Reliability-Aware Energy Management for Hybrid Storage Systems

Wes Felter, Anthony Hylick, and John Carter

IBM Research - Austin
{wmlf, hylick, retrac} @us.ibm.com

Abstract

Modern disk-based storage systems are not energy
proportional, because disks consume almost as much
power when idle (but spinning) as they do when ac-
tively accessing data. We combine a power-aware, solid-
state (flash) cache and a reliability-aware disk spin-
down mechanism to significantly improve storage energy
proportionality without hurting disk reliability, data in-
tegrity, or performance.

We evaluated the resulting power- and reliability-
aware hybrid flash-disk RAID storage array and found
that it reduces energy consumption by 85% compared to
a similar-cost, similar-performance typical configuration
of all SAS drives that are never spun down. Our design
also achieves almost 50% energy savings compared to
hybrid flash-disk systems tuned for performance or that
do not take full advantage of opportunities for safe spin-
down. Further, unlike most previous work that exploits
spindown to save energy, we limit the rate at which disks
are spun down to avoid premature mechanical failures,
whereas reliability-unaware spindown algorithms can
exceed manufacturer waranteed lifetime spindown limits
in as little as one year.

I. INTRODUCTION

The performance, cost, and reliability of modern com-
puter systems and data centers increasingly are dic-
tated by the management of limited energy budgets. An
emerging design goal is for computing devices to be
made energy proportional [1], the notion that all com-
ponents within a computing system should be capable
of proportional change in power consumption as offered
load changes. Modern storage systems are not energy
proportional [10]. Most data is stored on disks, which
consume almost as much power when idle (but spinning)
as they do when being actively accessed. As a result,
storage energy scales in proportion to system capacity,
not system utilization (load). Storage currently represents
20%-40% of total energy consumption in a typical data
center [3], and its relative importance is growing because

978-1-4577-0428-4/11/$26.00 (© 2011 IEEE

the amount of data being stored is growing at a rate faster
than Moore’s Law and other components (especially
processors and the cooling infrastructure) are become
increasingly energy-efficient.

In recognition of the growing storage energy problem,
disk manufacturers have introduced new “green” disks
with multiple idle states and autonomous firmware that
exploits these lower power modes when the disk is
sufficiently idle. For example, the Seagate Constellation
ES “green” drives support four idle modes [24] detailed
in Table 1. Each deeper idle mode consumes less power,
but introduces a larger delay to transition back to Active
mode, which can impact performance. Table II presents
the power in each idle state, the amount of idle time
before the disk autonomously enters each idle state, and
the amount of time required to transition back to Active.

Many researchers have proposed using solid-state
drives (SSDs) as a cache in front of large disk-based
storage arrays. SSDs offer greater read/write perfor-
mance than mechanical disk drives, and are quite energy-
efficient given their low idle power needs, but it is
typically not cost-effective to replace all capacity with
SSDs due to their high per-byte cost compared to
disk [18]. Flash caching is typically proposed to improve
performance or to reduce system cost by enabling ex-
pensive enterprise (15K RPM) disks to be replaced with
inexpensive commodity (7200 RPM or slower) disks [8],
[22], [26], [27], [30]. Previous researchers have reported
power benefits from flash caching that arise because less
energy is required to access a block of data from an
SSD than from a disk [14], [22], [27]. Further, a large
flash cache may increase how often the backing disks are
idle, which provides more opportunities for autonomous
disk power management mechanisms to save energy.
However, as seen in Table II, disks consume almost
as much power when idle (but spinning) as they do
when actively servicing a read or write requst, so simply
replacing disk seeks with SSD accesses, without disk
spindown, provides only marginal energy benefits, a
phenomenon that we quantify in Section V.

