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Observations

• Data processing pipelines to support data mining 
– Data-driven science based on data mining

– Detect significant events

– Generate statistics by varying input conditions

– Apply data processing pipelines to generate standard products

• Digital libraries to support publication within a discipline
– Provide services for use of the collection

• Preservation as reference collections
– Digital holdings on which future research is based

• Multiple types of data management environments



Data Processing 
Pipeline

Preservation 
Environment

Ocean 

Observatories 

Initiative

NARA Transcontinental 

Persistent Archive Prototype

Carolina Digital 

Repository

Large Synoptic 

Survey 

Telescope

Digital 
Library

Texas Digital 

Library

French 

National 

Library

Data Grid

Teragrid Temporal Dynamics 

of Learning Center

Australian Research 

Collaboration Service

Taiwan 

National 

Archive



Observations (cont.)

• Observe that many projects are generating massive 
data collections
– Observational data (astronomy, climate change, 

oceanography)

– Experimental data (high energy physics, biology)

– Simulation output (high energy physics, seismology, earth 
systems, cosmology)

• Data are widely distributed
– Sources, storage systems, analysis systems, users

• Scale is now hundred petabytes, hundreds of millions 
of files
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Questions

• Can these multiple environments be 
integrated?

• Where should data be stored within these 
systems?

• Where should the data be analyzed?

• Data grids: support remote processing of data



Distributed Workflows

• When are data processed at the remote storage 
location?

– Low complexity operations

• When are data processed at a supercomputer?

– High complexity operations

• When are data processed at the display?

– Interactive presentation manipulation
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“Ohm’s” Law for Computer Science

• Relationship between

– Computational complexity (operations per byte)

– Execution rate

– Data access bandwidth

R / B  

Complexity = Execution Rate / Bandwidth

for a balanced application
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Distributing Services
Compare times for analyzing data with size reduction from S to s
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Comparison of Time

T(Archive) = S/ Bd + s S/r + t s/r + s/ Bs + t s/R 

Processing at archive

Processing at supercomputer

T(Super) = S/ Bd + t S/r + S/ Bs + t S/R + s S/R



Selecting Analysis Location

Have algebraic equation with eight independent variables.

Faster to move the data if:

T (Super) < T (Archive)

S/ Bd + t S/r + S/ Bs + t S/R + s S/R

<   S/ Bd + s S/r + t s/r + s/ Bs + t s/R 



Scaling Parameters

Data size reduction ratio s/S

Execution slow down ratio r/R

Problem complexity t / s

Communication/Execution r/(t Bs)

When r/(t Bs) = 1, the data processing rate is the same 

as the data transmission rate.

Optimal designs have r/(t Bs) = 1

Note (r/ t) is the number of bytes/sec that can be 

processed.



Bandwidth Optimization

Is moving all of the data faster, T(Super) < T(Archive),

if the network is sufficiently fast?

Bs > (r / s) (1 - s/S) / [1 - r/R - (t / s) (1 + r/R) (1 - s/S)]

Note the denominator changes sign when

s < t (1 + r/R) / [(1 - r/R) (1 - s/S)]

Even with an infinitely fast network, it is better to do the 

processing at the archive if the complexity is too small.



Execution Rate Optimization

Is moving all of the data faster, T(Super) < T(Archive),

if the supercomputer is sufficiently fast?

R > r [1 + (t / s) (1 - s/S)] / [1 - (t / s) (1 - s/S) (1 + r/(t Bs)]

Note the denominator changes sign when
s < t (1 - s/S) [1 + r/(t Bs)]

Even with an infinitely fast supercomputer, it is better to

process at the archive if the complexity is too small.  



Data Reduction Optimization

Is processing at the archive faster, T(Super) > T(Archive),

if the data reduction is large enough?

s < S {1 - (s / t)(1 - r/R) / [1 + r/R + r/(t Bs)]}

Note criteria changes sign when

s > t [1 + r/R + r/(t Bs)] / (1 - r/R)

When the complexity is sufficiently large, it is faster to

process on the supercomputer even when data can be

reduced to one bit.



Complexity Analysis

Moving all of the data is faster, T(Super) < T(Archive)

if the complexity is sufficiently high!

s > t (1-s/S) [1 + r/R + r/(t Bs)] / (1-r/R)

Note, as the execution ratio approaches 1, 

the required complexity becomes infinite

Also, as the amount of data reduction goes to zero,

the required complexity goes to zero.
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Policy-based Data Environments

• Purpose - reason a collection is assembled

• Properties - attributes needed to ensure the purpose

• Policies - control for ensuring maintenance of properties

• Procedures - functions that implement the policies

• State information - results of applying the procedures

• Assessment criteria - validation that state information conforms 
to the desired purpose

• Federation - controlled sharing of logical name spaces

These are the necessary elements for a sustainable collection
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iRODS - Policy-based Data Management

• Turn policies into computer actionable rules

• Compose rules by chaining standard operations 
– Standard operations (micro-services) executed at the remote storage 

location

• Manage state information as attributes on namespaces:
– Files / collections /users / resources / rules

• Validate assessment criteria
– Queries on state information, parsing of audit trails

• Automate administrative functions
– Minimize labor costs 
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Data Grid Clients
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Storage Cost Scaling
(as media capacity increases)

• For large scale systems:

– Capital investment (33%)

• Tape robot, tape drives Scales with Technology 

– Media (33%)

• Tape cartridges Scales with Technology 

– Operations (33%)

• Software licenses Scales with Technology 

• Facilities Scales with Technology

• Administration Need automation



Infrastructure Development Costs

• Storage Resource Broker middleware development
– 300,000 lines of code

– Six year development / ten year deployment

– 10-15 professional software engineers

• Total cost ~ $15,000,000
– $17 / line for design, development, testing, documentation, bug fixes

– $14 / line for interoperability (clients)

– $12 / line for application use support

– $7 / line for management / administration

– Total cost ~ $50 / line

• Development funded by:
– NSF / NARA / DARPA / DoE / NASA / NIH / IMLS / NHPRC / LoC / DoD

– More than 20 funded projects to sustain development

– International collaborations on use, development, bug fixes, support



 

iRODS Distributed Data Management
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Goal - Generic Infrastructure
• Manage all stages of the data life cycle

– Data organization

– Data processing pipelines

– Collection creation

– Data sharing

– Data publication

– Data preservation

• Create reference collection against which 
future information and knowledge is compared
– Each stage uses similar storage, arrangement, 

description, and access mechanisms
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Each data life cycle stage re-purposes the original collection



Demonstration

• Data grid in North Carolina at RENCI

• Icommands user interface (file manipulation)

• System state information

• Rule base controlling the data grid (policies)

• Composition of rules from micro-services

• Interactive execution of server-side workflows
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iRODS is a "coordinated NSF/OCI-Nat'l Archives research activity" under 
the auspices of the President's NITRD Program and is identified as among 
the priorities underlying the President's 2009 Budget Supplement in the 
area of Human and Computer Interaction Information Management 
technology research.
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