
Operational concepts and methods for using RAIT
in high availability tape archives

Harry Hulen
Consultant

Glen Jaquette
IBM Tucson Development

© Copyright IBM Corporation 2011.

Abstract - In this paper we make the case that it is time
to think seriously about RAIT for the largest of the large
digital archives. We look at operational concepts to
efficiently use RAIT for writing tapes and for reading them.
We offer possibly new thinking regarding how some
problems unique to tape may be helped by exploiting some
less-familiar aspects of redundant arrays. Finally, we look
at an operational concept to use RAIT to detect and correct
hidden bit errors that are not made evident by hardware
return codes or loss of access to hardware.

Definitions
RAID, like many acronyms, has become better

recognized than the words it stands for. Originally meaning
Redundant Array of Inexpensive Disks, this remarkable
technology has been a mainstay of storage for 23 years,
longer than the lifetime of today’s youngest storage
professionals [1]. For most of those two-plus decades, many
of our colleagues have thought about, and have from time
to time applied, the same concepts to tape. The term RAIT
introduces T for Tape in place of the D for Disk, and the
result, and what it should mean from a system point of
view, seems intuitively recognizable. Yet, there are
ramifications of using RAIT which are not obvious at first,
which this paper works at illuminating.

Like RAID, RAIT is a way to aggregate physical
storage volumes to create large virtual volumes, while
eliminating single points of failure and in some cases
multiple points of failure in the underlying physical
volumes. RAIT also increases data transfer rates via
striping as the data path is spread over more channels.

Here we will use the term RAIT to mean a redundant
array of tapes with both striping and parity, which would be
analogous to RAID-3, -4, -5, or -6. In this paper we will
focus on what we will call RAIT-5, which has striping and
one parity, and RAIT-6, which has striping and two parities.
Where RAIT-1 might seem to apply, we use the term
mirroring.

Throughout this paper we use the convention that the
number of data tapes is designated by d, and the number of
parity tapes is p. Thus the number of tapes in a redundant
array of tapes is d+p.

Figure 1 shows a RAIT-6 scheme with d=4 and p=2.
We must consider that the RAIT scheme, like many RAID
schemes, may rotate parity fields among the tapes as each
stripe is written. As an example of parity rotation, consider

the state shown in Figure 1 (where the parity records are on
tapes t5 and t6) as the starting point. The next stripe might
have the parities on tapes t6 and t1, then tapes t1 and t2, and
so on. Various rotation schemes could be used, or none at
all. If none, then all p1 parities would be on one tape and all
p2 parities on another. One justification for rotation is that
if the data is compressible and the parities are not, then the
parities are of a different length than the data, resulting in
uneven tape usage if rotation was not used. Here we simply
acknowledge that rotation of parities could exist and define
that the notation d for data and p for parity refer to
equivalent tapes, such that on any given stripe d tapes are
written with data and p tapes are written with parity.

Figure 1. A (4+2) RAIT-6 scheme.

To simplify the description, we will only discuss the
case where all tapes in a redundant array or in a mirrored
pair are of the same generation and nominal capacity (e.g.
all Linear Tape Open (LTO) fifth generation (hereafter
LTO-5) tape cartridges with a nominal uncompressed
capacity of 1.5 TB). It is possible to do RAIT writing across
tapes of unequal capacity, but it would force more
complexity and would undoubtedly be more problematic.
Also some middleware such as HPSS mirrors files, not
tapes, so to be precise the tapes are not mirrored. None of
this affects the points made in this paper, and there is no
good reason to take on this needless complexity here.

Page 1 of 10

From RAID lore we borrow the terms stripe and strip.
A stripe is a single set of records written across the tapes in
the redundant array, while a strip is a longitudinal sequence
of records written to one tape. We now use these terms to
acknowledge two strategies for writing files to a redundant
array of tapes:

1. Stripe-based. One file at a time is written across
all d tapes. On retrieval, all d+p tapes must be
mounted if there is parity rotation. This is the
method used by NCSA and the HPSS
Collaboration for Blue Waters [9]. If parities are
not rotated, only d tapes must be mounted unless
there is an error.

2. Strip-based. One file is written linearly on each
strip (or tape), so that multiple files are written
concurrently each to a different tape. This still
allows, but does not require, parity to be rotated.
For example, each time a data file being written to
a given tape ends, an opportunity presents itself to
next write (one of the) parity streams to that tape
and to write the next data file to the tape that
parity had previously been written to. Because a
file is written to a single tape, it can typically be
retrieved by only mounting that single tape – and
this can significantly improve performance in
some read environments as will become apparent
further down in this paper. Note that while
typically a single file can be read, by mounting
only the one tape it was written to, if a permanent
read error is encountered when trying to read that
tape, then all d+p tapes which were written at
once as a set must be mounted to allow
recalculation of the unreadable data from the other
data and parity tapes in that RAIT set.

In the remainder of this paper we are assuming stripe-
based RAIT. There are very few implementations of RAIT,
and the recent ones familiar to the authors are stripe-based
[8,9]. The apparent reasons are that there is more precedent
from RAID for a stripe-based approach, and the stripe-
based approach is thought to be simpler to implement and
hence more feasible. That said, future RAIT embodiments
should seriously consider the read side advantages that
strip-based RAIT writing offers.

