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Motivation

 Disk storage cost per GB declining

 Capacity demands surpass cost improvements

 Techniques for improving effective capacity

 Compression, de-duplication

 Benefits

 Less disks for same capacity  lower cost

 Simpler packaging  easier management

 Less components  less HW failures/human failures

 Less spindles  less power

 RAID-1, RAID-10  reduce capacity penalty

 Versioning  more versions

 Compression to reduce capacity requirements online
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Who manages compressed volumes?

 File-system

 Restricts FS choice

 What about ext3, ext4, XFS, reiser3, JFS?

 Doesn’t support raw I/O databases

 Restricts where compression is applied in the I/O path

 Storage controllers?

 Storage virtualization layers?

 Our approach: move compression at the block level

 Addresses above concerns
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Related Work

 FS compression

 Sprite LFS, NTFS, ZFS, BTRFS

 Block-level compression

 CBD, cloop: read-only block devices (avoid most complexity)

 Reduce DRAM requirements by compressing memory pages

 Improve I/O performance by compression

 Compression increases effective disk bandwidth:

 Mostly used in DBMS (Oracle, IBM’s IMS)

 Implemented at the DBMS level: specifically targets DB

 Compress SSD caches  improve effective cache capacity

T. Makatos, Y. Klonatos, M. Marazakis, M. D. Flouris, and A. Bilas, 

“Using Transparent Compression to Improve SSD-based I/O Caches”, EuroSys 2010

4 SNAPI 2010 - Compression at the Block Level



Compression in the I/O path

 All I/Os affected

 Writes compressed

 Reads decompressed

 We build “ZBD”

 A Linux virtual block device 
(/dev/zbd)

 Intercepts and compresses I/Os

 Can be placed anywhere between 
the FS and the disk

 Trades multicore CPU cycles for 
disk capacity
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Challenges
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Outline
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Hiding compression overhead

 Compression requires a lot of CPU (+2.4 ms for 64K of data)
 Decompression 3x faster

 Our design agnostic to compression method

 High I/O concurrency (many independent I/Os)
 Need to load balance requests across cores with low overhead

 Use two global work-queues
 One for reads (high priority)

 One for writes

 Low I/O concurrency
 Small I/Os doomed: can’t hide decompression overhead

 Large I/Os more interesting:
 Large I/Os split to 4K blocks

 Processed in parallel by multiple cores
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Reducing I/Os

 Need metadata to locate segment within physical block

 Conceptually a logical-to-physical translation table (L2P)

 Translation metadata split to two levels

 1st level stored in beginning of disk

 Too big to fit in DRAM (2GB per TB), use a cache

 2nd level stored in physical block

 Remove size & offset fields (decrease memory footprint)
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Reducing I/Os

 Dirty metadata blocks placed on NVRAM

 Avoid sync. metadata writes

 Used only for pending metadata writes

 Only need few tens of MB’s

 4K blocks too small

 Free space fragments

 Combine multiple physical blocks into extents (e.g. 32K)

 Unit of I/O  affects I/O volume & fragmentation

 Read-modify-write: +1 read for every write!

 Choose any suitable extent in DRAM (remap-on-write)

 Avoids complexity of compressed footprint mismatch
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Reducing I/Os

 Extents managed by extent pool

 Full extents flushed to disk sequentially

 Pool design tradeoff

 Fragmentation

 Preserve temporal locality

 Blocks of same request placed on same extent

 Blocks of requests close in time to same extent

 Otherwise we introduce seeks…

 Pool replenished with empty extents

 Empty/non-empty  “bitmap” for free extents

 Less metadata
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Reducing I/Os

 Allocator replenishes extent pool

 Free list in memory

 Allocator returns any extent when called (fast)

 List requires replenishing

 Garbage collector (cleaner) reclaims space/replenishes list

 Triggered when few free extents left (low/high watermarks)

 Scans & compacts old extents

 Places empty extents in free list

 Read-modify-write deferred to garbage collection time

 Expected to take place during idle I/O
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Experimental evaluation

 Platform
 Dual-socket, quad-core Intel XEON, 2 GHz, 64 bit (8 cores total)

 8 SATA-II disks, 500 GB (WD-5001AALS)

 Areca SAS storage controller (ARC-1680D-IX-12)

 RAID0 configuration, 64KB chunks

 Linux kernel 2.6.18.8 (x86_64), CentOS 5.3

 Benchmarks
 PostMark (mail server)

 SPECsfs2008 (file server)

 TPC-C (OLTP)

 TPC-H (data-warehouse)

 zlib, lzo compression libraries
 Compression ratio between 11%-54% (depending on method and data)
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Read
(Decompression)

Write 
(Compression)

Resp. Time 
(4K block)

Disk
(1 spindle)

100 MB/s 90 MB/s 12.6 ms

zlib
(1 core)

65 MB/s 26 MB/s N/A

lzo
(1 core)