To achieve energy proportionality, some researchers
have proposed spinning down idle disks [2], [7], [15],

Published by the IEEE Computer Society

[State | Characteristics |

Active Disk spinning at full RPM; electronics active.
Idle A Read channel and servo control turned off.
Idle B Idle A plus heads unloaded

Idle C Idle B plus speed reduced to lower RPM
Standby Spindle motor turned off (disk spun down)

TABLE I
DISK POWER STATES (SEAGATE CONSTELLATION)

State Power | Timeout
(Watts) (mins)
Active (Read, Write) 7.95 —
Seeking 7.22 —
Active Idle 5.86 —
Idle A 5.86 2
Idle B 4.51* 4
Idle C 3.55 10
Standby 0.31 15
Transition Power Transition
(Watts) | Time (sec)
Idle A —>Active 5.86 0
Idle B —>Active 5.86 0.1
Idle C —>Active 13.77 0.38
Standby —>Active 13.77 6.22
TABLE 11

MODELED DISK CHARACTERISTICS (* - INTERPOLATED STATE FOR
WESTERN DIGITAL DRIVE, SEE SECTION 4.2)

[17], [20], [28], [29], [31]. However, disk spindown has
not been widely employed in enterprise storage systems
for a variety of reasons. Most important, the physical
wear induced by head load/unload cycles reduces the
lifetime of disks [24]. Disk manufacturers rate their
drives for a maximum number of spindown cycles before
the warranty is void. Enterprise disks are designed to
spin down only about 25,000 times, while (lower perfor-
mance, more rugged) laptop disks are rated for roughly
500,000 load-unload cycles. Assuming a three to five
year disk lifetime [21], this translates to a maximum
spindown rate of only one to six spindowns per hour. For
example, Seagate Constellation ES “green” disks spin
down autonomously only after the disk has been idle
for 15 minutes. With the exception of PARAID [28],
prior work in this area has ignored the serious reliability
problems that can arise from spinning disks up and down
too frequently. Also, it takes 6-10 seconds to spin up a
disk after the drive motor has been turned off, which
impacts performance and can cause brittle software to
fail. For these reasons, disk spindown has not been
adopted by major storage vendors.

In this paper, we present a reliability-aware hybrid
storage system that combines power-aware flash caching
and disk spindown. We show that power-aware flash
caching enables significantly more opportunities for disk

spindown than is possible without flash caching or
with power-oblivious caching (e.g., Sun’s ZFS [26] and
NetApp’s WAFL [30]). We introduce a token bucket
mechanism to limit the rate at which disks are spun down
to ensure that we do not wear out disks prematurely, in
contrast with reliability-oblivious spindown mechanisms
that can cause disks to exceed their spindown limit in
as little as a year. We quantify the benefits of com-
bining both disk power management (spin-down) and
flash caching and show how the combined benefit of
both approaches is greater than the sum of the benefits
from each technique individually. We simulate a power-
and reliability-aware hybrid flash-disk RAID storage
array and find that it reduces energy consumption by
85% compared to a similar-cost, similar-performance
baseline RAID system that uses enterprise SAS drives
with no spindown. Our design also reduces energy 45%-
47% compared to hybrid flash-disk systems tuned for
performance or that do not fully exploit opportunities
for safe spindown. Finally, we show that these power
savings results are within 5% of a reliability-aware oracle
spindown policy. In summary, our work combines the
benefits of flash-based caching and disk spindown in
a way that improves storage energy efficiency without
impacting disk reliability, data integrity, or performance.

The rest of this paper is organized as follows: Sec-
tion II details previous research on disk power manage-
ment and flash caching. Section III describes the design
of our power- and reliability-aware hybrid storage solu-
tion. Section IV describes the workloads that we use in
our analysis, simulation environment, and experiments.
Section V presents our results. Finally, in Section VI we
present our conclusions and discuss future work.

II. RELATED WORK

There has been substantial prior research on using flash-
based solid state drives as caches in a storage system
to improve performance, some of which also considers
the potential energy benefits of flash caches. A second
body of work has explored the use of spinning down
disks to reduce storage energy consumption. A small
number of researchers have explored the combination
of these techniques. Our work extends prior research in
this area by considering more than two disk power states
and by managing disk and SSD reliability. Our work
also provides more detailed analysis of the synergy be-
tween caching and spindown, illustrates the importance
of exploiting all available spindown opportunities, and
presents a breakdown of where time and energy are spent
in a large variety of storage configurations and energy
management policies.

Improved disks: Gurumurthi proposes improving the
energy efficiency of hard disks by introducing the ability
to trade off power and performance by dynamically
varying the spindle speed and intra-disk parallelism [11],
[23]. These precise mechanisms have not been adopted
by disk vendors, but our analysis does consider disks that
support variable disk speeds and multiple power states,
such as the Seagate Constellation ES.

