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Abstract - In this paper we make the case that it is time 
to think seriously about RAIT for the largest of the large 
digital archives. We look at operational concepts to 
efficiently use RAIT for writing tapes and for reading them. 
We offer possibly new thinking regarding how some 
problems unique to tape may be helped by exploiting some 
less-familiar aspects of redundant arrays. Finally, we look 
at an operational concept to use RAIT to detect and correct 
hidden bit errors that are not made evident by hardware 
return codes or loss of access to hardware. 

Definitions 
RAID, like many acronyms, has become better 

recognized than the words it stands for. Originally meaning 
Redundant Array of Inexpensive Disks, this remarkable 
technology has been a mainstay of storage for 23 years, 
longer than the lifetime of today’s youngest storage 
professionals [1]. For most of those two-plus decades, many 
of our colleagues have thought about, and have from time 
to time applied, the same concepts to tape. The term RAIT 
introduces T for Tape in place of the D for Disk, and the 
result, and what it should mean from a system point of 
view, seems intuitively recognizable. Yet, there are 
ramifications of using RAIT which are not obvious at first, 
which this paper works at illuminating. 

Like RAID, RAIT is a way to aggregate physical 
storage volumes to create large virtual volumes, while 
eliminating single points of failure and in some cases 
multiple points of failure in the underlying physical 
volumes. RAIT also increases data transfer rates via 
striping as the data path is spread over more channels.  

Here we will use the term RAIT to mean a redundant 
array of tapes with both striping and parity, which would be 
analogous to RAID-3, -4, -5, or -6. In this paper we will 
focus on what we will call RAIT-5, which has striping and 
one parity, and RAIT-6, which has striping and two parities. 
Where RAIT-1 might seem to apply, we use the term 
mirroring. 

Throughout this paper we use the convention that the 
number of data tapes is designated by d, and the number of 
parity tapes is p. Thus the number of tapes in a redundant 
array of tapes is d+p.  

Figure 1 shows a RAIT-6 scheme with d=4 and p=2. 
We must consider that the RAIT scheme, like many RAID 
schemes, may rotate parity fields among the tapes as each 
stripe is written. As an example of parity rotation, consider 

the state shown in Figure 1 (where the parity records are on 
tapes t5 and t6) as the starting point. The next stripe might 
have the parities on tapes t6 and t1, then tapes t1 and t2, and 
so on. Various rotation schemes could be used, or none at 
all. If none, then all p1 parities would be on one tape and all 
p2 parities on another. One justification for rotation is that 
if the data is compressible and the parities are not, then the 
parities are of a different length than the data, resulting in 
uneven tape usage if rotation was not used. Here we simply 
acknowledge that rotation of parities could exist and define 
that the notation d for data and p for parity refer to 
equivalent tapes, such that on any given stripe d tapes are 
written with data and p tapes are written with parity.  

Figure 1. A (4+2) RAIT-6 scheme. 

To simplify the description, we will only discuss the 
case where all tapes in a redundant array or in a mirrored 
pair are of the same generation and nominal capacity (e.g. 
all Linear Tape Open (LTO) fifth generation (hereafter 
LTO-5) tape cartridges with a nominal uncompressed 
capacity of 1.5 TB). It is possible to do RAIT writing across 
tapes of unequal capacity, but it would force more 
complexity and would undoubtedly be more problematic. 
Also some middleware such as HPSS mirrors files, not 
tapes, so to be precise the tapes are not mirrored. None of 
this affects the points made in this paper, and there is no 
good reason to take on this needless complexity here.  
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From RAID lore we borrow the terms stripe and strip. 
A stripe is a single set of records written across the tapes in 
the redundant array, while a strip is a longitudinal sequence 
of records written to one tape. We now use these terms to 
acknowledge two strategies for writing files to a redundant 
array of tapes: 

1. Stripe-based. One file at a time is written across 
all d tapes. On retrieval, all d+p tapes must be 
mounted if there is parity rotation. This is the 
method used by NCSA and the HPSS 
Collaboration for Blue Waters [9]. If parities are 
not rotated, only d tapes must be mounted unless 
there is an error. 

2. Strip-based. One file is written linearly on each 
strip (or tape), so that multiple files are written 
concurrently each to a different tape. This still 
allows, but does not require, parity to be rotated. 
For example, each time a data file being written to 
a given tape ends, an opportunity presents itself to 
next write (one of the) parity streams to that tape 
and to write the next data file to the tape that 
parity had previously been written to. Because a 
file is written to a single tape, it can typically be 
retrieved by only mounting that single tape – and 
this can significantly improve performance in 
some read environments as will become apparent 
further down in this paper. Note that while 
typically a single file can be read, by mounting 
only the one tape it was written to, if a permanent 
read error is encountered when trying to read that 
tape, then all d+p tapes which were written at 
once as a set must be mounted to allow 
recalculation of the unreadable data from the other 
data and parity tapes in that RAIT set.  

In the remainder of this paper we are assuming stripe-
based RAIT. There are very few implementations of RAIT, 
and the recent ones familiar to the authors are stripe-based 
[8,9]. The apparent reasons are that there is more precedent 
from RAID for a stripe-based approach, and the stripe-
based approach is thought to be simpler to implement and 
hence more feasible. That said, future RAIT embodiments 
should seriously consider the read side advantages that 
strip-based RAIT writing offers.  

