
ZBD: Using Transparent Compression at the

Block Level to Increase Storage Space Efficiency

Institute of Computer Science (ICS)

Foundation for Research and Technology – Hellas (FORTH)

Thanos Makatos, Yannis Klonatos, Manolis Marazakis,

Michail D. Flouris, and Angelos Bilas

{mcatos,klonatos,maraz,flouris,bilas}@ics.forth.gr

Motivation

 Disk storage cost per GB declining

 Capacity demands surpass cost improvements

 Techniques for improving effective capacity

 Compression, de-duplication

 Benefits

 Less disks for same capacity lower cost

 Simpler packaging easier management

 Less components less HW failures/human failures

 Less spindles less power

 RAID-1, RAID-10 reduce capacity penalty

 Versioning more versions

 Compression to reduce capacity requirements online

2 SNAPI 2010 - Compression at the Block Level

Who manages compressed volumes?

 File-system

 Restricts FS choice

 What about ext3, ext4, XFS, reiser3, JFS?

 Doesn’t support raw I/O databases

 Restricts where compression is applied in the I/O path

 Storage controllers?

 Storage virtualization layers?

 Our approach: move compression at the block level

 Addresses above concerns

3 SNAPI 2010 - Compression at the Block Level

Related Work

 FS compression

 Sprite LFS, NTFS, ZFS, BTRFS

 Block-level compression

 CBD, cloop: read-only block devices (avoid most complexity)

 Reduce DRAM requirements by compressing memory pages

 Improve I/O performance by compression

 Compression increases effective disk bandwidth:

 Mostly used in DBMS (Oracle, IBM’s IMS)

 Implemented at the DBMS level: specifically targets DB

 Compress SSD caches improve effective cache capacity

T. Makatos, Y. Klonatos, M. Marazakis, M. D. Flouris, and A. Bilas,

“Using Transparent Compression to Improve SSD-based I/O Caches”, EuroSys 2010

4 SNAPI 2010 - Compression at the Block Level

Compression in the I/O path

 All I/Os affected

 Writes compressed

 Reads decompressed

 We build “ZBD”

 A Linux virtual block device
(/dev/zbd)

 Intercepts and compresses I/Os

 Can be placed anywhere between
the FS and the disk

 Trades multicore CPU cycles for
disk capacity

5 SNAPI 2010 - Compression at the Block Level

Applications

File-system

Buffer cache

Compression
layer (ZBD)

User

Kernel

Disk

B
lo

ck
 la

ye
r

Challenges

6 SNAPI 2010 - Compression at the Block Level

data block

variable-size segment

mapping

compression

packed block

read-modify-write

Many-to-one mapping: extra I/Os

updated block

Read-modify-write: extra I/Os

CPU overhead: increased I/O latency

Outline

 Motivation & Challenges

 Design

 CPU overhead & I/O Latency

 Increased Number of I/Os

 Metadata

 Read-modify-write

 Cleaner

 Evaluation

 Overall impact on performance and CPU utilization

 System and workload parameters

 Conclusions

7 SNAPI 2010 - Compression at the Block Level

Hiding compression overhead

 Compression requires a lot of CPU (+2.4 ms for 64K of data)
 Decompression 3x faster

 Our design agnostic to compression method

 High I/O concurrency (many independent I/Os)
 Need to load balance requests across cores with low overhead

 Use two global work-queues
 One for reads (high priority)

 One for writes

 Low I/O concurrency
 Small I/Os doomed: can’t hide decompression overhead

 Large I/Os more interesting:
 Large I/Os split to 4K blocks

 Processed in parallel by multiple cores

8 SNAPI 2010 - Compression at the Block Level

Reducing I/Os

 Need metadata to locate segment within physical block

 Conceptually a logical-to-physical translation table (L2P)

 Translation metadata split to two levels

 1st level stored in beginning of disk

 Too big to fit in DRAM (2GB per TB), use a cache

 2nd level stored in physical block

 Remove size & offset fields (decrease memory footprint)