The economic case for RAIT
The most obvious benefit of RAIT is economic: RAIT-5

and RAIT-6 with striping can provide greater availability of
data with substantially fewer tapes than is achieved with
simple mirroring. To demonstrate the saving in tape of
RAIT over mirroring, let the number of equivalent data
tapes in the array be noted by d and the number of
equivalent parity tapes by p. For mirroring, the number of
tapes would be 2d. It follows that the number of tapes in a
redundant RAIT array that would be required to store the
amount of data held on a single tape would be (d+p)/d. For
example, consider a redundant array of five tapes where

d=4 and p=1. The data that a single non-RAIT cartridge
would hold would require 1.25 RAIT cartridges. Simple
mirroring would require two cartridges. Thus with 1.25/2 =
62.5% of the number of tapes required for simple mirroring,
the redundant array achieves the same availability against a
single tape failure.

With a RAIT-6 group having d=4 and p=2, the
equivalent number of tapes in the redundant array required
to hold the data of a single tape would be (4+2)/4 = 1.5
tapes. With dual parities, the array would have availability
equivalent to three single tapes in the sense that any two
tapes in the array could fail without losing data. Thus RAIT
in this case would survive two failures with 1.5/3.0 = 50%
of the number of tapes required by double mirroring (i.e.
creating a total of 3 identical copies).

How disks and tapes are fundamentally
different

Tape is notably and obviously different from disk in that
tape is streaming media contained in passive removable
cartridges typically maintained in and accessed via robotic
tape libraries. A tape is not divided into fixed length
physical sectors like disk. It is written sequentially from
beginning to end within a logical partition – with that
logical partition often consuming all, or at least the vast
majority of, the storage capacity of the tape cartridge.

Once a given block of data is written to tape as part of a
sequential series of blocks, that data cannot be updated in
place without physically overwriting other data. Because of
this, an erase or overwrite of data would logically invalidate
all data that had earlier been written from that point to the
end of the tape, and therefore overwriting is not done.
Instead, when an application deletes a tape record, the
record is logically invalidated, in that it is no longer pointed
to, but the data on tape is not physically erased. The
invalidated data is left on the tape, taking up space. The
new record is written at the end of that, or possibly on
another, tape. The invalidated records are left in place, and
if many records become invalidated, the tape becomes
sparse and inefficient. A sparse tape may then become a
candidate for repacking, a process by which only the sparse
valid data on a tape is read, it is written repacked to a new
target tape. Once the data has been moved, the source
cartridge which originally held that data can be freed and
written again from the beginning with new data. Disks on
the other hand have fixed-length sectors which can be
rewritten or reused after the data previously stored there is
no longer needed.

Both disk and tape drives can accommodate ingesting a
stream of very large files efficiently and at nearly the same
rates in bytes per second. Disks are also reasonably efficient
for pseudo-random reading and writing of small files, with
access times for high RPM Enterprise class drives on the
order of five milliseconds or less – an access time that may
be small as compared to data transfer time for files of any
significant size. Thus, disk drives can support a high rate of

Page 2 of 10

random input-output operations per second (IOPS). Tape
drives, on the other hand, are very inefficient when small
sets of data are read in random order, by which we mean
reads are not read sequentially and are processed
individually which does not allow for read optimization.
Random, non-sequential reads, even if from the same
cartridge, cause searches and changes in direction of tape
movement. As a consequence, tape will typically give a
very low IOPS in response to a random read workload, as
compared to disk. Therefore, tapes are most efficient when
they can be written or read sequentially and in that case can
typically provide high-rate data transfers. In the case of a
single IBM® LTO-5 tape drive, the native data rate (i.e. the
data rate without data compression) is 140 MB/s, and if the
data is 2:1 compressible the drive can transfer it at 280
MB/s.

Calculations of efficiency in reading and
writing single tapes and tape arrays

In this section we use data in Table 1 to calculate
efficiencies in writing and reading single tapes and
redundant arrays of tapes. Much of this is summarized in
Table 1, which shows data collected from IBM and Oracle
web pages [3, 5] used in this paper.

Efficiency in writing tapes
In order to stream data to a tape drive at the full

theoretical data rate, the goal would be to start writing data
to a tape cartridge and never stop until the cartridge is full,
then proceed to writing the next tape cartridge. As simple as
this appears, there are challenges that impede this objective.
The main one is uncertainty. Software is not always aware
how quickly the next write will occur and some
applications are written around the concept that they need
to know to know with certainty what data has been
committed to tape, as opposed to remaining exposed in the
volatile DRAM buffer of a tape drive. Contributing to the
uncertainty, the application may unexpectedly terminate,
another user may preempt use of the tape drive, or the entire
system may go down. Filling a 1.5 TB native capacity
LTO-5 tape at 140 MB/s would take at least three hours, so
there is a significant loss if a partially written tape is
suddenly put into an indeterminant state. For this reason,
some applications and middleware force a synchronization
of the tape based on events such as writing a certain group
of files. When a synchronization is requested, the tape drive
responds by first writing the data to tape and then sending a
Command Complete indicating that all data sent to the
drive is now safely on tape. With most tape drives,
synchronization makes it necessary to either physically stop
the movement of the tape media, or to keep the tape moving
and therefore create long gaps at the synchronization points.
Stopping and restarting tape movement involves a cycle
called backhitch in which the media must stop, back up to
recover lost space, stop again, and then accelerate to reach
the steady-state media speed required to write the next
record. A backhitch can take several seconds in a modern

tape drive such as LTO, and so frequent backhitches can
dramatically slow tape performance. Some tape drives such
as the IBM TS1130 have implemented virtual backhitch
technology that allows synchronizations to be performed
without having to stop tape at each synchronization. This
considerably improves performance in an environment
where synchronizations are frequently performed, though
the tape drive has to intermittently go back and clean up
what was written to recover the capacity which would be
lost because the tape was not stopped [7]. It should be clear
that synchronization is a challenge to streaming tape
performance and should be used sparingly, even in tape
drives with advanced synchronization management.