The economic case for RAIT 
The most obvious benefit of RAIT is economic: RAIT-5 

and RAIT-6 with striping can provide greater availability of 
data with substantially fewer tapes than is achieved with 
simple mirroring. To demonstrate the saving in tape of 
RAIT over mirroring, let the number of equivalent data 
tapes in the array be noted by d and the number of 
equivalent parity tapes by p. For mirroring, the number of 
tapes would be 2d. It follows that the number of tapes in a 
redundant RAIT array that would be required to store the 
amount of data held on a single tape would be (d+p)/d. For 
example, consider a redundant array of five tapes where 

d=4 and p=1. The data that a single non-RAIT cartridge 
would hold would require 1.25 RAIT cartridges. Simple 
mirroring would require two cartridges. Thus with 1.25/2 = 
62.5% of the number of tapes required for simple mirroring, 
the redundant array achieves the same availability against a 
single tape failure. 

With a RAIT-6 group having d=4 and p=2, the 
equivalent number of tapes in the redundant array required 
to hold the data of a single tape would be (4+2)/4 = 1.5 
tapes. With dual parities, the array would have availability 
equivalent to three single tapes in the sense that any two 
tapes in the array could fail without losing data. Thus RAIT 
in this case would survive two failures with 1.5/3.0 = 50% 
of the number of tapes required by double mirroring (i.e. 
creating a total of 3 identical copies). 

How disks and tapes are fundamentally 
different 

Tape is notably and obviously different from disk in that 
tape is streaming media contained in passive removable 
cartridges typically maintained in and accessed via robotic 
tape libraries. A tape is not divided into fixed length 
physical sectors like disk. It is written sequentially from 
beginning to end within a logical partition – with that 
logical partition often consuming all, or at least the vast 
majority of, the storage capacity of the tape cartridge.  

Once a given block of data is written to tape as part of a 
sequential series of blocks, that data cannot be updated in 
place without physically overwriting other data. Because of 
this, an erase or overwrite of data would logically invalidate 
all data that had earlier been written from that point to the 
end of the tape, and therefore overwriting is not done. 
Instead, when an application deletes a tape record, the 
record is logically invalidated, in that it is no longer pointed 
to, but the data on tape is not physically erased. The 
invalidated data is left on the tape, taking up space. The 
new record is written at the end of that, or possibly on 
another, tape. The invalidated records are left in place, and 
if many records become invalidated, the tape becomes 
sparse and inefficient. A sparse tape may then become a 
candidate for repacking, a process by which only the sparse 
valid data on a tape is read, it is written repacked to a new 
target tape. Once the data has been moved, the source 
cartridge which originally held that data can be freed and 
written again from the beginning with new data. Disks on 
the other hand have fixed-length sectors which can be 
rewritten or reused after the data previously stored there is 
no longer needed.  

Both disk and tape drives can accommodate ingesting a 
stream of very large files efficiently and at nearly the same 
rates in bytes per second. Disks are also reasonably efficient 
for pseudo-random reading and writing of small files, with 
access times for high RPM Enterprise class drives on the 
order of five milliseconds or less – an access time that may 
be small as compared to data transfer time for files of any 
significant size. Thus, disk drives can support a high rate of 
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random input-output operations per second (IOPS). Tape 
drives, on the other hand, are very inefficient when small 
sets of data are read in random order, by which we mean 
reads are not read sequentially and are processed 
individually which does not allow for read optimization. 
Random, non-sequential reads, even if from the same 
cartridge, cause searches and changes in direction of tape 
movement. As a consequence, tape will typically give a 
very low IOPS in response to a random read workload, as 
compared to disk. Therefore, tapes are most efficient when 
they can be written or read sequentially and in that case can 
typically provide high-rate data transfers. In the case of a 
single IBM® LTO-5 tape drive, the native data rate (i.e. the 
data rate without data compression) is 140 MB/s, and if the 
data is 2:1 compressible the drive can transfer it at 280 
MB/s. 

Calculations of efficiency in reading and 
writing single tapes and tape arrays 

In this section we use data in Table 1 to calculate 
efficiencies in writing and reading single tapes and 
redundant arrays of tapes. Much of this is summarized in 
Table 1, which shows data collected from IBM and Oracle 
web pages [3, 5] used in this paper.  

Efficiency in writing tapes 
In order to stream data to a tape drive at the full 

theoretical data rate, the goal would be to start writing data 
to a tape cartridge and never stop until the cartridge is full, 
then proceed to writing the next tape cartridge. As simple as 
this appears, there are challenges that impede this objective. 
The main one is uncertainty. Software is not always aware 
how quickly the next write will occur and some 
applications are written around the concept that they need 
to know to know with certainty what data has been 
committed to tape, as opposed to remaining exposed in the 
volatile DRAM buffer of a tape drive. Contributing to the 
uncertainty, the application may unexpectedly terminate, 
another user may preempt use of the tape drive, or the entire 
system may go down. Filling a 1.5 TB native capacity 
LTO-5 tape at 140 MB/s would take at least three hours, so 
there is a significant loss if a partially written tape is 
suddenly put into an indeterminant state. For this reason, 
some applications and middleware force a synchronization 
of the tape based on events such as writing a certain group 
of files. When a synchronization is requested, the tape drive 
responds by first writing the data to tape and then sending a 
Command Complete indicating that all data sent to the 
drive is now safely on tape. With most tape drives, 
synchronization makes it necessary to either physically stop 
the movement of the tape media, or to keep the tape moving 
and therefore create long gaps at the synchronization points. 
Stopping and restarting tape movement involves a cycle 
called backhitch in which the media must stop, back up to 
recover lost space, stop again, and then accelerate to reach 
the steady-state media speed required to write the next 
record. A backhitch can take several seconds in a modern 