9 SNAPI 2010 - Compression at the Block Level

physical
block
number

size

offset

a mapping

packed 4K physical block

blk.
num.

size
compr.
data

blk.
num.

size
compr.
data

logical to
physical table

disk

a compressed

block

another

compressed block

more

compressed blocks…

Reducing I/Os

 Dirty metadata blocks placed on NVRAM

 Avoid sync. metadata writes

 Used only for pending metadata writes

 Only need few tens of MB’s

 4K blocks too small

 Free space fragments

 Combine multiple physical blocks into extents (e.g. 32K)

 Unit of I/O affects I/O volume & fragmentation

 Read-modify-write: +1 read for every write!

 Choose any suitable extent in DRAM (remap-on-write)

 Avoids complexity of compressed footprint mismatch

10 SNAPI 2010 - Compression at the Block Level

Reducing I/Os

 Extents managed by extent pool

 Full extents flushed to disk sequentially

 Pool design tradeoff

 Fragmentation

 Preserve temporal locality

 Blocks of same request placed on same extent

 Blocks of requests close in time to same extent

 Otherwise we introduce seeks…

 Pool replenished with empty extents

 Empty/non-empty “bitmap” for free extents

 Less metadata

11 SNAPI 2010 - Compression at the Block Level

Reducing I/Os

 Allocator replenishes extent pool

 Free list in memory

 Allocator returns any extent when called (fast)

 List requires replenishing

 Garbage collector (cleaner) reclaims space/replenishes list

 Triggered when few free extents left (low/high watermarks)

 Scans & compacts old extents

 Places empty extents in free list

 Read-modify-write deferred to garbage collection time

 Expected to take place during idle I/O

12 SNAPI 2010 - Compression at the Block Level

Outline

 Motivation & Challenges

 Design

 CPU overhead & I/O Latency

 Increased Number of I/Os

 Metadata

 Read-modify-write

 Cleaner

 Evaluation

 Overall impact on performance and CPU utilization

 System and workload parameters

 Conclusions

13 SNAPI 2010 - Compression at the Block Level

Experimental evaluation

 Platform
 Dual-socket, quad-core Intel XEON, 2 GHz, 64 bit (8 cores total)

 8 SATA-II disks, 500 GB (WD-5001AALS)

 Areca SAS storage controller (ARC-1680D-IX-12)

 RAID0 configuration, 64KB chunks

 Linux kernel 2.6.18.8 (x86_64), CentOS 5.3

 Benchmarks
 PostMark (mail server)

 SPECsfs2008 (file server)

 TPC-C (OLTP)

 TPC-H (data-warehouse)

 zlib, lzo compression libraries
 Compression ratio between 11%-54% (depending on method and data)

14 SNAPI 2010 - Compression at the Block Level

Read
(Decompression)

Write
(Compression)

Resp. Time
(4K block)

Disk
(1 spindle)

100 MB/s 90 MB/s 12.6 ms

zlib
(1 core)

65 MB/s 26 MB/s N/A

lzo
(1 core)

279 MB/s 85 MB/s N/A

Compression Efficiency

SNAPI 2010 - Compression at the Block Level15

Files Orig. MB gzip -r gzip .tar NTFS ZFS ZBD (zlib) ZBD (lzo)

mbox 1 125 N/A 29% 7% 4% 17% 11%

mbox 2 63 N/A 68% 39% 31% 54% 34%

MS word 1100 50% 51% 37% 35% 44% 33%

MS excel 756 67% 67% 47% 41% 55% 47%
PDF 1400 22% 22% 14% 15% 15% 12%

Linux
source 277 55% 76% 27% 33% 69% 46%

compiled
1400 63% 71% 47% 52% 67% 58%

 Higher is best (percentage of data saved)

 Comparable space savings to NTFS, ZFS

 zlib slightly better

 lzo slightly worse

Overall Impact on Performance

 Performance improves by 70% for PostMark, 30% for SPEC SFS
 Mainly due to log-structured writes
 Compression reduces write I/O volume performance further improves