Spin-down: In the early stages of mobile computing,
Wilkes outlined an algorithm for predictive power con-
servation for disks to extend the utility of mobile de-
vices [29]. Due to the cost of spinning up a drive, he
proposed an adaptive delay timeout that was a function
of previous activity rather than a fixed delay timeout
set either by the user or manufacturer. Douglis et al.
were some of the first researchers to define the ‘break-
even’ time for drive spin-down, the time required to be
spun down to save the energy required for the subsequent
spin-up [7]. Similar to Wilkes, their work proposes an
adaptive spin-down timeout.

More recently, Microsoft researchers observed that
disks can be spun down even when they are not com-
pletely idle as long as there are no reads, such as occurs
when a server is largely idle but continues to write
infrequent log messages [17]. In this scenario, disks
can be spun down if subsequent (log) writes are “off-
loaded” to some other storage device (disk or SSD)
that is in an active state; we feel that write caching
within a storage system can provide the same benefits
but is simpler to implement. Colerelli and Grunwald
developed massive arrays of idle disks (MAID) that
explicitly manage a large disk array such that a large
fraction of the disks are spun-down at any instant in
time [6]. By carefully spreading or replicating data
across drives in the array, MAID can retain traditional
RAID performance at a lower average power. Similar to
Microsoft’s write off-loading technique, Pinheiro et al.
propose an access mechanism that diverts read and write
requests to a redundant copy so that the disk(s) storing
the primary copies can remain in lower power states [20].
Pinheiro and Bianchini introduce the notion of popular
data concentration (PDC) wherein data that is classified
as ‘popular’ is collected onto a subset of storage devices
so that the remaining storage may be spun down [19].
Weddle et al. propose PARAID [28], which varies the
RAID stripe width at runtime, replicating popular blocks
so that some disks can be spun down during periods of
low load.

Flash caching: In SieveStore, Pritchett and Thottethodi
use flash-based SSDs to filter accesses to disks [22].
Their work is based upon the observation that a small

fraction of blocks are responsible for a significant
number of total accesses, so a small amount of flash
can absorb a significant fraction of I/O requests. Kgil
and Mudge present FlashCache, a flash-based cache
behind the traditional DRAM buffer cache that allows
the DRAM cache size (and thus power requirement)
to be reduced, while maintaining high performance by
avoiding disk accesses [14]. In EXCES, Useche et al.
extend previous work investigating external caching by
adding prefetching and buffering of data [27]. Finally,
Sun [26], NetApp [30], and EMC [8] have announced
commercial storage systems that use flash caching.

Spin-down + Flash caching: Lee et al. propose aug-
menting RAID configurations with a flash-based read
cache and write buffer to conserve disk power [15]. They
further observed that working set sizes often are small
enough to be managed effectively with the flash cache,
which allows the disks to be placed in lower power
states. Bisson et al. explore the impact of using a non-
volatile cache (NVCache) to create more opportunities
for disk spin-down by increasing disk idle periods [2].
Their results show significant savings using this ap-
proach. Zhu et al. detail several power-aware cache
management algorithms that reduce energy consumption
and increase I/O performance [31].

Energy-Aware Caching: Chen and Zhang demonstrate
the need for (DRAM) caches to be energy-aware to
produce significant energy-saving disk spindown op-
portunities [4]. They detail two energy-aware caching
policies that increase the burstiness of disk accesses
while imposing only a modest performance loss.

Disk and SSD reliability: Although there is published
work on hard disk reliability, few studies consider the
reliability impact of spindown at all. Greenawalt [9]
examines the tradeoff between disk spindown timeout
and disk lifetime. PARAID [28] considers disk relia-
bility in addition to energy, spreading the wear caused
by spindown evenly across disks in the RAID array
and conservatively limiting the rate of spindowns to
prevent premature disk wear out. We are not aware of
any detailed characterization of the effect of spindown
on disk reliability; this is an area that deserves more
study. We acknowldge a large body of work on wear-
leveling for flash; we do not propose any changes or
improvements to the state of the art in this area. While
most flash reliability management is performed inside
SSDs, Soundararajan et al. [25] propose the somewhat
counterintuitive idea of reducing flash wear using a hard
disk as a write cache; this is a nearly opposite approach
to our work.

Additional relevant differences between our work and
prior art are discussed throughout the remainder of this

paper.