tape drive such as LTO, and so frequent backhitches can 
dramatically slow tape performance. Some tape drives such 
as the IBM TS1130 have implemented virtual backhitch 
technology that allows synchronizations to be performed 
without having to stop tape at each synchronization. This 
considerably improves performance in an environment 
where synchronizations are frequently performed, though 
the tape drive has to intermittently go back and clean up 
what was written to recover the capacity which would be 
lost because the tape was not stopped [7]. It should be clear 
that synchronization is a challenge to streaming tape 
performance and should be used sparingly, even in tape 
drives with advanced synchronization management. 

In systems where tape data is written as files to a  
POSIX  interface, the software that chooses to synchronize 
each time a file is written will suffer a large performance 
penalty. This simple type of tape file system essentially 
imposes an obligation on the part of the user to write large 
files so that fewer synchronizations will occur. The large 
files may be tar files that aggregate multiple smaller files, 
or they may be large objects that are written as files, where 
an object follows a user-developed or industry-standard 
template. We will say more about objects in the next 
section on efficiency in reading tapes. At the other extreme, 
backup software such as IBM Tivoli® Storage Manager 
(TSM), or a file system such as IBM Linear Tape File 
System™ (LTFS) software may copy large amounts of data 
from memory or disk to tape at streaming speeds until end 
of media is reached, in which case no synchronization at all 
may be required until after the last record written to a tape 
cartridge. In between these extremes, hierarchical disk and 
tape systems such as HPSS and SAM-FS address the 
problem by automatically collecting files (including user-
prepared aggregates and objects) into very large aggregates 
transparently to the application.  

The authors suggest a best practice of keeping the 
number of synchronizations in writing a tape cartridge to 
less than a hundred. For LTO-5, 100 synchronizations 
would result in one synchronization occurring approxi-
mately every 1.8 minutes if they are evenly spaced. The 
amount of data written between each successive pair of the 
100 synchronizations would average 1% of the tape length, 
which would be 15 GB uncompressed or 30 GB with two-
to-one compression. As was stated earlier, it takes about 
three hours to write an entire LTO-5 tape without stopping 
for synchronizations, so the amount of time for 100 
synchronizations would increase this by 300 seconds or five 
minutes, a rather insignificant increase. These calculations 
are linear, so that if the 100 synchronizations were 
increased to 1000, then the average uncompressed data size 
between synchronizations would be 1.5GB, and the time 
due to 1000 synchronizations would be about 3000 seconds 
or 50 minutes. The performance impact of more than 1000 
synchronizations would likely be considered intolerable in a 
high capacity, high data rate archive environment.  
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Table 1. Data used in efficiency calculations 
 

Tape hardware parameters based on an LTO-5 drive  
and TS3500 library 

Load-to-ready time in seconds load 12 

Average block locate time from 
load point in seconds locate 52 

Average time to rewind to load 
point, seconds rewind 48 

Tape drive unload time, seconds unload 17 

Avg. library time to mount and 
unmount a tape cartridge libt 12 

Sustained native data rate of tape 
drive in MB/sec sndr 140 

 

Formulas used in the calculations below 

ohead = load+locate+rewind+unload+libt 
dtt = fs/sndr/de 
tts = ohead+dtt 

drives = de+pe 
ttsall = tts*drives 

edr = fs/ttsall 
eff = edr/sndr 

 

Redundant array parameters and calculations of tape seconds, effective rate, and efficiency 

Parameter description Parameter 
name 

Single 
tape 

(4+1) 
RAIT-5 

(8+2) 
RAIT-6 

Single 
tape 

(4+1) 
RAIT-5 

(8+2) 
RAIT-6 

Average file size in bytes in MB fs 160 160 160 16000 16000 16000 

Number of data elements in 
redundant array de 1 4 8 1 4 8 

Number of parity elements in 
redundant array pe 0 1 2 0 1 2 

Drive and library overhead for an 
average pseudo-random read ohead 150.00 150.00 150.00 150.00 150.00 150.00 

Data transfer time for one drive in 
MB/sec dtt 1.14 0.29 0.14 114.29 28.57 14.29 

Total tape-seconds per drive for 
an average pseudo-random read tts 151.14 150.29 150.14 264.29 178.57 164.29 

Total number of drives in array drives 1 5 10 1 5 10 

Total tape-seconds for all tape 
drives reading one file  ttsall 151.14 751.43 1501.43 264.29 892.86 1642.86 

Effective MB/sec data rate per 
tape drive edr 1.06 0.21 0.11 60.54 17.92 9.74 

Tape efficiency as % of tape 
streaming native data rate eff 0.76% 0.15% 0.08% 43.24% 12.80% 6.96% 

 

 

For applications or middleware which do use 
synchronizations, when data is written to a RAIT set even 
larger objects or aggregations must be used. Assuming 
available stripe-based RAIT (as defined in the 
introduction), then to write efficiently the data units should 
be approximately d times as large as they would be when 
writing to a single tape, where d is the number of equivalent 
data tapes in the redundant array. Otherwise, the tapes in 
the redundant array will be synchronized and will 

experience backhitch d times more often than would be the 
case for a single tape, and this would slow the writing 
process significantly. To achieve efficiency in writing, a 
RAIT-capable storage system may create aggregates of 
many thousands, even tens of thousands, of user files for 
each write to a RAIT array.  



