XCo: Explicit Coordination for Preventing Congestion in Data Center Ethernet

Vijay Shankar Rajanna, Smit Shah, Anand Jahagirdar and Kartik Gopalan

Computer Science, State University of New York at Binghamton

Email: kartik@binghamton.edu

Website: http://osnet.cs.binghamton.edu/projects/xco.html

Outline of the talk

- Motivation & Problem Statement
- Our Contributions Explicit coordination
- Illustrating the impact of congestion
- XCo framework
 - Time slice scheduling
 - Implementation
- Evaluation
- Future work
- Conclusion

Motivation

Congestion in Data Center Ethernet

iSCSI, FCoE,... Streaming Media... Data Mining,... VM Checkpointing, VM Migration,... Voice over IP..., etc...

Problem: Increasing congestion in Data Center Fabric

Our Contribution

- XCo prevents network fabric congestion
 - By explicitly coordinating the transmissions from end-hosts
- Achieves significantly higher throughput
 - Compared to uncoordinated transmissions
- Completely transparent to the VMs
- Requires no hardware or switch support
- Can be completely implemented on today's commodity Ethernet fabric and switches

Demonstrating Ethernet Fabric Congestion

Experimental Testbed

- Switches: Nortel 4526-GTX
 - 24 1000Base-T ports & 2 XFP 10Gbps optical uplink slots
- Hosts: Xen 3.3.1/Linux 2.6.29.2, Dual CPU Quad Core

 Benchmarks: Netperf, Open-iSCSI, ShortTCP

Incast & Short TCP Flows Problem

Throughput Collapse Due to Short TCP Flows

(a)

(b)

- a) Incast effect: Collapse of TCP throughput due to barrier synchronized traffic
- b) Short TCP flows behave like UDP

Impact of Non-TCP traffic

- Bottleneck link is completely utilized
- Total throughput suffers due to large UDP message size
- TCP does not get its fair share due to congestion

Variation in RTT due to congestion

ping RTT Fluctuation During Congestion

Ping RTT varies significantly due to congestion in the bottleneck link

Our Solution: XCo

Design Goals

- Prevent excessive concurrent transmissions
 - To avoid potential congestion in bottleneck links of the switched network
- Permit sufficient network activity
 - -To achieve high network utilization

XCo Architecture

Transmission Directive

 Permit just enough senders to transmit so as to saturate the bottleneck link

XCo Design and Implementation

Timeslice Scheduling For General Network Topology

- The timeslice scheduling algorithm runs in the central controller
- The algorithm considers
 - Multiple bottleneck links
 - Work conservation
 - Some level of fairness among senders
- Feasibility condition for bottleneck link:

$$F(\alpha_{ij}, C_{ij}) : \sum_{\forall x \in \alpha_{ij}} C_x \le C_{ij}$$

Performance Evaluation

Solving the Incast Problem using XCo

- Incast is alleviated for sufficiently large number of iSCSI servers
- iSCSI throughput improves by 120%

Solving Throughput Collapse Due To Short TCP Bursts using XCo

Improving Throughput With Short TCP Flows

TCP netperf improves up to 320% Total throughput improves up to 110%

Decreasing RTT variations with XCo

Preventing Throughput Collapse with Non-TCP Traffic

- (a) Total throughput improves with XCo & with Work-conservation
- (b) XCo reduces live VM Migration time in the presence of competing TCP/UDP traffic

Related Work

- 802.3x Pause Frames
 - Cause head of the line blocking
- VLANs
- Do not provide congestion control
- Data Center Bridging (DCB) Task Group
- In progress; future switch-level support for congestion control and QoS
- Hedera, Viking, SPAIN, Ethane, Fat-Tree
 - Depend on modifying switch forwarding tables
 - Reconfiguring spanning trees using VLANs/Multi-pathing
 - For flow scheduling in enterprise networks
 - XCo doesn't need to modify switches or VLANs
- TCP Throughput Collapse (Incast)
- Reducing concurrent iSCSI servers
- Reducing advertised TCP recv buffer size
- Reducing RTOmin

XCo can work with unmodified TCP stack and any number of iSCSI servers

Future Work

- Empirical Studies
 - More detailed studies on complex topologies with multiple bottlenecks
- Scalability
 - Multiple or hierarchical controllers. NS3 simulations for thousands of nodes under multi-tiered multi-rooted data center topologies
- Active and On-demand Coordination
 - Use feedbacks to trigger central coordination only during times of network congestion
- Fault Tolerance
 - Controller failure, end-host failure
- Alternative Coordination Strategies
 - Hybrid of timeslice scheduling and rate-limiting