In systems where tape data is written as files to a
POSIX interface, the software that chooses to synchronize
each time a file is written will suffer a large performance
penalty. This simple type of tape file system essentially
imposes an obligation on the part of the user to write large
files so that fewer synchronizations will occur. The large
files may be tar files that aggregate multiple smaller files,
or they may be large objects that are written as files, where
an object follows a user-developed or industry-standard
template. We will say more about objects in the next
section on efficiency in reading tapes. At the other extreme,
backup software such as IBM Tivoli® Storage Manager
(TSM), or a file system such as IBM Linear Tape File
System™ (LTFS) software may copy large amounts of data
from memory or disk to tape at streaming speeds until end
of media is reached, in which case no synchronization at all
may be required until after the last record written to a tape
cartridge. In between these extremes, hierarchical disk and
tape systems such as HPSS and SAM-FS address the
problem by automatically collecting files (including user-
prepared aggregates and objects) into very large aggregates
transparently to the application.

The authors suggest a best practice of keeping the
number of synchronizations in writing a tape cartridge to
less than a hundred. For LTO-5, 100 synchronizations
would result in one synchronization occurring approxi-
mately every 1.8 minutes if they are evenly spaced. The
amount of data written between each successive pair of the
100 synchronizations would average 1% of the tape length,
which would be 15 GB uncompressed or 30 GB with two-
to-one compression. As was stated earlier, it takes about
three hours to write an entire LTO-5 tape without stopping
for synchronizations, so the amount of time for 100
synchronizations would increase this by 300 seconds or five
minutes, a rather insignificant increase. These calculations
are linear, so that if the 100 synchronizations were
increased to 1000, then the average uncompressed data size
between synchronizations would be 1.5GB, and the time
due to 1000 synchronizations would be about 3000 seconds
or 50 minutes. The performance impact of more than 1000
synchronizations would likely be considered intolerable in a
high capacity, high data rate archive environment.

Page 3 of 10

Page 4 of 10

Table 1. Data used in efficiency calculations

Tape hardware parameters based on an LTO-5 drive
and TS3500 library

Load-to-ready time in seconds load 12

Average block locate time from
load point in seconds locate 52

Average time to rewind to load
point, seconds rewind 48

Tape drive unload time, seconds unload 17

Avg. library time to mount and
unmount a tape cartridge libt 12

Sustained native data rate of tape
drive in MB/sec sndr 140

Formulas used in the calculations below

ohead = load+locate+rewind+unload+libt
dtt = fs/sndr/de
tts = ohead+dtt

drives = de+pe
ttsall = tts*drives

edr = fs/ttsall
eff = edr/sndr

Redundant array parameters and calculations of tape seconds, effective rate, and efficiency

Parameter description Parameter
name

Single
tape

(4+1)
RAIT-5

(8+2)
RAIT-6

Single
tape

(4+1)
RAIT-5

(8+2)
RAIT-6

Average file size in bytes in MB fs 160 160 160 16000 16000 16000

Number of data elements in
redundant array de 1 4 8 1 4 8

Number of parity elements in
redundant array pe 0 1 2 0 1 2

Drive and library overhead for an
average pseudo-random read ohead 150.00 150.00 150.00 150.00 150.00 150.00

Data transfer time for one drive in
MB/sec dtt 1.14 0.29 0.14 114.29 28.57 14.29

Total tape-seconds per drive for
an average pseudo-random read tts 151.14 150.29 150.14 264.29 178.57 164.29

Total number of drives in array drives 1 5 10 1 5 10

Total tape-seconds for all tape
drives reading one file ttsall 151.14 751.43 1501.43 264.29 892.86 1642.86

Effective MB/sec data rate per
tape drive edr 1.06 0.21 0.11 60.54 17.92 9.74

Tape efficiency as % of tape
streaming native data rate eff 0.76% 0.15% 0.08% 43.24% 12.80% 6.96%

For applications or middleware which do use
synchronizations, when data is written to a RAIT set even
larger objects or aggregations must be used. Assuming
available stripe-based RAIT (as defined in the
introduction), then to write efficiently the data units should
be approximately d times as large as they would be when
writing to a single tape, where d is the number of equivalent
data tapes in the redundant array. Otherwise, the tapes in
the redundant array will be synchronized and will

experience backhitch d times more often than would be the
case for a single tape, and this would slow the writing
process significantly. To achieve efficiency in writing, a
RAIT-capable storage system may create aggregates of
many thousands, even tens of thousands, of user files for
each write to a RAIT array.

Efficiency in reading tapes
Here we make the case that while RAIT can be very

efficient for writing large quantities of data to tape, it is less
efficient in reading data, particularly when reading
individual files in a random order. By random order, we
mean an order that does not take advantage of locality of
files on cartridges and therefore may require a tape mount
for almost every file read. This may also be called pseudo-
random order because the underlying cause of the order
may be deterministic, but the effect is as though it were
random.