Efficiency in reading tapes 
Here we make the case that while RAIT can be very 

efficient for writing large quantities of data to tape, it is less 
efficient in reading data, particularly when reading 
individual files in a random order. By random order, we 
mean an order that does not take advantage of locality of 
files on cartridges and therefore may require a tape mount 
for almost every file read. This may also be called pseudo-
random order because the underlying cause of the order 
may be deterministic, but the effect is as though it were 
random. 

Reading a single file from an unmounted tape is a slow 
process because the tape must be mounted, loaded, perform 
a Seek and then Read, rewound, unloaded, and dismounted. 
The sequence of operations that occur before and after the 
actual data transfer takes about two or three minutes (an 
average time of about 150 seconds for an LTO-5 tape and a 
large LTO tape automation). For small files, the 
approximately two and a half minutes of overhead are 
considerably longer than the actual data transfer time, 
which may range from less than a second to a few seconds, 
depending on file size. The average file size across about 30 
HPSS sites that report site information is about 160 MB [2]. 
This represents an average across over 200 petabytes of 
data. Here we use this figure as a representative average file 
size, and we leave it to the reader to test other sizes with the 
formulas provided in Table 1. 

The native uncompressed data transfer rate of an LTO-5 
tape drive is 140 MB/s, so once accessed the data transfer 
time of a LTO-5 drive is only 1.14 seconds per average-
sized HPSS file, less if there is compression. The 
assumption of no compression is standard for scientific and 
imaging data, because the compressibility of such data is 
typically insignificant. It is also assumed that the server 
doing the reading has sufficient capacity to do a streamed 
read. For our notional average file size of 160 MB, the 
productive data rate reading a pseudo-randomly-selected 
file is about 151 seconds, or about 2.5 minutes of tape drive 
time to support an actual transfer of data of 1.14 seconds. 
We will call this 2.5 tape-minutes and use it as a measure of 
the total time a tape drive is tied up to load, seek, read, 
transfer data, rewind, and unload. The efficiency of the tape 
drive, meaning the useful benefit in this particular situation, 
is the actual transfer time divided by the tape-minutes of 
busy time, in this case 1.14/151 = 0.76%. These numbers 
are shown in Table 1 in the column labeled Single Tape. 

For a stripe of a five-tape RAIT-5 redundant array 
having d=4 data records and p=1 parity record, the effective 
data rate drops to 0.21 MB/sec across the (d+p)=5 tapes. 
The total tape-seconds increase to 751, or about 12.5 tape-
minutes. For a RAIT-6 configuration with d=8 and p=2, the 
effective data rate across the array drops still further to 0.11 
MB/sec, and the total tape-seconds increases to 1501 
seconds, or about 25 tape-minutes. The efficiency drops to 
0.15% for a 5-tape array and to 0.08% for a 10-tape array. 
These numbers, which are from Table 1, are obviously too 

inefficient for practical use, which leads us to look at the 
numbers for much larger file sizes. 

As a notional large file (or aggregate or object), we will 
consider a file of 16 GB, which is 100 times as large as the 
average 160 MB HPSS file and would represent an 
aggregate or object of 100 files of average size. Referring to 
Table 1, we see that for a single tape, the total tape-seconds 
for reading the file is 264, or about 4.4 tape-minutes. The 
effective MB/sec is 61, leading to an efficiency of a 
respectable 43%. For a five-tape RAIT-5 array, the total 
tape seconds is 893, or about 15 tape-minutes, and the 
efficiency is about 13%. For a 10-tape RAIT-6 array, the 
total tape-seconds are 1643, or about 27 tape-minutes and 
the efficiency is about 7%.  

While the above discussion has compared single tape 
with RAIT, the single tape calculations and conclusions 
would also apply to mirrored tapes. Normally, only one of a 
pair of mirrored tapes needs to be read, whereas for a 
redundant array, all tapes in the array must be mounted and 
read for any single file. This observation further validates 
the observation that when compared to mirroring, RAIT-5 
or RAIT-6 requires fewer tapes to write data and more tapes 
to read data. 

