
ZBD: Using Transparent Compression at the

Block Level to Increase Storage Space Efficiency

Institute of Computer Science (ICS)

Foundation for Research and Technology – Hellas (FORTH)

Thanos Makatos, Yannis Klonatos, Manolis Marazakis,

Michail D. Flouris, and Angelos Bilas

{mcatos,klonatos,maraz,flouris,bilas}@ics.forth.gr

Motivation

 Disk storage cost per GB declining

 Capacity demands surpass cost improvements

 Techniques for improving effective capacity

 Compression, de-duplication

 Benefits

 Less disks for same capacity  lower cost

 Simpler packaging  easier management

 Less components  less HW failures/human failures

 Less spindles  less power

 RAID-1, RAID-10  reduce capacity penalty

 Versioning  more versions

 Compression to reduce capacity requirements online

2 SNAPI 2010 - Compression at the Block Level

Who manages compressed volumes?

 File-system

 Restricts FS choice

 What about ext3, ext4, XFS, reiser3, JFS?

 Doesn’t support raw I/O databases

 Restricts where compression is applied in the I/O path

 Storage controllers?

 Storage virtualization layers?

 Our approach: move compression at the block level

 Addresses above concerns

3 SNAPI 2010 - Compression at the Block Level

Related Work

 FS compression

 Sprite LFS, NTFS, ZFS, BTRFS

 Block-level compression

 CBD, cloop: read-only block devices (avoid most complexity)

 Reduce DRAM requirements by compressing memory pages

 Improve I/O performance by compression

 Compression increases effective disk bandwidth:

 Mostly used in DBMS (Oracle, IBM’s IMS)

 Implemented at the DBMS level: specifically targets DB

 Compress SSD caches  improve effective cache capacity

T. Makatos, Y. Klonatos, M. Marazakis, M. D. Flouris, and A. Bilas,

“Using Transparent Compression to Improve SSD-based I/O Caches”, EuroSys 2010

4 SNAPI 2010 - Compression at the Block Level

Compression in the I/O path

 All I/Os affected

 Writes compressed

 Reads decompressed

 We build “ZBD”

 A Linux virtual block device
(/dev/zbd)

 Intercepts and compresses I/Os

 Can be placed anywhere between
the FS and the disk

 Trades multicore CPU cycles for
disk capacity

5 SNAPI 2010 - Compression at the Block Level

Applications

File-system

Buffer cache

Compression
layer (ZBD)

User

Kernel

Disk

B
lo

ck
 la

ye
r

Challenges

6 SNAPI 2010 - Compression at the Block Level

data block

variable-size segment

mapping

compression

packed block

read-modify-write

Many-to-one mapping: extra I/Os

updated block

Read-modify-write: extra I/Os

CPU overhead: increased I/O latency

Outline

 Motivation & Challenges

 Design

 CPU overhead & I/O Latency

 Increased Number of I/Os

 Metadata

 Read-modify-write

 Cleaner

 Evaluation

 Overall impact on performance and CPU utilization

 System and workload parameters

 Conclusions

7 SNAPI 2010 - Compression at the Block Level

Hiding compression overhead

 Compression requires a lot of CPU (+2.4 ms for 64K of data)
 Decompression 3x faster

 Our design agnostic to compression method

 High I/O concurrency (many independent I/Os)
 Need to load balance requests across cores with low overhead

 Use two global work-queues
 One for reads (high priority)

 One for writes

 Low I/O concurrency
 Small I/Os doomed: can’t hide decompression overhead

 Large I/Os more interesting:
 Large I/Os split to 4K blocks

 Processed in parallel by multiple cores

8 SNAPI 2010 - Compression at the Block Level

Reducing I/Os

 Need metadata to locate segment within physical block

 Conceptually a logical-to-physical translation table (L2P)

 Translation metadata split to two levels

 1st level stored in beginning of disk

 Too big to fit in DRAM (2GB per TB), use a cache

 2nd level stored in physical block

 Remove size & offset fields (decrease memory footprint)