Reading a single file from an unmounted tape is a slow
process because the tape must be mounted, loaded, perform
a Seek and then Read, rewound, unloaded, and dismounted.
The sequence of operations that occur before and after the
actual data transfer takes about two or three minutes (an
average time of about 150 seconds for an LTO-5 tape and a
large LTO tape automation). For small files, the
approximately two and a half minutes of overhead are
considerably longer than the actual data transfer time,
which may range from less than a second to a few seconds,
depending on file size. The average file size across about 30
HPSS sites that report site information is about 160 MB [2].
This represents an average across over 200 petabytes of
data. Here we use this figure as a representative average file
size, and we leave it to the reader to test other sizes with the
formulas provided in Table 1.

The native uncompressed data transfer rate of an LTO-5
tape drive is 140 MB/s, so once accessed the data transfer
time of a LTO-5 drive is only 1.14 seconds per average-
sized HPSS file, less if there is compression. The
assumption of no compression is standard for scientific and
imaging data, because the compressibility of such data is
typically insignificant. It is also assumed that the server
doing the reading has sufficient capacity to do a streamed
read. For our notional average file size of 160 MB, the
productive data rate reading a pseudo-randomly-selected
file is about 151 seconds, or about 2.5 minutes of tape drive
time to support an actual transfer of data of 1.14 seconds.
We will call this 2.5 tape-minutes and use it as a measure of
the total time a tape drive is tied up to load, seek, read,
transfer data, rewind, and unload. The efficiency of the tape
drive, meaning the useful benefit in this particular situation,
is the actual transfer time divided by the tape-minutes of
busy time, in this case 1.14/151 = 0.76%. These numbers
are shown in Table 1 in the column labeled Single Tape.

For a stripe of a five-tape RAIT-5 redundant array
having d=4 data records and p=1 parity record, the effective
data rate drops to 0.21 MB/sec across the (d+p)=5 tapes.
The total tape-seconds increase to 751, or about 12.5 tape-
minutes. For a RAIT-6 configuration with d=8 and p=2, the
effective data rate across the array drops still further to 0.11
MB/sec, and the total tape-seconds increases to 1501
seconds, or about 25 tape-minutes. The efficiency drops to
0.15% for a 5-tape array and to 0.08% for a 10-tape array.
These numbers, which are from Table 1, are obviously too

inefficient for practical use, which leads us to look at the
numbers for much larger file sizes.

As a notional large file (or aggregate or object), we will
consider a file of 16 GB, which is 100 times as large as the
average 160 MB HPSS file and would represent an
aggregate or object of 100 files of average size. Referring to
Table 1, we see that for a single tape, the total tape-seconds
for reading the file is 264, or about 4.4 tape-minutes. The
effective MB/sec is 61, leading to an efficiency of a
respectable 43%. For a five-tape RAIT-5 array, the total
tape seconds is 893, or about 15 tape-minutes, and the
efficiency is about 13%. For a 10-tape RAIT-6 array, the
total tape-seconds are 1643, or about 27 tape-minutes and
the efficiency is about 7%.

While the above discussion has compared single tape
with RAIT, the single tape calculations and conclusions
would also apply to mirrored tapes. Normally, only one of a
pair of mirrored tapes needs to be read, whereas for a
redundant array, all tapes in the array must be mounted and
read for any single file. This observation further validates
the observation that when compared to mirroring, RAIT-5
or RAIT-6 requires fewer tapes to write data and more tapes
to read data.

Tape drive time, exclusive of the library time, can be
overlapped, so that latency experienced by the user when
reading files in an off-peak situation where there is no
queuing is approximately the same for RAIT as for single
tape. However, for the same number of tape drives and
multiple non-sequential reads, the likelihood of substantial
queuing increases when the assumption of RAIT is
imposed, and queuing can significantly increase latency as
seen by the user. Also, we can reason by example that if
there are 100 tape drives available for reading files, then
there could be 100 single-file reads in process at any one
time. For the same 100 tape drives, if all reads were of five-
tape RAIT sets, it would only be possible to read 20 files at
one time, and for ten-tape redundant arrays, only 10 files
could be read concurrently. The added latency due to
imposing a (d+p)-wide redundant array assumption is
therefore close to zero if the needed (d+p) tapes and tape
drives are immediately available, corresponding to a light
tape read load. However under a heavy load, the limit in our
example of 10 or 20 concurrent read operations will have
significant queuing compared with a non-RAIT system
having 100 opportunities for concurrent file mounts. From
these observations, we see that significantly more tape
drives are needed to handle the total tape read workload
with stripe-based RAIT sets of tapes than when writing to
single tapes. It should be approximately true that a system
consisting entirely of striped-based RAIT sets of tapes
would require (d+p) times as many tape drives for reading
files to remove file reads from a queue at the same rate as
they would be without RAIT.

Page 5 of 10

Strategies for improving efficiency in reading
from single tapes and tape arrays

We have made the case that tape is inherently efficient
to write, and it is inefficient for non-sequential random
reads, which is well known by tape users. We have further
shown that RAIT brings advantages of fast writes and fewer
tapes when compared with simple mirroring, but is less
efficient doing pseudo-random reads than single or
mirrored tapes. This means that to achieve the benefits of
RAIT one must plan carefully. Here we look at operational
concepts for optimal use of RAIT. The first concept is
obvious from the bullet item below. The rest we will
explore in this section.