Tape drive time, exclusive of the library time, can be 
overlapped, so that latency experienced by the user when 
reading files in an off-peak situation where there is no 
queuing is approximately the same for RAIT as for single 
tape. However, for the same number of tape drives and 
multiple non-sequential reads, the likelihood of substantial 
queuing increases when the assumption of RAIT is 
imposed, and queuing can significantly increase latency as 
seen by the user. Also, we can reason by example that if 
there are 100 tape drives available for reading files, then 
there could be 100 single-file reads in process at any one 
time. For the same 100 tape drives, if all reads were of five-
tape RAIT sets, it would only be possible to read 20 files at 
one time, and for ten-tape redundant arrays, only 10 files 
could be read concurrently. The added latency due to 
imposing a (d+p)-wide redundant array assumption is 
therefore close to zero if the needed (d+p) tapes and tape 
drives are immediately available, corresponding to a light 
tape read load. However under a heavy load, the limit in our 
example of 10 or 20 concurrent read operations will have 
significant queuing compared with a non-RAIT system 
having 100 opportunities for concurrent file mounts. From 
these observations, we see that significantly more tape 
drives are needed to handle the total tape read workload 
with stripe-based RAIT sets of tapes than when writing to 
single tapes. It should be approximately true that a system 
consisting entirely of striped-based RAIT sets of tapes 
would require (d+p) times as many tape drives for reading 
files to remove file reads from a queue at the same rate as 
they would be without RAIT.  
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Strategies for improving efficiency in reading 
from single tapes and tape arrays 

We have made the case that tape is inherently efficient 
to write, and it is inefficient for non-sequential random 
reads, which is well known by tape users. We have further 
shown that RAIT brings advantages of fast writes and fewer 
tapes when compared with simple mirroring, but is less 
efficient doing pseudo-random reads than single or 
mirrored tapes. This means that to achieve the benefits of 
RAIT one must plan carefully. Here we look at operational 
concepts for optimal use of RAIT. The first concept is 
obvious from the bullet item below. The rest we will 
explore in this section. 

• Use RAIT for valuable archival data known to 
have a very low recall rate. (This is self-
explanatory). 

• Have users create large composite files which in 
this paper we call objects so that there will be 
fewer, larger reads. 

• Sort files accesses by redundant arrays of tapes to 
reduce number of tape mounts when reading. 

• Use hints and middleware familial relationships to 
pack related data onto fewer tapes to reduce tape 
mounts when reading. 

• Use an operational concept we call reverse 
asymmetric mirroring to use a single tape a 
primary site and a RAIT group at a remote site. 

• Combinations of these operational concepts. 

Create objects at the application level. 
The best way to group data for efficient reading is to 

organize the data at the application level with an eye toward 
reading efficiency. In many cases, the application is aware 
at write time of affiliations that are difficult to transmit to 
the middleware simply as hints. The use of objects, 
mentioned in the previous section on write optimization, 
can be even more useful at read time. An object, as we use 
the term here, consists of multiple smaller entities and often 
with metadata about the object in XML or similar human-
readable and machine-readable format. Objects can be 
constructed such that there is hope that several of the data 
entities contained therein would be used together, so fewer 
tape mounts and fewer searches would be needed. An 
aggregate created by middleware would be less likely to 
have multiple files that would be retrieved together than an 
aggregate carefully constructed by an application. The 
Consultative Committee for Space Data Systems gives this 
example of an object, which in their terminology is an 
Archive Information Unit (AIU) [4]: 

An example of an AIU would be a table of numbers 
representing temperatures in a certain region with all the 
associated documentation describing how and where the 
temperatures were measured, what instruments were 
used to make the measurements, who made the 
measurements, why they were made, what processing 
has been performed on the measurements and who has 

had custody of these measurements since they were first 
created, how the measurements relate to other 
information, how the measurements can be uniquely 
referenced by others, etc. 

Sort reads by RAIT group 
While letting the middleware collect files into 

aggregates makes writes more efficient, it does little to 
optimize for pseudo-random reads. The most obvious way 
to increase the efficiency reading tapes is to reduce the 
number of mounts and seeks, and this requires organizing 
data when it is written to minimize mounts and seeks when 
the data is read. Reads are most efficient if data that is 
likely to be retrieved together is located on the same tape, 
and even better, if it is physically close together on that 
tape.  

One way to impose order on a set of read requests to 
achieve better throughput when reading them is to 
accumulate and sort read requests. For example, if an 
application needs to read 1000 files which were written to 
100 RAIT sets of d+p tapes where d=4 and p=2, then if 
those requests are issued individually in unsorted order this 
may result in nearly 6000 tape mounts and 6000 tape 
demounts. But if those requests are sorted so that all files 
that are on a RAIT set of tapes are retrieved when that 
RAIT set is mounted, then each RAIT set will have to be 
mounted at most one time, for a total of 600 tape mounts 
and 600 tape demounts, which can improve overall system 
performance by a factor of ten for smaller files where the 
read transfer time is insignificant compared to the tape 
mount and demount time. Similarly, when a given RAIT set 
is mounted, the files to be read from that tape should not be 
read in just any order, as that can result in seek times 
between files on the same tape, if read in pseudo-random 
order, can be 30 seconds or more.  