9 SNAPI 2010 - Compression at the Block Level

physical
block
number

size

offset

a mapping

packed 4K physical block

blk.
num.

size
compr.
data

blk.
num.

size
compr.
data

logical to
physical table

disk

a compressed

block

another

compressed block

more

compressed blocks…

Reducing I/Os

 Dirty metadata blocks placed on NVRAM

 Avoid sync. metadata writes

 Used only for pending metadata writes

 Only need few tens of MB’s

 4K blocks too small

 Free space fragments

 Combine multiple physical blocks into extents (e.g. 32K)

 Unit of I/O  affects I/O volume & fragmentation

 Read-modify-write: +1 read for every write!

 Choose any suitable extent in DRAM (remap-on-write)

 Avoids complexity of compressed footprint mismatch

10 SNAPI 2010 - Compression at the Block Level

Reducing I/Os

 Extents managed by extent pool

 Full extents flushed to disk sequentially

 Pool design tradeoff

 Fragmentation

 Preserve temporal locality

 Blocks of same request placed on same extent

 Blocks of requests close in time to same extent

 Otherwise we introduce seeks…

 Pool replenished with empty extents

 Empty/non-empty  “bitmap” for free extents

 Less metadata

11 SNAPI 2010 - Compression at the Block Level

Reducing I/Os

 Allocator replenishes extent pool

 Free list in memory

 Allocator returns any extent when called (fast)

 List requires replenishing

 Garbage collector (cleaner) reclaims space/replenishes list

 Triggered when few free extents left (low/high watermarks)

 Scans & compacts old extents

 Places empty extents in free list

 Read-modify-write deferred to garbage collection time

 Expected to take place during idle I/O

12 SNAPI 2010 - Compression at the Block Level

Outline

 Motivation & Challenges

 Design

 CPU overhead & I/O Latency

 Increased Number of I/Os

 Metadata

 Read-modify-write

 Cleaner

 Evaluation

 Overall impact on performance and CPU utilization

 System and workload parameters

 Conclusions

13 SNAPI 2010 - Compression at the Block Level

Experimental evaluation

 Platform
 Dual-socket, quad-core Intel XEON, 2 GHz, 64 bit (8 cores total)

 8 SATA-II disks, 500 GB (WD-5001AALS)

 Areca SAS storage controller (ARC-1680D-IX-12)

 RAID0 configuration, 64KB chunks

 Linux kernel 2.6.18.8 (x86_64), CentOS 5.3

 Benchmarks
 PostMark (mail server)

 SPECsfs2008 (file server)

 TPC-C (OLTP)

 TPC-H (data-warehouse)

 zlib, lzo compression libraries
 Compression ratio between 11%-54% (depending on method and data)

14 SNAPI 2010 - Compression at the Block Level

Read
(Decompression)

Write
(Compression)

Resp. Time
(4K block)

Disk
(1 spindle)

100 MB/s 90 MB/s 12.6 ms

zlib
(1 core)

65 MB/s 26 MB/s N/A

lzo
(1 core)

279 MB/s 85 MB/s N/A

Compression Efficiency

SNAPI 2010 - Compression at the Block Level15

Files Orig. MB gzip -r gzip .tar NTFS ZFS ZBD (zlib) ZBD (lzo)

mbox 1 125 N/A 29% 7% 4% 17% 11%

mbox 2 63 N/A 68% 39% 31% 54% 34%

MS word 1100 50% 51% 37% 35% 44% 33%

MS excel 756 67% 67% 47% 41% 55% 47%
PDF 1400 22% 22% 14% 15% 15% 12%

Linux
source 277 55% 76% 27% 33% 69% 46%

compiled
1400 63% 71% 47% 52% 67% 58%

 Higher is best (percentage of data saved)

 Comparable space savings to NTFS, ZFS

 zlib slightly better

 lzo slightly worse

Overall Impact on Performance

 Performance improves by 70% for PostMark, 30% for SPEC SFS
 Mainly due to log-structured writes
 Compression reduces write I/O volume  performance further improves