III. Low-POWER HYBRID STORAGE
A. Reliability-aware Disk Energy Mgmt

Reliability concerns may make it impractical to put the
results of prior disk spindown research into practice. For
example, Seagate specifies that an enterprise disk may
be spun down no more than once every 15 minutes [24],
which is much longer than the timeout calculated by a
purely energy-optimizing spindown algorithm. All of the
power management algorithms that we consider in this
paper limit the number of per-disk lifetime spindowns
to no more than the manufacturer specified limit, which,
for the disks that we consider, translates to no more than
one spindown per 15 minutes on average.

As described in Section I, Seagate has developed and
is promulgating a standard for energy-efficient “green”
disks that can autonomously manage their own idle states
to save energy during periods of idle load [24]. When-
ever a disk has been idle for a sufficient period of time,
these disks autonomously transition to an appropriate
idle state. The spindown characteristics of the disks that
we model are presented in Table II. The modeled drives
represent a combination of Seagate Constellation ES
drives (with the most aggressive idle states) and similar
Western Digital “green” drives, which are present in
our storage server and thus can be used to validate our
simulated results.

When enabled, the autonomous power management
mode of Seagate Constellation ES drives works as fol-
lows. If no requests are received for 2 minutes, the disk
enters the Idle A state and disables both the read channel
and the servo control, which reduces power consumption
marginally. After 4 minutes (total), the disk transitions
to the Idle B state, where the heads are unloaded but the
disk continues to spin at full speed, which reduces power
consumption from 5.9 W to 4.5 W. After 10 minutes
(total), the disk enters the Idle C state and roughly halves
its rotational speed, which reduces power consumption
to 3.5 W. Finally, after 15 minutes, the disk enters the
Standby state and turns off the spindle motor, which
reduces power to only 0.3 W. Note that spinning up from
an idle state requires varying amounts of energy and
time; the deeper idle states consume substantially less
energy when idle, but require substantially more energy
and time to return to the Active state.

For our analysis, we consider six disk energy man-
agement policies:

1) All-SAS with no spindown (SAS)

2) AII-SATA with autonomous spindown (SATA)
3) Power-aware write-back flash caching (WC)
4) Token bucket spindown (TB)

5) Unsafe Oracle (UO)

6) Safe Oracle (SO)

We describe each of these policies in turn below.

All-SAS with no spindown (SAS): Enterprise storage
servers traditionally use high-RPM Serial Attached SCSI
(SAS) or Fibre Channel (FC) drives due to their high
performance and high reliabiity. These drives are much
more expensive (in $/GB) and less dense than low-
RPM commodity disks. Somewhat counterintuitively,
SAS disks generally have higher a mean time between
failure (MTBF) than commodity drives, but can tolerate
fewer spin-ups over their lifetime; they are very reliable
when spinning but fragile when power-managed. Note
that although low-RPM SAS and high-RPM SATA disks
exist, they are not common. Thus, we follow the industry
convention of using the term “SAS” to refer to high-
RPM disks and “SATA” to refer to low-RPM disks. For
the SAS policy, we model a single RAID array consisting
of 3.5” 450GB 15K RPM SAS disks (such as the Seagate
Cheetah 15K.6) that is never spun down. Throughout our
analysis, this policy represents our baseline configuration
and energy management policy because it represents the
most common enterprise configuration.

All-SATA with autonomous spindown (SATA): For our
second policy, we replace the enterprise SAS drives
with the same number of “green” SATA drives and
enable their autonomous power management (spindown)
mode. Note that this configuration has substantially more
capacity and lower cost than the SAS configuration, but
lower performance, and thus is not directly comparable
to the all-SAS configuration. Rather, we present the
results of this policy to show how much power can
be saved by replacing SAS drives with more power-
friendly SATA, and to contrast how much additional
power savings can be gained by introducing a flash
cache.

Power-aware write-back flash caching (WC): Several
previous researchers have proposed augmenting a tra-
ditional flash (SSD) cache with policies that increase
the idleness of disks, thereby increasing opportunities to
place disks in deeper idle states [2], [15], [28], [31]. It is
not uncommon for even very idle systems to periodically
update filesystem metadata. If these writes occur less
than 15 minutes apart and are written through to disk,
then the disks we use would never be able to spin down
regardless of the cache’s read hit rate.