Modern enterprise tape formats including LTO-5 are 
serpentine formats, meaning the tape travels from beginning 
to end on one set of tracks, then wraps back to the 
beginning of the tape on a second set of tracks, then back to 
the end on a third set of track, and so on. LTO-5 has 80 
such tracks in its serpentine. When seeking for a file on an 
LTO-5 tape, the drive immediately goes to the right track, 
and then traverses forward or backward to reach the desired 
file. To truly optimize the order of accessing a group of 
files known to be on a tape, it is necessary to know more 
than the order in which the files were written to tape; it is 
necessary to know the track each is own and the location 
within the track. Nevertheless, a rule of thumb from the 
Tucson lab is that gains can be achieved for large numbers 
of files by simply ordering the reads in sequential block 
order. This is especially true if the number of files to be 
read is significantly more than the number of wraps (sets of 
tracks written at once in a given direction for the length of 
tape, in the case of linear tape technology) in the tape 
format’s serpentine.. 
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File families 
Another way to attempt to group data of similar types 

together is to allow the application to provide hints when 
each file is written, where the hints may be a project 
number or other file family affiliation. Files belonging to a 
family are then written to media identified with that family. 
However, such hints are a rather coarse criteria for grouping 
related files. If a familial group is large enough to span 
several tapes or several redundant arrays of tapes, then the 
desired reduction in number of tapes mounted for reads 
may be defeated. Also, if there are a great many familial 
groups, there may be impacts when writing to tape caused 
by the dismounting of a tape or redundant array of tapes 
associated with a familial group to allow mounting tapes for 
another familial group.  

The main conclusion from the discussion above is that 
random reading of average-sized files is inefficient with 
conventional single or mirrored tape and is even more 
inefficient with RAIT strategies where files are spread 
across all tapes in the array. For RAIT, just as for 
conventional single tape and mirrored tape solutions, a 
good practice is to try to organize data when it is stored so 
that when it is read the system can perform fewer, larger 
reads and to keep data that is most likely to be read cached 
on disk.  

Remote asymmetric mirroring:  
Any archivist concerned about long term preservation 

would want to consider RAIT, most likely RAIT-6. 
However, the archivist would also be concerned about a 
catastrophic failure of an entire site. Such an archive should 
have data stored in at least two sites that are geographically 
separate. This implies mirroring data across two or more 
sites, which in turn raises the question of whether to use 
RAIT, mirroring, or both. In a hypothetical situation where 
cost is not a concern, one could have RAIT with dual 
parities at each site. Here we propose the notion of 
asymmetric mirroring, where one site uses RAIT and the 
other(s) use single tape. This concept of asymmetric 
mirroring is shown in Figure 2. If one site is in a 
particularly safe, remote location, it would seem wise to let 

that site be the RAIT site and the others, particularly the 
primary site, use single tape. We call the strategy remote 
asymmetric mirroring. This strategy has two important 
benefits for an archive that has significant read activity.  

The first benefit is that the site that is most protected by 
geography is the site that enables read verification and 
forensic reconstruction of hidden errors. It is unlikely that 
this most protected site would be the primary site. In some 
actual archives, the remote site is literally a cave hewn 
inside a mountain. This protected remote site would be the 
source for a future migration of the archive to new storage 
technology. The protected remote site would not be the site 
that experiences most of the reads; that would be the 
primary site. Therefore the most secure site experiences less 
wear and tear. Instead of a lot of user reads, it would be 
focused on reads that were primarily administrative, to test 
the state of the archive.  

The second benefit is that most of the productive user 
reads would be to the primary site, which is single tape and 
not RAIT. Those users with a mission to make use of the 
archive here and now would be reading data from a site 
where the data is stored on single tape. Only one tape 
cartridge needs to be mounted to read one file, or 
sometimes two if a file spans cartridges. Therefore, the 
remote asymmetric mirroring strategy overcomes the 
performance limitations of reading RAIT by avoiding 
reading from it for all purposes except the purpose of 
maintaining the long-term integrity of the archive. 

RAIT concepts and facilities for data 
availability 

Rebuilding a redundant array 
In the case of RAID with parity such as RAID-3 or -5, 

the loss of one disk puts the entire redundant array into a 
degraded mode where there is no redundancy and therefore 
no protection against another failure. Once a new disk is 
made available, which is nearly instantly in the case of 
arrays which have a spare awaiting assignment, the storage 
system commences to rebuild the redundant array. To do 
this, the entire remaining array of disks must be read; the 

lost data computed using the other 
data and parity records, and the 
replacement disk re-written. While the 
re-build is in progress, the storage 
system provides service at reduced 
data rates. With today’s terabyte-class 
disks, the rebuild process can take 
long enough to put the now-
unprotected data at risk of another 
disk failure. If a second disk fails 
during the rebuild, then the data not 
yet rebuilt will be lost. This 
vulnerability is addressed by what has 
become known as RAID-6, which 
adds a second parity record to each 
stripe. With two parity records, the 

Primary Site 
n tape cartridges 

Secondary Site
approximately 

1.25n tape 
cartridges 

Storage Class of 
(8+2) RAIT-6  

Storage Class of  
Individual Tapes 

Figure 2. Asymmetric Mirroring 
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loss of two disks can be tolerated.  