• Use RAIT for valuable archival data known to
have a very low recall rate. (This is self-
explanatory).

• Have users create large composite files which in
this paper we call objects so that there will be
fewer, larger reads.

• Sort files accesses by redundant arrays of tapes to
reduce number of tape mounts when reading.

• Use hints and middleware familial relationships to
pack related data onto fewer tapes to reduce tape
mounts when reading.

• Use an operational concept we call reverse
asymmetric mirroring to use a single tape a
primary site and a RAIT group at a remote site.

• Combinations of these operational concepts.

Create objects at the application level.
The best way to group data for efficient reading is to

organize the data at the application level with an eye toward
reading efficiency. In many cases, the application is aware
at write time of affiliations that are difficult to transmit to
the middleware simply as hints. The use of objects,
mentioned in the previous section on write optimization,
can be even more useful at read time. An object, as we use
the term here, consists of multiple smaller entities and often
with metadata about the object in XML or similar human-
readable and machine-readable format. Objects can be
constructed such that there is hope that several of the data
entities contained therein would be used together, so fewer
tape mounts and fewer searches would be needed. An
aggregate created by middleware would be less likely to
have multiple files that would be retrieved together than an
aggregate carefully constructed by an application. The
Consultative Committee for Space Data Systems gives this
example of an object, which in their terminology is an
Archive Information Unit (AIU) [4]:

An example of an AIU would be a table of numbers
representing temperatures in a certain region with all the
associated documentation describing how and where the
temperatures were measured, what instruments were
used to make the measurements, who made the
measurements, why they were made, what processing
has been performed on the measurements and who has

had custody of these measurements since they were first
created, how the measurements relate to other
information, how the measurements can be uniquely
referenced by others, etc.

Sort reads by RAIT group
While letting the middleware collect files into

aggregates makes writes more efficient, it does little to
optimize for pseudo-random reads. The most obvious way
to increase the efficiency reading tapes is to reduce the
number of mounts and seeks, and this requires organizing
data when it is written to minimize mounts and seeks when
the data is read. Reads are most efficient if data that is
likely to be retrieved together is located on the same tape,
and even better, if it is physically close together on that
tape.

One way to impose order on a set of read requests to
achieve better throughput when reading them is to
accumulate and sort read requests. For example, if an
application needs to read 1000 files which were written to
100 RAIT sets of d+p tapes where d=4 and p=2, then if
those requests are issued individually in unsorted order this
may result in nearly 6000 tape mounts and 6000 tape
demounts. But if those requests are sorted so that all files
that are on a RAIT set of tapes are retrieved when that
RAIT set is mounted, then each RAIT set will have to be
mounted at most one time, for a total of 600 tape mounts
and 600 tape demounts, which can improve overall system
performance by a factor of ten for smaller files where the
read transfer time is insignificant compared to the tape
mount and demount time. Similarly, when a given RAIT set
is mounted, the files to be read from that tape should not be
read in just any order, as that can result in seek times
between files on the same tape, if read in pseudo-random
order, can be 30 seconds or more.

Modern enterprise tape formats including LTO-5 are
serpentine formats, meaning the tape travels from beginning
to end on one set of tracks, then wraps back to the
beginning of the tape on a second set of tracks, then back to
the end on a third set of track, and so on. LTO-5 has 80
such tracks in its serpentine. When seeking for a file on an
LTO-5 tape, the drive immediately goes to the right track,
and then traverses forward or backward to reach the desired
file. To truly optimize the order of accessing a group of
files known to be on a tape, it is necessary to know more
than the order in which the files were written to tape; it is
necessary to know the track each is own and the location
within the track. Nevertheless, a rule of thumb from the
Tucson lab is that gains can be achieved for large numbers
of files by simply ordering the reads in sequential block
order. This is especially true if the number of files to be
read is significantly more than the number of wraps (sets of
tracks written at once in a given direction for the length of
tape, in the case of linear tape technology) in the tape
format’s serpentine..

Page 6 of 10

File families
Another way to attempt to group data of similar types

together is to allow the application to provide hints when
each file is written, where the hints may be a project
number or other file family affiliation. Files belonging to a
family are then written to media identified with that family.
However, such hints are a rather coarse criteria for grouping
related files. If a familial group is large enough to span
several tapes or several redundant arrays of tapes, then the
desired reduction in number of tapes mounted for reads
may be defeated. Also, if there are a great many familial
groups, there may be impacts when writing to tape caused
by the dismounting of a tape or redundant array of tapes
associated with a familial group to allow mounting tapes for
another familial group.

The main conclusion from the discussion above is that
random reading of average-sized files is inefficient with
conventional single or mirrored tape and is even more
inefficient with RAIT strategies where files are spread
across all tapes in the array. For RAIT, just as for
conventional single tape and mirrored tape solutions, a
good practice is to try to organize data when it is stored so
that when it is read the system can perform fewer, larger
reads and to keep data that is most likely to be read cached
on disk.