To improve the power savings of a hybrid flash-disk
storage system, we introduce three new power-aware
features to the flash caching policy:

1) Write-back caching: Inspired by PA-LRU [31],

we use a write-back policy. Doing so eliminates
spinups caused by periodic logging events or other
occasional writes. This policy is akin to write
offloading [17], except that the writes are written
to the cache layer rather than a spun-up disk.
Note that since power management continues to
be handled autonomously by the disks, we employ
a write back policy at all times, not only when
we would otherwise write-through to a spun down
disk. If we employed a write-through policy for
active disks, this would continuously reset each
disk’s internal idle timer, thereby causing the disk
to not spin down.
To ensure that our write-back caching mechanism
does not impact data integrity, we make the flash
cache itself redundant. In our analysis, we model
the flash cache as a pair of mirrored (RAID-1)
SSDs, although in a large storage server with more
disks, we would employ a more cost- and power-
efficient RAID-5-like scheme.

2) Batched flushes: To reduce the likelihood that we
will need to spin up a disk when we need to evict
a dirty block, we proactively write back dirty data
whenever a disk is spun up, even if the data is
relatively fresh. To minimize performance impact,
these flushes are performed in the background
when the disk is otherwise idle.

3) Reliability-aware spindown: Under the WC
policy, spindown continues to be handled au-
tonomously by the disk firmware according to the
schedule presented in Table II to avoid premature
disk failure.

Flash caching with token bucket spindown (TB):
Spinning disk drives up and down causes them to fail
prematurely due to mechanical wear [21]. To address
this problem, we investigated a variety of spindown al-
gorithms that balance the need to maximize opportunities
for spindown with the need to avoid premature disk
failures. To balance these competing goals, we employ
a token bucket spindown algorithm that ensures that
no useful opportunity to spin down a disk is wasted,
but ensures that the number of disk spindowns over its
lifetime does not exceed the manufacturer’s warranteed
limit. Token buckets are a concept first employed by the
networking community to perform “traffic shaping” by
limiting the rate of admission of packets to a potentially
congested shared link [5]. The basic idea of a token
bucket mechanism is that tokens are added to a virtual

bucket (represented as an integer) at a fixed rate that
matches the average rate at which some activity should
occur, e.g., a packet being transmitted in the case of
the networking example or a disk spindown in our TB
mechanism. Whenever the system wishes to perform the
rate-limited activity, it must first remove a token from
the bucket or stall until a token is added. This allows
the system to have bursts of activity while limiting the
average rate to some fixed long-term average.

In our TB policy, the token bucket algorithm takes
into consideration the maximum number of spinup/down
cycles that the manufacturer specifies a disk can perform
over its lifetime. We calculate how often to add a token
to the bucket by dividing the planned lifetime of the drive
by the total number of cycles for which the drive is rated.
For the disks that we model, this translates to adding
a token every 15 minutes. Before a disk can be spun
down, a token must first be removed from the bucket. If
no token is present, the disk is kept spinning until the
next token is added, assuming there is no intervening
access to the disk that resets its idle timer. The bucket
is represented by an integer, and adding/subtracting
a token corresponds to incrementing/decrementing the
count. The key insight is that the token bucket pol-
icy accumulates spindown “credits” whenever there are
extended active or idle periods, which is common for
many storage environments (e.g., long idle periods at
night and over weekends, and long active periods during
the day). If a particular disk remains spun up or spun
down for thirty minutes, two tokens will accumulate
in the (virtual) bucket, which provides credit sufficient
for two future spindowns, in addition to the tokens that
are added every 15 minutes. Note that the resulting TB
policy includes the same flash cache as the WC policy,
but replaces the autonomous disk-based spindown policy
with one under the control of the storage controller.

Our actual design is somewhat more sophisticated than
the basic token bucket mechanism described above. First,
as described in Section I, modern disks have more than
one idle state, each of which has a unique entry/exit
cost and power savings. To exploit all available idle
states, we model four separate token buckets, one per
idle state (Idle A, Idle B, Idle C, and Standby). In our
implementation, the rate at which we add tokens to each
bucket is set to be the idle interval required by the
reference Seagate drive to autonomously enter that state
(i.e., 2 minutes to enter Idle A, etc.). Before we transition
to a given idle state, we must first remove a token from
the corresponding bucket.