For RAIT, the failure modes are different and so is the 
recovery process. Tape being removable media, a failure 
could be a tape cartridge failure or a tape drive failure. If it 
is the cartridge, it could be only a stripe, or a few stripes, 
that are bad or it could be the whole cartridge. If the failure 
affects only a single file on a single tape cartridge, other 
files on the RAIT set may be perfectly readable and not 
need to be copied. The failed file would likely be copied to 
another RAIT set of tapes, while being reconstituted from 
the remaining data and parity elements. If the cartridge 
cannot be read at all, it would be tried on a different tape 
drive. If it works on the new drive, then the previous drive 
would be taken out of service. If the cartridge has clearly 
failed and not the drive, then the entire redundant array 
would have to be rebuilt, probably requiring it to be taken 
out of service until rebuilt. The rebuild would normally be a 
repacking process, where files would be copied to a new set 
of tapes. In our example of RAIT-6 with 10 tapes including 
the equivalent of eight tapes of data and two of parity, 20 
tape drives are required to do direct tape-to-tape copying 
during reconstruction (10 reading the source tapes, and 10 
writing the target tapes).  

Real-time read verification:  
Important files are usually protected with a checksum. 

A checksum is a fixed-size data record attached to or 
associated with a block of data for the purpose of detecting 
errors that may have been introduced during transmission or 
storage. Such checksums are sometimes called hash 
checksums, or just hashes. A checksum may be as simple as 
a longitudinal parity check that breaks the file into fixed-
size words and XORs them together, or as strong as a 
cryptographic hash function such as one of the Secure Hash 
Algorithms of the National Institute of Standards and 
Technology such as SHA-256. A simple checksum has the 
ability to detect accidental errors with a high but not 
absolute degree of likelihood, whereas a strong 
cryptographic hash can provide near-absolute detection of 
any change. If the hash is stored separately (and so cannot 
be changed as well), the hash can protect against even 
clever malicious change of a file.  

Reed-Solomon and other erasure codes used as RAIT-5 
parity codes can be used to augment file validation that is 
normally done via use of checksums. If an uncorrectable 
read error is reported to the RAIT middleware, it would be 
corrected before file was even constructed and the 
checksum checked. RAIT therefore increases the 
probability of having a good copy of a file to validate with 
the checksum and hence a good outcome. However another 
level of RAIT-5 service can be provided in the form of a 
“read verification” that would conceptually re-compute the 
parity for each stripe from the data and compare it with the 
parity field that was read from the stripe. If equal, this 
would be substantial evidence that the data fields are 
exactly as they were when the file was written to tape. If 
unequal, it would mean that there is an error in the stripe 

and therefore some data is corrupt. It would be very likely 
that the file-level checksum would have detected this as 
well, but the RAIT verification, if performed, would 
discover the error first and potentially correct it. And 
detection at the RAIT level could be used on files that do 
not a checksum. In this way, the read verification utility and 
the checksum could discover otherwise hidden errors, 
called unpointed errors, a very rare but significant 
discovery. However, errors discovered by RAIT-5 read 
verification or by checksum confirmation would not as a 
general rule be correctable. It would be necessary to find 
another copy of the file, perhaps at a backup location. This 
leads us to a reason for RAIT-6. 

As stated in the previous section, RAIT-6 with its two 
parities enables the detection and correction of a single 
hidden, or unpointed, error. Conceptually, an essential piece 
of information for efficient RAIT correction is to know 
which block of data is in error. Normally RAID or RAIT 
reconstruction would occur after another mechanism, 
typically at the drive level, had discovered a lost or 
damaged block of data within the stripe, pointing to a 
specific data or parity strip. Such pointed errors are treated 
as erasures, meaning the data known to be bad is essentially 
disregarded as if it were erased. Reed-Solomon codes 
allows correction of as many erasures as there are parity 
fields. RAIT-5 has one parity and so allows correction of 
one erasures, and RAIT-6 has two parities and so allows 
correction of two erasures. Thus RAIT-6 can either be used 
to correct two errors or detect and correct one unpointed 
error. 

Data about undetected bit errors on tape is difficult to 
collect because they are exceedingly rare, and most that any 
that did not occur in a test environment specifically looking 
for this would (as the label implies) likely never be 
detected. Estimates of the probability of undetected tape 
errors are seemingly as rare as the errors. One published 
estimate from an Oracle specification sheet on the 
StorageTek automations using LTO drives [5]. This source 
reports a probability of one undetected error in 10^27 bits, 
which is about 10^26 bytes. A petabyte is 10^15 bytes, so 
that an undetected tape error would occur about once every 
10^11 petabytes. For a very large archive ingesting 10 
petabytes of data every year, the published bit error rate 
would lead to an expectation of one undetected tape drive 
read error every 10 billion years!  

The 10^27 bit error rate is a calculated estimate. There 
is no possibility of collecting statistically meaningful data 
on that time scale. Calculated undetected bit error rates 
normally would not take into account transmission errors to 
and from the tape drive. They would not account for 
unpredictable behavior of a failing device, undiscovered 
firmware or software bugs, failure of people to follow 
procedures, and just plain bad luck. A serious archivist may 
therefore want to verify all data as it is read, either by both 
testing against a checksum and by using RAIT to correct 
any errors that are correctable and to detect errors which are 
not. 
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Off-line reconstruction:  
As stated above, using a Reed-Solomon code two RAIT 

parities can be used to correct an undetected (unpointed) 
error. If the redundant array of tapes has two parities, it is 
possible to reconstruct the original file in all cases with only 
one error, even if it is unpointed – though the correction 
should then be verified by the file level checksum or hash. 
While it is beyond the scope of this paper to explain in 
detail, it is sufficient for our purposes to say that 
calculations are made across the data and parity bytes to 
determine if all the parities still check or whether they do 
not check and instead indicate an error. In the latter case 
calculations are made to determine where the errors are and 
the values of those errors, which allows the errors to be 
corrected.  