 Performance degrades by 34% for TPC-C, 15% for TPC-H
 TPC-C: (a) read-intensive and (b) poor spatial locality  excessive read I/O

volume
 TPC-H: (a) read-only and (b) low I/O concurrency and (b) small I/Os 

decompression cost exposed

16 SNAPI 2010 - Compression at the Block Level

1,70

1,26

0,69
0,89

1,69

1,30

0,66
0,85

0

0,5

1

1,5

2

PostMark SPEC SFS TPC-C TPC-H

N
o

rm
al

iz
e

d

P
e

rf
o

rm
an

ce

ZBD (lzo)

ZBD (zlib)

Impact on CPU Utilization

Increased capacity isn’t for free (1-2 additional cores consumed)
 PostMark: 122%-178%

 SPEC SFS: 77%-92%

 TPC-C: 64%-72%

 TPC-H: 94%-111%

17 SNAPI 2010 - Compression at the Block Level

2,22

1,77
1,64

1,94

2,78

1,92

1,72

2,11

1

1,2

1,4

1,6

1,8

2

2,2

2,4

2,6

2,8

3

PostMark SPEC SFS TPC-C TPC-H

N
o

rm
al

iz
e

d
 %

C
P

U

ZBD (lzo)

ZBD (zlib)

Effect of Log-structured Writes on Performance –
SPEC SFS

 ZBD in pass-through mode  compression omitted

 Log-structured writes

 Higher performance due to write I/O volume reduction

 Additional read I/O volume is offset

18 SNAPI 2010 - Compression at the Block Level

0

2

4

6

8

10

12

14

Native ZBD (pass-
through)

ZBD (zlib)

I/
O

 V
o

lu
m

e
 (

G
B

)

Write
Read

0

2

4

6

8

10

12

Native ZBD (pass-
through)

ZBD (zlib)

R
e

sp
o

n
se

 T
im

e
 (

m
s/

se
c)

Effect of Log-structured Writes on Performance –
TPC-C

 ZBD in pass-through mode  compression omitted
 Higher R:W ratio than SPEC SFS  less writes to optimize
 Each app. read (4K) fetches entire extent (32K)  4x read I/Os
 Compression to reduce read I/Os?

 4K blocks change application locality
 Need extents

19 SNAPI 2010 - Compression at the Block Level

0

10

20

30

40

50

Native ZBD (pass-
through)

ZBD (zlib)

I/
O

 V
o

lu
m

e
 (

G
B

) Write
Read

0

100

200

300

400

500

600

Native ZBD (pass-
through)

ZBD (zlib)

Tr
an

s.
 p

e
r

m
in

.

Extent Size - SPEC SFS

 Read I/Os increase with larger extents
 Sequential I/Os, no seeks introduced
 Medium extents provide pre-fetching, offset extra read I/O volume

 Write I/Os marginally decrease  less free space
 Extent size depends on workload (32K extents used so far)
 16K-64K good for most workloads

20 SNAPI 2010 - Compression at the Block Level

0

2

4

6

8

10

12

14

16 32 48 64 80 96 112 128R
e

sp
o

n
se

 T
im

e
 (

m
s/

o
p

)

Extent Size (KB)

0

10

20

30

40

50

60

16 32 48 64 80 96 112 128

I/
O

 V
o

lu
m

e
 (

G
B

)

Extent Size (KB)

Read
Read (linear)
Write

Impact on Access Pattern – TPC-H (Q3)

 Data compacted on smaller disk zone (4GB vs. 7GB)
 Smaller seek distance

 Smaller read I/O volume
 Lower transfer time

21 SNAPI 2010 - Compression at the Block Level

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100

D
is

k
A

re
a

(G
B

)

Time (sec)

Native

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100

D
is

k
A

re
a

(G
B

)

Time (sec)

ZBD (lzo)

Not enough to offset decompression overhead!