Second, recall that substantial energy is required to
transition from an idle state back to the Active state.
For example, on our testbed system we measured the

energy consumed to spin a disk up from the Standby
state and found that it would need to be spun down
for over 15 seconds before a spindown/spinup cycle
would have a breakeven energy cost. Any spindown
period that lasts under 15 seconds consumes more energy
than simply leaving the disk spinning. The other disk
idle states have similar, albeit shorter, breakeven times.
Our token bucket spindown algorithm uses breakeven
data that we collected experimentally to implement a
competitive spindown algorithm [16]. Whenever a disk
has been idle for twice the breakeven interval for a given
idle state, the spindown algorithm will attempt to spin
down the disk, subject to the availability of a token in
the corresponding bucket. Thus, instead of waiting for
15 minutes of idleness before spinning a disk down,
as is done in the preceding solutions, the token bucket
spindown algorithm can spin a disk down as early as 30
seconds after it becomes idle if a token is available.

Note that the token bucket algorithm is used only to
determine whether a disk can be spun down. No token is
needed to spin a disk up, so disk operations that miss in
the flash cache are never delayed due to the token bucket
algorithm. Premature spin up may, however, result in the
subsequent spin down being delayed until another token
has arrived.

Unsafe oracle (UO): To enable us to reason about
how close to optimal any of the above policies are, we
also simulated a system that combines flash caching with
a reliability-unaware (unsafe) oracle spindown policy
(UO). For the UO policy, whenever the idle interval
between two disk accesses exceeds the breakeven time
for a low-power state, the disk enters that state as soon
as it becomes idle. This policy represents the lowest
possible energy consumption, but may cause premature
disk failure due to excessive spindowns.

Safe oracle (SO): The safe oracle (SO) policy is simi-
lar to UO, except that it respects the disk manufacturer’s
lifetime spindown limits. For our study, this translates
into only entering the standby state during the 672
longest idle intervals in the week-long trace. This policy
thus achieves the lowest possible energy consumption
that does not exceed the waranteed spindown rate.

IV. EVALUATION ENVIRONMENT
A. Workloads

Until recently, storage research has focused on perfor-
mance and reliability and has used workloads designed
to stress performance. Such workloads usually have little
idle time, defeating most attempts at power management.
In the real world, storage is used for a variety of

workloads with a wide range of I/O intensity; since
heavy workloads such as OLTP databases offer little op-
portunity for energy savings and archival workloads are
well-served by MAID, we turn our attention to medium-
duty workloads such as email and file serving. To do so,
we use the five most active traces from a set of week-
long server block traces published by Microsoft Re-
search [17], [18]: proj_1, proj_2,prxy_1,usr_1,
and srcl_1.

B. Simulated System

We model a small SAN storage system that is com-
prised of a storage controller, a single RAID-6 array con-
sisting of eight 750 GB 3.5 SATA disks, and (if SSDs
are present in the configuration) 2 small SSDs used as a
controller-managed cache. A real storage system would
have dozens to hundreds of disks; our work should scale
linearly with the number of disks. We accurately model
the power consumed by the storage elements (disks and
SSDs), but do not model the power consumed by the
storage controller or network elements, which should be
roughly equal for all configurations. In realistic configu-
rations, the power consumed by the storage controller is
dwarfed by the disk power. All requests to the modeled
storage system are assumed to have come from a separate
client, and we do not model any DRAM cache other than
that implicitly present in the client. This configuration
matches the setup used to collect the Microsoft Research
traces described above [17], [18]. We anticipate that
the benefit of our energy management policies would
be greater in a larger storage system, where a single
flash cache could support multiple RAID arrays, each of
which could be separately power managed.

For the disks, we model a hypothetical disk with the
power and performance characteristics of a Western Dig-
ital RE2-GP and the improved power management states
found in a Seagate Constellation ES (see Table II). Table
2 presents the relevant characteristics of the modeled
disk: (i) the power consumed in each idle state, (ii) the
amount of idle time necessary for the autonomous power
management mechanisms in the disk to transition to a
given idle state, and (iii) the recovery time for each state,
which is how long the disk takes to transition from the
given state back to the active state. We captured the
power and recovery time characteristics for the disks
from an experimental storage server prototype populated
with Western Digital RE2-GP drives. The spin-up power
measurements represent the power consumed while the
disk is spinning up from the given state to the active
state. All power measurements were performed using a
highly accurate Yokogawa WT210 power meter. In all

cases, the power measurements are AC power, so they
include power supply conversion losses.