 Performance degrades by 34% for TPC-C, 15% for TPC-H
 TPC-C: (a) read-intensive and (b) poor spatial locality excessive read I/O

volume
 TPC-H: (a) read-only and (b) low I/O concurrency and (b) small I/Os

decompression cost exposed

16 SNAPI 2010 - Compression at the Block Level

1,70

1,26

0,69
0,89

1,69

1,30

0,66
0,85

0

0,5

1

1,5

2

PostMark SPEC SFS TPC-C TPC-H

N
o

rm
al

iz
e

d

P
e

rf
o

rm
an

ce

ZBD (lzo)

ZBD (zlib)

Impact on CPU Utilization

Increased capacity isn’t for free (1-2 additional cores consumed)
 PostMark: 122%-178%

 SPEC SFS: 77%-92%

 TPC-C: 64%-72%

 TPC-H: 94%-111%

17 SNAPI 2010 - Compression at the Block Level

2,22

1,77
1,64

1,94

2,78

1,92

1,72

2,11

1

1,2

1,4

1,6

1,8

2

2,2

2,4

2,6

2,8

3

PostMark SPEC SFS TPC-C TPC-H

N
o

rm
al

iz
e

d
 %

C
P

U

ZBD (lzo)

ZBD (zlib)

Effect of Log-structured Writes on Performance –
SPEC SFS

 ZBD in pass-through mode compression omitted

 Log-structured writes

 Higher performance due to write I/O volume reduction

 Additional read I/O volume is offset

18 SNAPI 2010 - Compression at the Block Level

0

2

4

6

8

10

12

14

Native ZBD (pass-
through)

ZBD (zlib)

I/
O

 V
o

lu
m

e
 (

G
B

)

Write
Read

0

2

4

6

8

10

12

Native ZBD (pass-
through)

ZBD (zlib)

R
e

sp
o

n
se

 T
im

e
 (

m
s/

se
c)

Effect of Log-structured Writes on Performance –
TPC-C

 ZBD in pass-through mode compression omitted
 Higher R:W ratio than SPEC SFS less writes to optimize
 Each app. read (4K) fetches entire extent (32K) 4x read I/Os
 Compression to reduce read I/Os?

 4K blocks change application locality
 Need extents

19 SNAPI 2010 - Compression at the Block Level

0

10

20

30

40

50

Native ZBD (pass-
through)

ZBD (zlib)

I/
O

 V
o

lu
m

e
 (

G
B

) Write
Read

0

100

200

300

400

500

600

Native ZBD (pass-
through)

ZBD (zlib)

Tr
an

s.
 p

e
r

m
in

.

Extent Size - SPEC SFS

 Read I/Os increase with larger extents
 Sequential I/Os, no seeks introduced
 Medium extents provide pre-fetching, offset extra read I/O volume

 Write I/Os marginally decrease less free space
 Extent size depends on workload (32K extents used so far)
 16K-64K good for most workloads

20 SNAPI 2010 - Compression at the Block Level

0

2

4

6

8

10

12

14

16 32 48 64 80 96 112 128R
e

sp
o

n
se

 T
im

e
 (

m
s/

o
p

)

Extent Size (KB)

0

10

20

30

40

50

60

16 32 48 64 80 96 112 128

I/
O

 V
o

lu
m

e
 (

G
B

)

Extent Size (KB)

Read
Read (linear)
Write

Impact on Access Pattern – TPC-H (Q3)

 Data compacted on smaller disk zone (4GB vs. 7GB)
 Smaller seek distance

 Smaller read I/O volume
 Lower transfer time

21 SNAPI 2010 - Compression at the Block Level

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100

D
is

k
A

re
a

(G
B

)

Time (sec)

Native

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100

D
is

k
A

re
a

(G
B

)

Time (sec)

ZBD (lzo)

Not enough to offset decompression overhead!

