as the *ior2* benchmark and the *f1* application described in Ref. [8].

Auto-Correlation of Inter-arrival Times

We use *auto-correlation functions* (ACF) to measure if earlier values in a time sequence have some correlation to later values

$$ACF(k) = \frac{c_k}{c_0}$$
 where $c_k = \frac{1}{N-k} \sum_{i=1}^{N-k} (x_i - \bar{x})(x_{i+k} - \bar{x})$

- It might be appropriate to use Markov model to synthesize *ior2-stride* workload, but not *ior2-fileproc*, *ior2-shared*;
- Examination results above motivate us to further study the self-similarity of parallel I/Os.

Self-similarity Detection

A covariance stationary stochastic process is self-similar if

$$\lim_{k \to \infty} \frac{ACF(k)}{k^{-\beta}} = c < \infty, \text{ for } 0 < \beta < 1$$

Second order self-similar $ACF(k) = \frac{1}{2}[(k+1)^{2-\beta} - 2k^{2-\beta} + (k-1)^{2-\beta}]$

Hurst parameter, $H = 1 - \beta/2$, measures of the degree of self-similarity. Use three methods to estimate H: variance-time plot (VTP), R/S, and Whittle estimator

➢ Most of the Hurst exponent values are above 0.5 except the I/O events in ior2-stride. This observation indicates the comprehensive *existence of self-similarity* in the LLNL I/O traces studied in this paper.

Traces	Estimation of H				
Streams	1	2	3	4	5
ior2-fileproc	0.67	0.66	0.65	0.69	0.70
ior2-shared	0.72	0.78	0.83	0.84	0.86
ior2-stride	0.52	0.49	0.45	0.40	0.41
fI-write	0.55	0.56	0.54	0.58	0.56
fl-restart	0.51	0.59	0.52	0.50	0.64
m1-write	0.66	0.67	0.67	0.65	0.66
ml-restart	0.67	0.65	0.66	0.64	0.63

Modeling I/O Arrivals

➢ We find that the parallel I/O traces studied meet the major requirements of a widely used model named *Fractional Brownian Motion*.

≻The prediction algorithm can be expressed as

 $\lambda^{2H-1} \sim \frac{-2\alpha \ln(\varepsilon)((1-H)^{1-H}H^H)^2 b^{2H-2}}{[b(1-\varepsilon)-\varepsilon]^{2H}}.$

➢Our prediction model can be briefly described as right.

ARRIVAL-RATE-PREDICTION

INPUT: The I/O miss probability ϵ , the maximum number of outstanding streams served at per node *b*, original trace data file *f*.

OUTPUT: arrival rate $\{\lambda(i); i = 1, 2, ..., n\}$. **ALGORITHM:**

for each f

Use maximum-likelihood estimate to estimate the parameter value α for data sets in *f*; Use Pox plot to estimate the Hurst value *H*

if $H \notin (0,1)$ or $H = 1/\alpha$ then break;

else

Set the initial values of ϵ and b, and obtain $\{\lambda(i); i = 1, 2, ..., n\}$ using Equation (5)

end for

Evaluation of Our Model

7

Conclusions

- There are *evident correlations between inter-arrival times* in subtraces collected on most computing nodes.
- Scientific I/O workloads are self-similar for short-term scales. Thus traditional *Poisson or Markovian arrival processes are inappropriate* to model the I/O demands.
- We develop an accurate analytical model to model I/O mean arrival rate for I/O workloads with self-similarity.
- Our immediate future work is to collect parallel I/O traces lasting weeks or months and further evaluate self-similarity.