Remote asymmetric mirroring:
Any archivist concerned about long term preservation

would want to consider RAIT, most likely RAIT-6.
However, the archivist would also be concerned about a
catastrophic failure of an entire site. Such an archive should
have data stored in at least two sites that are geographically
separate. This implies mirroring data across two or more
sites, which in turn raises the question of whether to use
RAIT, mirroring, or both. In a hypothetical situation where
cost is not a concern, one could have RAIT with dual
parities at each site. Here we propose the notion of
asymmetric mirroring, where one site uses RAIT and the
other(s) use single tape. This concept of asymmetric
mirroring is shown in Figure 2. If one site is in a
particularly safe, remote location, it would seem wise to let

that site be the RAIT site and the others, particularly the
primary site, use single tape. We call the strategy remote
asymmetric mirroring. This strategy has two important
benefits for an archive that has significant read activity.

The first benefit is that the site that is most protected by
geography is the site that enables read verification and
forensic reconstruction of hidden errors. It is unlikely that
this most protected site would be the primary site. In some
actual archives, the remote site is literally a cave hewn
inside a mountain. This protected remote site would be the
source for a future migration of the archive to new storage
technology. The protected remote site would not be the site
that experiences most of the reads; that would be the
primary site. Therefore the most secure site experiences less
wear and tear. Instead of a lot of user reads, it would be
focused on reads that were primarily administrative, to test
the state of the archive.

The second benefit is that most of the productive user
reads would be to the primary site, which is single tape and
not RAIT. Those users with a mission to make use of the
archive here and now would be reading data from a site
where the data is stored on single tape. Only one tape
cartridge needs to be mounted to read one file, or
sometimes two if a file spans cartridges. Therefore, the
remote asymmetric mirroring strategy overcomes the
performance limitations of reading RAIT by avoiding
reading from it for all purposes except the purpose of
maintaining the long-term integrity of the archive.

RAIT concepts and facilities for data
availability

Rebuilding a redundant array
In the case of RAID with parity such as RAID-3 or -5,

the loss of one disk puts the entire redundant array into a
degraded mode where there is no redundancy and therefore
no protection against another failure. Once a new disk is
made available, which is nearly instantly in the case of
arrays which have a spare awaiting assignment, the storage
system commences to rebuild the redundant array. To do
this, the entire remaining array of disks must be read; the

lost data computed using the other
data and parity records, and the
replacement disk re-written. While the
re-build is in progress, the storage
system provides service at reduced
data rates. With today’s terabyte-class
disks, the rebuild process can take
long enough to put the now-
unprotected data at risk of another
disk failure. If a second disk fails
during the rebuild, then the data not
yet rebuilt will be lost. This
vulnerability is addressed by what has
become known as RAID-6, which
adds a second parity record to each
stripe. With two parity records, the

Primary Site
n tape cartridges

Secondary Site
approximately

1.25n tape
cartridges

Storage Class of
(8+2) RAIT-6

Storage Class of
Individual Tapes

Figure 2. Asymmetric Mirroring

Page 7 of 10

loss of two disks can be tolerated.

For RAIT, the failure modes are different and so is the
recovery process. Tape being removable media, a failure
could be a tape cartridge failure or a tape drive failure. If it
is the cartridge, it could be only a stripe, or a few stripes,
that are bad or it could be the whole cartridge. If the failure
affects only a single file on a single tape cartridge, other
files on the RAIT set may be perfectly readable and not
need to be copied. The failed file would likely be copied to
another RAIT set of tapes, while being reconstituted from
the remaining data and parity elements. If the cartridge
cannot be read at all, it would be tried on a different tape
drive. If it works on the new drive, then the previous drive
would be taken out of service. If the cartridge has clearly
failed and not the drive, then the entire redundant array
would have to be rebuilt, probably requiring it to be taken
out of service until rebuilt. The rebuild would normally be a
repacking process, where files would be copied to a new set
of tapes. In our example of RAIT-6 with 10 tapes including
the equivalent of eight tapes of data and two of parity, 20
tape drives are required to do direct tape-to-tape copying
during reconstruction (10 reading the source tapes, and 10
writing the target tapes).

Real-time read verification:
Important files are usually protected with a checksum.

A checksum is a fixed-size data record attached to or
associated with a block of data for the purpose of detecting
errors that may have been introduced during transmission or
storage. Such checksums are sometimes called hash
checksums, or just hashes. A checksum may be as simple as
a longitudinal parity check that breaks the file into fixed-
size words and XORs them together, or as strong as a
cryptographic hash function such as one of the Secure Hash
Algorithms of the National Institute of Standards and
Technology such as SHA-256. A simple checksum has the
ability to detect accidental errors with a high but not
absolute degree of likelihood, whereas a strong
cryptographic hash can provide near-absolute detection of
any change. If the hash is stored separately (and so cannot
be changed as well), the hash can protect against even
clever malicious change of a file.

Reed-Solomon and other erasure codes used as RAIT-5
parity codes can be used to augment file validation that is
normally done via use of checksums. If an uncorrectable
read error is reported to the RAIT middleware, it would be
corrected before file was even constructed and the
checksum checked. RAIT therefore increases the
probability of having a good copy of a file to validate with
the checksum and hence a good outcome. However another
level of RAIT-5 service can be provided in the form of a
“read verification” that would conceptually re-compute the
parity for each stripe from the data and compare it with the
parity field that was read from the stripe. If equal, this
would be substantial evidence that the data fields are
exactly as they were when the file was written to tape. If
unequal, it would mean that there is an error in the stripe

and therefore some data is corrupt. It would be very likely
that the file-level checksum would have detected this as
well, but the RAIT verification, if performed, would
discover the error first and potentially correct it. And
detection at the RAIT level could be used on files that do
not a checksum. In this way, the read verification utility and
the checksum could discover otherwise hidden errors,
called unpointed errors, a very rare but significant
discovery. However, errors discovered by RAIT-5 read
verification or by checksum confirmation would not as a
general rule be correctable. It would be necessary to find
another copy of the file, perhaps at a backup location. This
leads us to a reason for RAIT-6.