Exploiting Multicores - PostMark

 1 core  compression CPU bound, lzo more light-weight
 2 cores  performance better than native
 4 cores  lzo doesn’t scale beyond  disk bound
 8 cores  both lzo and zlib disk bound
 PostMark low concur. & response-time bound  no linear

scaling

22 SNAPI 2010 - Compression at the Block Level

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

Tr
an

s.
 p

e
r

se
c.

Number of Cores

Native
ZBD (lzo)
ZBD (zlib) 0

20

40

60

80

100

1 2 3 4 5 6 7 8

%
C

P
U

Number of Cores

Native
ZBD (lzo)
ZBD (zlib)

Effect of Cleanup on Performance - PostMark

 Free extents depleted, cleaner on the rescue
 Cleaner ”steals” IOPS  PostMark throughput decreases by 50%

 Large cleaner I/Os  device I/O activity increases by 450%

 Two time periods (“valleys”): 280-290, 355-370 sec

 15% of capacity reclaimed (1.4 GB) in 1 min.

23 SNAPI 2010 - Compression at the Block Level

0

50

100

150

200

250

300

0 60 120 180 240 300 360

M
B

/s
e

c

Time (sec)

Application Throughput

I/O Throughput

cleaner active

Metadata I/Os - PostMark

24 SNAPI 2010 - Compression at the Block Level

 No metadata I/Os for previous experiments (except for SPEC SFS)

 2x improvement when no metadata I/Os

 32MB of DRAM for a 24GB file-set

 Practically random, blocking I/Os interfering with app. I/Os

 Similar observations for rest of benchmarks (64KB – 256MB)

0

10

20

30

40

50

60

0 4 8 12 16 20 24 28 32

Tr
an

s.
 p

e
r

se
c.

Metadata Cache Size (MB)

0

2

4

6

8

0 4 8 12 16 20 24 28 32

%
 o

f
To

ta
l I

/O
 V

o
lu

m
e

Metadata Cache Size (MB)

Conclusions

 Compress data at the block level for increased space efficiency
 Transparent to FS and raw I/O apps.

 Trade CPU cycles for storage capacity

 Transparent compression challenges:
 Increased I/O response time (compression cost)

 Increased number of I/Os (metadata & read-modify-write sequence)

 Performance improves by 70% in PostMark, 30% in SPECsfs2008
 Log-structured writes & reduced write I/O volume

 Performance degrades by 34% in TPC-C, 15% in TPC-H
 Small and random I/Os  excessive read I/O volume

 Poor I/O concurrency and small I/Os  decompression cost exposed

 Potential in increasing I/O performance on disks
 Reduced transfer time

 Reduced seek distance

25 SNAPI 2010 - Compression at the Block Level

Thank You!

26 SNAPI 2010 - Compression at the Block Level

Questions?

“ZBD: Using Transparent Compression at the Block
Level to Increase Storage Space Efficiency”

Thanos Makatos, Yannis Klonatos, Manolis Marazakis,

Michail D. Flouris, and Angelos Bilas

{mcatos,klonatos,maraz,flouris,bilas}@ics.forth.gr

Foundation for Research & Technology - Hellas

http://www.ics.forth.gr/carv/scalable

http://www.ics.forth.gr/carv/scalable

Benchmark Parameters

 PostMark (mail server)
 50K transactions, 35%:65% RW ratio, 16K accesses

 Record 5 min. of execution

 100 mboxes, 500 msgs/mbox, 4K-1M msg size, 24 GB file-set

 SPECsfs2008 (file server)
 3,400-4,600 ops/sec, 300 step value, 540 GB file-set

 TPC-C (OLTP)
 300 warehouses (28 GB database), 3,000 connections, 10

terminals per warehouse, execution time set to 30 min.

 TPC-H (data-warehouse)
 4 GB database (+2.5 for indices)

 Queries executed back-to-back
(1, 3, 4, 6, 7, 10, 12, 14, 15, 19, and 22)

27 SNAPI 2010 - Compression at the Block Level