RAIT-6’s two parities also allow correction of up to two 
pointed errors (in the case of RAIT a “pointed” error would 
typically be a Read Permanent error from a tape drive when 
trying to read one of the tapes in a RAIT set). It is of course 
possible that there are more than two errors or that the error 
is so extensive that it exceeds the ability of the two parity 
error correction codes to correct the damage. At that point 
one would clearly have to look for a copy at another 
geographic location, as in the above discussion of mirroring 
strategies. 

Note that correcting a single unpointed error with two 
parities would be rare, so while this can potentially be done 
in real time, on-the-fly as needed, this is not necessarily 
required -- the process could also potentially be done 
offline.  

Longer time between tape migrations:  
Tape cartridges are variously claimed to have a life as 

long as 30 years, given certain conditions of temperature, 
humidity, and freedom from contaminates, all reasonable 
restrictions [6]. Nevertheless, many serious archivists have 
a replacement strategy of around five years. The concern 
appears to be more that the tape drives will become 
obsolete and unavailable than that the media will 
deteriorate. However, there is also a motivation to pack data 
into more dense cartridges as they are offered so as to save 
tape library slots. Lawrence Livermore National Labs, for 
example, has reduced their total number of tape cartridges 
while increasing the amount of data stored by migration to 
higher density cartridges. 

Cartridge degradation, however long that takes, is more 
critical than tape drive obsolescence. A tape drive can be 
replaced, even if it is with used or rebuilt equipment, 
whereas the valuable data on a tape cartridge cannot be 
replaced unless it can be rebuilt (e.g. via RAIT). Typically, 
an archive will test cartridges by reading a representative 
sample of cartridges on a schedule so as to detect any 
statistically significant degradation.  

Here we propose that with RAIT-6, degradation of an 
individual cartridge is much less of a problem. This is 

because a redundant array with two parity fields can 
withstand the loss or degradation of up to two tape 
cartridges in each redundant array, and therefore the effect 
of any time-related degradation is reduced. Therefore while 
we are not offering any specific increase in time between 
migrations to new media, we suggest that the best practices 
for time between migrations can be increased, so long as 
the cartridge population was being monitored to assure that 
systematic degradation of a batch of cartridges was not 
occurring.  

Summary  
In summary, we have made these points: 
• RAIT draws on a quarter century of RAID 

technology, including the mathematics of parity 
records and their use. 

• RAIT can provide higher availability with fewer 
tape cartridges, as compared to mirroring. 

• RAIT is most efficient for sequential writing and 
reading to tape. Because of the sequential nature of 
tape, writing is always sequential. So RAIT is 
efficient for a write-dominated archive.  

• RAIT is also efficient in environments where a lot 
of sequential data is read each time a RAIT set is 
mounted.  

• Stripe based RAIT is inefficient in environments 
where small amounts of data are read in pseudo-
random order because the tape drive time required 
multiplies tape’s unfavorable access time by the 
number of tapes in a RAIT set. 

• Strip based RAIT promises to be significantly more 
efficient in an environment where data is read in 
pseudo-random order because in most cases it 
eliminates the need to mount for than one tape to 
access a file. Future RAIT implementations should 
seriously consider this alternative.  

• Reads from a RAIT array should be aggregated and 
sorted to access all file reads needed from a given 
tape set at once, and those reads should be made in 
preferred access order, in environments which 
allow it, for best performance. 

• Two RAIT arrays, one at each of two sites, can 
have data mirrored between them for Disaster 
Recovery purposes, or a RAIT site and a non-RAIT 
site can be mirrored. 

• For a long term archive, geographically separated 
sites with use of a unRAITed single tape copy at 
the primary site mirrored by a RAIT-6 storage class 
at a safe remote site may provide the best attributes 
of efficient reads which are optimized at the 
primary site and data protection which is optimized 
at the remote site. 

• RAIT parities can serve a secondary purpose of 
detecting otherwise undetected bit errors by read 
verification. 
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• To correct otherwise hidden errors found by read 
verification, two parities are required, vs. one parity 
if one depends on all errors being pointed by other 
error detection mechanisms (e.g. CRC across an 
individual block) 

• RAIT-5 and mirroring (RAIT-1) allow, in theory: 
– correction of 1 pointed error, or 
– detection of 1 unpointed error – but this has 

almost no value in a system with a strong 
checksum of the files which would perform 
this detection anyway. 

• RAIT-6 allows, in theory: 
– correction of 2 pointed errors, or 
– both detection and correction of 1 unpointed 

error – and this does have real value because it 
would eliminate the error so that the strong file 
checksum would now check. 

• An archivist archiving files should be using strong 
checksums across the files and if so, then if they are 
further worried about unpointed errors, then there 
really is no reason to use anything less than RAIT-
6. 

• As RAIT can tolerate substantial loss or 
degradation of tapes without loss of data, RAIT 
data stores may potentially allow a longer interval 
between tape technology upgrades. 
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