For SSDs, we model a SandForce SF-1200. They
are 100-GB devices divided into 4-kilobyte blocks. Our
cache layer implements an LRU replacement policy,
although, as described in Section III, we defer writing
dirty blocks back to disk until a disk spins up or is
accessed due to a read miss. This ensures that block
flushes do not reset idle timers. All cache metadata is
stored in the storage controller’s DRAM memory so that
the SSD only holds cached data.

C. Simulator

We developed a simulator that extends the TRADE
estimator, described in previous work [13], to model the
individual disk energy consumption of all the disks in a
RAID array. The TRADE simulator is a validated disk
drive energy estimator based upon accurate accounting
of a drive’s internal state. It provides accurate energy
accounting without the need for detailed power mea-
surements or drive fingerprinting. The disk drive power
models used in the simulator are generated from readily-
available disk drive information such as that in Table 2.
We extended the TRADE estimator to model RAID-6
functionality to support the work described here. Our
simulator (TRAIDe) maintains an accurate count of the
amount of time spent in each power state by each drive
in the RAID-6 array, along with each drive’s on-disk
cache state and disk head placement.

V. RESULTS
A. Performance

The typical response time of our hybrid storage system
is under 20 ms, but reading data from a disk that is spun
down takes several seconds because the disk must spin
up. Some applications, such as mission-critical online
transaction processing systems, cannot tolerate such high
latency (;1 sec) accesses no matter how rare, so disk
spindown should not be employed for storage that these
applications access. We do not consider such workloads
in this paper. Laptop users commonly tolerate disk
spinup latency, so we believe that interactive user-facing
workloads such as email and file servers can safely
enable aggressive disk power management, including
spindown.

The Microsoft Research traces contain the response
time for each I/O request. Our simulator uses this infor-
mation, along with disk and SSD characterization data,
to estimate the performance of a hybrid storage system.

Workload | Cache Hit Ratio (%)
proj_1 39
proj_2 52
prxy_1 65
usr_1 67
srcl_1 85

TABLE III
FLASH CACHE READ HIT RATE

We assume that a cache read hit takes 200 us, a cache
write takes 400 us, and any access to a spinning disk has
the response time recorded in the trace. If an I/O request
causes a disk to spin up, the simulator adds the spin-up
time to the recorded response time. We are primarily
concerned with read response time because most writes
have no effect on application performance.

Figure 1 shows the read response time CDF for the
SAS (baseline) and TB policies on two representative
traces (proj_2 and srcl_1). The vertical line represents
cache read hits - in an actual system the response time
would vary somewhat due to queueing that our simulator
does not model. A small number of I/Os that miss in the
flash cache are faster than a cache hit due to hits in
the RAID stripe cache or on-disk DRAM cache. The
response time of the hybrid storage system is 5x-10x
faster than the baseline disk-only system at virtually
every percentile. This performance gain is strong justi-
fication for hybrid flash-disk storage designs, which are
further justified by the large energy savings illustrated
below.

These week-long traces contain tens of millions of
I/O requests, yet a disk can only spin up from standby
at most 672 times. Thus the number of I/Os delayed by
these spin-ups are so few that they are not visible in
Figure 1. Even if we make the pessimistic assumption
that spinups all occur during an 8-hour business day,
disks spend at most 2% of their time spinning up.

The performance gain from flash caching varies sig-
nificantly based on the workload; e.g., the prxy_1 trace
is comprised mostly of small random reads and has a
working set size of roughly 60 GB, which fits entirely
within our 100 GB cache, so flash caching reduces its
median response time by roughly a factor of 20. The
proj_2, usr_1, and srcl_1 traces have moderate cache
hit rates, allowing a configuration of 8 5400 RPM disks
augmented with a flash cache to equal the performance
of 16 15K RPM disks. The proj_1 workload has little
reuse, so in this case the flash cache does not contribute
enough performance to offset slower disks.

projp

09

0.8 -

0.7 -

0.6 -

0.5 -

0.4

Cumulative Probability

0.3

SAS (measured)
S/-\‘S + Flash Cache + Token Bucke‘t Spindown (simulated) -------

0.1 1 10 100

Read Response Time (ms)

Fig. 1. Performance

We ran a representative set of these experiments on
a testbed storage system using the Linux open-source
dm-cache [12] module to implement the flash cache.
We could only run a small set of configurations and
worklaods on the testbed due to the time necessary, one
week per configuration per workload. The experimental
results tightly matched our simulation results, thereby
validating our simulation infrastructure.

