

Network and Security Research Center Department of Computer Science and Engineering Pennsylvania State University, University Park PA

Disk-Enabled Authenticated Encryption

Kevin Butler, Stephen McLaughlin, and Patrick McDaniel Penn State University MSST 2010, Incline Village, NV 6 May 2010

Data Loss

- An increasingly large problem with disk storage
 - 64,000 records/SSNs of Ohio employees on media stolen from an intern's car (2007)
 - Governer: "What we're doing here is cautionary", no evidence of breach
 - Later findings: over 800,000 records stolen including those of regular citizens
 - 300,000 mental health histories on laptop stolen from PA public welfare department
 - I00,000 employee records on laptop lost by TSA
 - 3,400 National Guard employee records on stolen disk

Integrity

- What happens when the media is retrieved?
 - What's been done to it?
- Confidentiality alone is not the answer
- Requirement: provide integrity as well as confidentiality for stored data
- Solution: authenticated encryption allows preservation of integrity and confidentiality
 - ▶ IEEE PI619.1

Metadata Storage

- Regardless of mode of usage, requires MAC for integrity tag in addition to ciphertext storage
- Problem: ciphertext can be length-preserving, but integrity tags are not
 - Where to store additional data?
 - Not just MACs, but initialization vectors as well
 - ▶ 128-bit MAC, 96-bit IV

- Proposal: store authentication material in NVRAM on the disk
 - Benefit: spatial locality of information and reduction of TCB compared to external metadata server
- What is the storage cost?
 - ► I TB disk and 512-byte sectors, = **54 GB** of NVRAM
 - Mitigate cost with *integrity sets* of adjacent sectors used for MAC calculation

Emulation of Disk AE

- Emulation vs. simulation: allows more accurate reflection of workloads since act as part of system while being easier than full implementation
- workloadd interfaces with Disksim in an event-timing loop (similar to the Memulator)
 - simulation events are handled faster but held back until they match wall-clock time to provide consistency

- Random workloads: increasing integrity set size increases completion time
 - rate not particularly high because transfer time does not appreciably increase
- Larger requests are influenced by track layout
- Also considered throughput (details available offline)

- Investigate new (more modern) DiskSim models
- Look at effects of on-disk metadata
- Understand effects of NVRAM metadata writes on overall reliability
- Investigate use in larger-scale storage systems

Questions? <u>butler@cse.psu.edu</u>