Exploiting Multicores - PostMark

 1 core compression CPU bound, lzo more light-weight
 2 cores performance better than native
 4 cores lzo doesn’t scale beyond disk bound
 8 cores both lzo and zlib disk bound
 PostMark low concur. & response-time bound no linear

scaling

22 SNAPI 2010 - Compression at the Block Level

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

Tr
an

s.
 p

e
r

se
c.

Number of Cores

Native
ZBD (lzo)
ZBD (zlib) 0

20

40

60

80

100

1 2 3 4 5 6 7 8

%
C

P
U

Number of Cores

Native
ZBD (lzo)
ZBD (zlib)

Effect of Cleanup on Performance - PostMark

 Free extents depleted, cleaner on the rescue
 Cleaner ”steals” IOPS PostMark throughput decreases by 50%

 Large cleaner I/Os device I/O activity increases by 450%

 Two time periods (“valleys”): 280-290, 355-370 sec

 15% of capacity reclaimed (1.4 GB) in 1 min.

23 SNAPI 2010 - Compression at the Block Level

0

50

100

150

200

250

300

0 60 120 180 240 300 360

M
B

/s
e

c

Time (sec)

Application Throughput

I/O Throughput

cleaner active

Metadata I/Os - PostMark

24 SNAPI 2010 - Compression at the Block Level

 No metadata I/Os for previous experiments (except for SPEC SFS)

 2x improvement when no metadata I/Os

 32MB of DRAM for a 24GB file-set

 Practically random, blocking I/Os interfering with app. I/Os

 Similar observations for rest of benchmarks (64KB – 256MB)

0

10

20

30

40

50

60

0 4 8 12 16 20 24 28 32

Tr
an

s.
 p

e
r

se
c.

Metadata Cache Size (MB)

0

2

4

6

8

0 4 8 12 16 20 24 28 32

%
 o

f
To

ta
l I

/O
 V

o
lu

m
e

Metadata Cache Size (MB)

Conclusions

 Compress data at the block level for increased space efficiency
 Transparent to FS and raw I/O apps.

 Trade CPU cycles for storage capacity

 Transparent compression challenges:
 Increased I/O response time (compression cost)

 Increased number of I/Os (metadata & read-modify-write sequence)

 Performance improves by 70% in PostMark, 30% in SPECsfs2008
 Log-structured writes & reduced write I/O volume

 Performance degrades by 34% in TPC-C, 15% in TPC-H
 Small and random I/Os excessive read I/O volume

 Poor I/O concurrency and small I/Os decompression cost exposed

 Potential in increasing I/O performance on disks
 Reduced transfer time

 Reduced seek distance

25 SNAPI 2010 - Compression at the Block Level

Thank You!

26 SNAPI 2010 - Compression at the Block Level

Questions?

“ZBD: Using Transparent Compression at the Block
Level to Increase Storage Space Efficiency”

Thanos Makatos, Yannis Klonatos, Manolis Marazakis,

Michail D. Flouris, and Angelos Bilas

{mcatos,klonatos,maraz,flouris,bilas}@ics.forth.gr

Foundation for Research & Technology - Hellas

http://www.ics.forth.gr/carv/scalable

http://www.ics.forth.gr/carv/scalable

Benchmark Parameters

 PostMark (mail server)
 50K transactions, 35%:65% RW ratio, 16K accesses

 Record 5 min. of execution

 100 mboxes, 500 msgs/mbox, 4K-1M msg size, 24 GB file-set

 SPECsfs2008 (file server)
 3,400-4,600 ops/sec, 300 step value, 540 GB file-set

 TPC-C (OLTP)
 300 warehouses (28 GB database), 3,000 connections, 10

terminals per warehouse, execution time set to 30 min.

 TPC-H (data-warehouse)
 4 GB database (+2.5 for indices)

 Queries executed back-to-back
(1, 3, 4, 6, 7, 10, 12, 14, 15, 19, and 22)

27 SNAPI 2010 - Compression at the Block Level