As stated in the previous section, RAIT-6 with its two
parities enables the detection and correction of a single
hidden, or unpointed, error. Conceptually, an essential piece
of information for efficient RAIT correction is to know
which block of data is in error. Normally RAID or RAIT
reconstruction would occur after another mechanism,
typically at the drive level, had discovered a lost or
damaged block of data within the stripe, pointing to a
specific data or parity strip. Such pointed errors are treated
as erasures, meaning the data known to be bad is essentially
disregarded as if it were erased. Reed-Solomon codes
allows correction of as many erasures as there are parity
fields. RAIT-5 has one parity and so allows correction of
one erasures, and RAIT-6 has two parities and so allows
correction of two erasures. Thus RAIT-6 can either be used
to correct two errors or detect and correct one unpointed
error.

Data about undetected bit errors on tape is difficult to
collect because they are exceedingly rare, and most that any
that did not occur in a test environment specifically looking
for this would (as the label implies) likely never be
detected. Estimates of the probability of undetected tape
errors are seemingly as rare as the errors. One published
estimate from an Oracle specification sheet on the
StorageTek automations using LTO drives [5]. This source
reports a probability of one undetected error in 10^27 bits,
which is about 10^26 bytes. A petabyte is 10^15 bytes, so
that an undetected tape error would occur about once every
10^11 petabytes. For a very large archive ingesting 10
petabytes of data every year, the published bit error rate
would lead to an expectation of one undetected tape drive
read error every 10 billion years!

The 10^27 bit error rate is a calculated estimate. There
is no possibility of collecting statistically meaningful data
on that time scale. Calculated undetected bit error rates
normally would not take into account transmission errors to
and from the tape drive. They would not account for
unpredictable behavior of a failing device, undiscovered
firmware or software bugs, failure of people to follow
procedures, and just plain bad luck. A serious archivist may
therefore want to verify all data as it is read, either by both
testing against a checksum and by using RAIT to correct
any errors that are correctable and to detect errors which are
not.

Page 8 of 10

Off-line reconstruction:
As stated above, using a Reed-Solomon code two RAIT

parities can be used to correct an undetected (unpointed)
error. If the redundant array of tapes has two parities, it is
possible to reconstruct the original file in all cases with only
one error, even if it is unpointed – though the correction
should then be verified by the file level checksum or hash.
While it is beyond the scope of this paper to explain in
detail, it is sufficient for our purposes to say that
calculations are made across the data and parity bytes to
determine if all the parities still check or whether they do
not check and instead indicate an error. In the latter case
calculations are made to determine where the errors are and
the values of those errors, which allows the errors to be
corrected.

RAIT-6’s two parities also allow correction of up to two
pointed errors (in the case of RAIT a “pointed” error would
typically be a Read Permanent error from a tape drive when
trying to read one of the tapes in a RAIT set). It is of course
possible that there are more than two errors or that the error
is so extensive that it exceeds the ability of the two parity
error correction codes to correct the damage. At that point
one would clearly have to look for a copy at another
geographic location, as in the above discussion of mirroring
strategies.

Note that correcting a single unpointed error with two
parities would be rare, so while this can potentially be done
in real time, on-the-fly as needed, this is not necessarily
required -- the process could also potentially be done
offline.

Longer time between tape migrations:
Tape cartridges are variously claimed to have a life as

long as 30 years, given certain conditions of temperature,
humidity, and freedom from contaminates, all reasonable
restrictions [6]. Nevertheless, many serious archivists have
a replacement strategy of around five years. The concern
appears to be more that the tape drives will become
obsolete and unavailable than that the media will
deteriorate. However, there is also a motivation to pack data
into more dense cartridges as they are offered so as to save
tape library slots. Lawrence Livermore National Labs, for
example, has reduced their total number of tape cartridges
while increasing the amount of data stored by migration to
higher density cartridges.

Cartridge degradation, however long that takes, is more
critical than tape drive obsolescence. A tape drive can be
replaced, even if it is with used or rebuilt equipment,
whereas the valuable data on a tape cartridge cannot be
replaced unless it can be rebuilt (e.g. via RAIT). Typically,
an archive will test cartridges by reading a representative
sample of cartridges on a schedule so as to detect any
statistically significant degradation.

Here we propose that with RAIT-6, degradation of an
individual cartridge is much less of a problem. This is

because a redundant array with two parity fields can
withstand the loss or degradation of up to two tape
cartridges in each redundant array, and therefore the effect
of any time-related degradation is reduced. Therefore while
we are not offering any specific increase in time between
migrations to new media, we suggest that the best practices
for time between migrations can be increased, so long as
the cartridge population was being monitored to assure that
systematic degradation of a batch of cartridges was not
occurring.

Summary
In summary, we have made these points:
• RAIT draws on a quarter century of RAID

technology, including the mathematics of parity
records and their use.

• RAIT can provide higher availability with fewer
tape cartridges, as compared to mirroring.