Conclusion

- Virtualization offers new opportunities for mitigating Data Center Ethernet Congestion
- XCo: A system to explicit coordinate the network transmissions from multiple senders at millisecond granularity
- No changes to the VMs, applications, protocols & switches
- A central controller issues transmission directives (or permissions to transmit) to end-hosts
- Temporally separates transmissions competing for bottleneck links
- XCo has the potential to prevent congestion-induced performance problems in today's unmodified Gigabit and 10GigE switched Ethernet
- Future work: more complex topologies, scalability, on-demand coordination, fault-tolerance, and alternative coordination strategies

Thank You!

Backup

Throughput Collapse with 10Gig Link

Solving 10Gig Link Throughput Collapse

Fairness With Different Flows Achieved By XCo

XCo Responsiveness To Flow Changes

Responsiveness is about 75ms one time to create new flow classifiers and about 10ms each time when senders change

 $P_{sd} = \{ (i, j) \mid (i, j) \text{ lies in the path from } s \text{ to } d \text{ in the spanning tree } ST \}$

$$\beta_{ij} = \{ s \mid \exists d \text{ where } d \in B_s \text{ and } (i,j) \in P_{sd} \}$$

$$\alpha_{ij} = \{ s \mid D_s \neq null \text{ and } (i, j) \in P_{sD_s} \}$$

$$F(\alpha_{ij}, C_{ij}) : \sum_{\forall x \in \alpha_{ij}} C_x \leq C_{ij}$$

```
1: Input: (a) Current spanning tree ST
        (b) Maximum link capacity C_{ij} \forall (i,j) \in ST
 3:
        (c) Pre-computed paths P_{xy} \forall nodes x, y
        (d) Current backlog group B_x \forall nodes x
      (e) Current contention group \beta_{ij} \forall links (i, j)
 5:
    (f) Current active contention group \alpha_{ij} \forall links (i, j)
 6:
7: (g) Last transmission directive D_x^{old} \forall nodes x
8: (h) Type of scheduling event
9:
        (i) Node t which triggered the scheduling event
10: Output: Next transmission directive D_x for each node
    x affected by the scheduling event
11:
12: A := \emptyset /*set of nodes affected by scheduling event*/
13: for each node d \in B_t do
14: for each link (i, j) \in P_{td} do
15: A := A \cup \beta_{ij}
16: end for
17: end for
18: if D_t^{old} \neq null then
      for each link (i, j) \in P_{tD_t^{old}} do
19:
20:
     \alpha_{ij} := \alpha_{ij} - \{t\}
21:
      end for
22: if (scheduling event = work conservation) then
         B_t := B_t - \{D_t^{old}\} / *t has no backlog to D_t^{old} */
23:
24:
      end if
25: end if
```

```
26: N := \emptyset /*set of nodes with new schedule*/
27: while A \neq \emptyset do
28: x := \text{some node in } A
29: D_x := null
30: for each node d \in B_x do
31:
        for each link (i, j) \in P_{xd} do
32: /*Check feasibility condition*/
33: if F(\lbrace x \rbrace \cup \alpha_{ij}, C_{ij}) = false then
34:
             Skip to next d in line 30
35:
           end if
36:
      end for
37:
        D_x := d / *d satisfies feasibility at each link*/
38:
39:
```

```
if D_x^{old} \neq null then
40:
41: /*x will stop transmitting to D_x^{old}*/
           for each link (i,j) \in (P_{xD_x^{old}} - P_{xD_x}) do
42:
43:
             \alpha_{ij} := \alpha_{ij} - \{x\}
44:
             A := A \cup (\beta_{ij} - N) /*more nodes affected*/
45:
           end for
46: end if
47: for each link (i, j) \in P_{xd} do
48: \alpha_{ij} := \alpha_{ij} \cup \{x\}
49: end for
50: break;
51: end for
52: A := A - \{x\}
53: if D_x \neq null then
54: /*newly scheduled; don't reschedule again*/
55: N := N \cup x
56: end if
57: end while
58: for each x \in N do
59: Send D_x to x
60: D_x^{old} := D_x
61: end for
```