279 MB/s 85 MB/s N/A



Compression Efficiency
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Files Orig. MB gzip -r gzip .tar NTFS ZFS ZBD (zlib) ZBD (lzo)

mbox 1 125 N/A 29% 7% 4% 17% 11%

mbox 2 63 N/A 68% 39% 31% 54% 34%

MS word 1100 50% 51% 37% 35% 44% 33%

MS excel 756 67% 67% 47% 41% 55% 47%
PDF 1400 22% 22% 14% 15% 15% 12%

Linux
source 277 55% 76% 27% 33% 69% 46%

compiled
1400 63% 71% 47% 52% 67% 58%

 Higher is best (percentage of data saved)

 Comparable space savings to NTFS, ZFS

 zlib slightly better

 lzo slightly worse



Overall Impact on Performance

 Performance  improves by 70% for PostMark, 30% for SPEC SFS
 Mainly due to log-structured writes
 Compression reduces write I/O volume  performance further improves

 Performance  degrades by 34% for TPC-C, 15% for TPC-H
 TPC-C: (a) read-intensive and (b) poor spatial locality  excessive read I/O 

volume
 TPC-H: (a) read-only and (b) low I/O concurrency and (b) small I/Os 

decompression cost exposed
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Impact on CPU Utilization

Increased capacity isn’t for free (1-2 additional cores consumed)
 PostMark: 122%-178%

 SPEC SFS: 77%-92%

 TPC-C: 64%-72%

 TPC-H: 94%-111%
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Effect of Log-structured Writes on Performance –
SPEC SFS

 ZBD in pass-through mode  compression omitted

 Log-structured writes

 Higher performance due to write I/O volume reduction

 Additional read I/O volume is offset
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Effect of Log-structured Writes on Performance –
TPC-C

 ZBD in pass-through mode  compression omitted
 Higher R:W ratio than SPEC SFS  less writes to optimize
 Each app. read (4K) fetches entire extent (32K)  4x read I/Os
 Compression to reduce read I/Os?

 4K blocks change application locality
 Need extents
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Extent Size - SPEC SFS

 Read I/Os increase with larger extents
 Sequential I/Os, no seeks introduced
 Medium extents provide pre-fetching, offset extra read I/O volume

 Write I/Os marginally decrease  less free space
 Extent size depends on workload (32K extents used so far)
 16K-64K good for most workloads
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Impact on Access Pattern – TPC-H (Q3)

 Data compacted on smaller disk zone (4GB vs. 7GB)
 Smaller seek distance

 Smaller read I/O volume
 Lower transfer time
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Exploiting Multicores - PostMark

 1 core  compression CPU bound, lzo more light-weight
 2 cores  performance better than native
 4 cores  lzo doesn’t scale beyond  disk bound
 8 cores  both lzo and zlib disk bound
 PostMark low concur. & response-time bound  no linear 

scaling
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Effect of Cleanup on Performance - PostMark

 Free extents depleted, cleaner on the rescue
 Cleaner ”steals” IOPS   PostMark throughput decreases by 50%

 Large cleaner I/Os  device I/O activity increases by 450%

 Two time periods (“valleys”): 280-290, 355-370 sec

 15% of capacity reclaimed (1.4 GB) in 1 min.
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Metadata I/Os - PostMark
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 No metadata I/Os for previous experiments (except for SPEC SFS)

 2x improvement when no metadata I/Os

 32MB of DRAM for a 24GB file-set

 Practically random, blocking I/Os interfering with app. I/Os

 Similar observations for rest of benchmarks (64KB – 256MB)
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Conclusions

 Compress data at the block level for increased space efficiency
 Transparent to FS and raw I/O apps.

 Trade CPU cycles for storage capacity

 Transparent compression challenges:
 Increased I/O response time (compression cost)

 Increased number of I/Os (metadata & read-modify-write sequence)

 Performance improves by 70% in PostMark, 30% in SPECsfs2008
 Log-structured writes & reduced write I/O volume

 Performance degrades by 34% in TPC-C, 15% in TPC-H
 Small and random I/Os  excessive read I/O volume

 Poor I/O concurrency and small I/Os  decompression cost exposed

 Potential in increasing I/O performance on disks
 Reduced transfer time

 Reduced seek distance
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Thank You!
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Benchmark Parameters

 PostMark (mail server)
 50K transactions, 35%:65% RW ratio, 16K accesses

 Record 5 min. of execution

 100 mboxes, 500 msgs/mbox, 4K-1M msg size, 24 GB file-set

 SPECsfs2008 (file server)
 3,400-4,600 ops/sec, 300 step value, 540 GB file-set

 TPC-C (OLTP)
 300 warehouses (28 GB database), 3,000 connections, 10 

terminals per warehouse, execution time set to 30 min.

 TPC-H (data-warehouse)
 4 GB database (+2.5 for indices)

 Queries executed back-to-back 
(1, 3, 4, 6, 7, 10, 12, 14, 15, 19, and 22)
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