• RAIT is most efficient for sequential writing and
reading to tape. Because of the sequential nature of
tape, writing is always sequential. So RAIT is
efficient for a write-dominated archive.

• RAIT is also efficient in environments where a lot
of sequential data is read each time a RAIT set is
mounted.

• Stripe based RAIT is inefficient in environments
where small amounts of data are read in pseudo-
random order because the tape drive time required
multiplies tape’s unfavorable access time by the
number of tapes in a RAIT set.

• Strip based RAIT promises to be significantly more
efficient in an environment where data is read in
pseudo-random order because in most cases it
eliminates the need to mount for than one tape to
access a file. Future RAIT implementations should
seriously consider this alternative.

• Reads from a RAIT array should be aggregated and
sorted to access all file reads needed from a given
tape set at once, and those reads should be made in
preferred access order, in environments which
allow it, for best performance.

• Two RAIT arrays, one at each of two sites, can
have data mirrored between them for Disaster
Recovery purposes, or a RAIT site and a non-RAIT
site can be mirrored.

• For a long term archive, geographically separated
sites with use of a unRAITed single tape copy at
the primary site mirrored by a RAIT-6 storage class
at a safe remote site may provide the best attributes
of efficient reads which are optimized at the
primary site and data protection which is optimized
at the remote site.

• RAIT parities can serve a secondary purpose of
detecting otherwise undetected bit errors by read
verification.

Page 9 of 10

Page 10 of 10

• To correct otherwise hidden errors found by read
verification, two parities are required, vs. one parity
if one depends on all errors being pointed by other
error detection mechanisms (e.g. CRC across an
individual block)

• RAIT-5 and mirroring (RAIT-1) allow, in theory:
– correction of 1 pointed error, or
– detection of 1 unpointed error – but this has

almost no value in a system with a strong
checksum of the files which would perform
this detection anyway.

• RAIT-6 allows, in theory:
– correction of 2 pointed errors, or
– both detection and correction of 1 unpointed

error – and this does have real value because it
would eliminate the error so that the strong file
checksum would now check.

• An archivist archiving files should be using strong
checksums across the files and if so, then if they are
further worried about unpointed errors, then there
really is no reason to use anything less than RAIT-
6.

• As RAIT can tolerate substantial loss or
degradation of tapes without loss of data, RAIT
data stores may potentially allow a longer interval
between tape technology upgrades.

References
1. David A Patterson, Garth Gibson, and Randy H Katz,

A Case for Redundant Arrays of Inexpensive Disks
(RAID), Proceedings of the 1988 ACM SIGMOD
international conference on Management of data

2. Harry Hulen, High Performance Storage System
Overview, presentation slides, may be found at
http://www.hpss-collaboration.org/technology.shtml

3. , Tape Library Information Center,
http://publib.boulder.ibm.com/infocenter/ts3500tl/v1r0/
index.jsp?topic=/com.ibm.storage.3584.doc/
ipg_3584_ircc4.html

4. Consultative Committee for Space Data Systems,
Reference Model for an Open Archival Information
System (OAIS), January 2002, http://public.ccsds.org/
publications/archive/650x0b1.pdf

5. Oracle data sheet StorageTek LTO Tape Drives, may
be found at: http://www.oracle.com/us/products/
servers-storage/storage/tape-storage/033631.pdf

6. Imation LTO 5 data sheet may be found at
http://www.imation.com/PageFiles/2510/
IMT_FACTFILE_LTO5_100323_tw_D.pdf

7. Glen A. Jaquette, Paul M. Greco, James M. Karp,
Writing Synchronized Data to Magnetic Tape, United
States Patent No. 7,218,468 B2, May 17, 2007, may be
found at ttp://www.freepatentsonline.com/7218468.pdf

8. Michelle Butler, BlueWater's Archive at NCSA with
RAIT, slides from a presentation at IEEE Massive
Storage Systems and Technology conference
(MSST2011) May 24, 2011, and recorded on the
conference web pages.

9. James Hughes, Charles Milligan, Jacques Debiez, High
Performance RAIT, Tenth NASA Goddard Conference
on Mass Storage Systems and Technologies and
Nineteenth IEEE Symposium on Mass Storage
Systems, Adelphi, Maryland, USA, April 2002.
Hughes, the principal author, was at that time a
StorageTek Fellow.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or
registered trademarks of International Business Machines
Corp., registered in many jurisdictions worldwide. Other
product and service names might be trademarks of IBM or
other companies. A current list of IBM trademarks is
available on the Web at “Copyright and trademark
information” at www.ibm.com/legal/copytrade.shtml.

Linear Tape-Open, and LTO are trademarks of HP, IBM
Corp. and Quantum in the U.S. and other countries.

	Operational concepts and methods for using RAIT in high availability tape archives
	Definitions
	The economic case for RAIT
	How disks and tapes are fundamentally different
	Calculations of efficiency in reading and writing single tapes and tape arrays
	Efficiency in writing tapes
	Efficiency in reading tapes
	Strategies for improving efficiency in reading from single tapes and tape arrays
	Create objects at the application level.
	Sort reads by RAIT group
	File families
	Remote asymmetric mirroring:

	RAIT concepts and facilities for data availability
	Rebuilding a redundant array
	Real-time read verification:
	Off-line reconstruction:
	Longer time between tape migrations:

	Summary
	References