In hybrid storage systems with a high ratio of disks to
SSDs, performance and power can sometimes be at odds.
For random I/O, a single SSD can usually outperform
dozens of disks while using less power, making flash
caching and disk spindown highly desirable, but for
sequential I/O it is common for the disks to deliver
higher throughput than flash. Thus, servicing sequential
I/O from the flash cache tends to reduce power but
also reduce performance. We propose that hybrid stor-
age systems should allow the user to choose between
power-optimized and performance-optimized modes; in
power-optimized mode all I/O would be cached, while
in performance-optimized mode sequential I/O would
bypass the cache, possibly forcing disks to spin up more
frequently.

B. Exploitation of Lower Power States

Table IV shows the number of times the drives enter
each of the power states during the week for the SATA
(no flash cache, autonomous spindown) configuration.
Without having a cache to insulate the drives from
the I/O requests, drives have very few opportunities
to enter a lower power state. The trace with the most
opportunities to spin down the drives, proj_2, was only
able to do so 60 times over the course of the week. For
two of the traces, prxy_1 and usr_1, the autonomous disk

09

0.8

0.7

0.6

0.5

0.4

Cumulative Probability

03

SAS (measured)
SA‘S + Flash Cache + Token Bucke% Spindown (simulated) -------

0.1 1 10 100
Read Response Time (ms)

power management policies were never able to invoke
even the most conservative energy saving modes at any
time during the week.

Idle A | Idle B | Idle C | Standby
proj_1 348 97 29 26
proj_2 169 125 26 60
prxy_1 0 0 0 0
usr_1 27 0 0 0
srcl_1 385 164 6 10
TABLE IV

ENTRIES TO EACH DISK STATE (SATA)

In contrast, Table V shows the number of times each
power state was entered for the TB (flash cache w/
token bucket spindown) policy for each trace. The table
presents the lowest values of all eight disks in the array.
For all five of the traces, the TB policy was able to spin
down the disks considerably more often than a policy
that uses no cache. Two workloads, prxy_1 and usr_1,
consumed essentially all of the spindown opportunities
(672 per week), while power savings on the other three
workloads was not token-limited.

Idle A | Idle B | Idle C | Standby
proj_1 5039 2519 1007 561
proj_2 5034 2042 507 221
prxy_1 5024 2407 1004 669
usr_1 5039 2519 1007 671
srcl_1 5039 658 683 535
TABLE V

ENTRIES TO EACH STATE (TB POLICY)

Breakdown (by trace) of the time spent in each state for each trace

100

80 |-

60 |-

40 |-

20 |-

Percentage of Time in Each State

proj_1 proj_2

= DLE B
== IDLE_A
e Active Idle

prxy_1
(Microsoft Trace Used)

usr_1 src1_1

— STANDBY
mmm [DLE_C

Fig. 2. Percentage of Time spent in each state for all traces and all policies

Figure 2 illustrates what fraction of time each policy
spends in each of the five disk power states for each of
the five workloads.

By design, SAS spends all of its time in the Active
state. The SATA policy, which does not have a flash
cache, is only able to spend an average of 13% of its time
spundown (Standby); it spends an average of 80% of the
time the Active Idle mode (spinning, but not accessing
data) despite the presence of autonomous power manage-
ment. The WC policy is able to spend substantially more
time in the Standby state than SATA, but only the TB
policy is able to achieve spindown performance close
to the Safe Oracle (SO) policy. These results strongly
support our theses that to achieve near-optimal power
savings, flash caching alone is insufficient and that it is
essential not to waste any spindown opportunities.

C. Energy Consumption

Figure 3 presents the total energy consumption of
each policy for each trace, as well as a breakdown of
the energy across the different power states. Figure 4
presents the same data with the SAS and SATA results
removed so that the remaining results can be seen more
clearly.

These workloads have fairly light and bursty I/O
demands, which is evident in the small amount of energy
consumed in the ‘Active’ state, which corresponds to
performing actual read or write operations including
the energy required to hold the head in place. Nearly
all energy is consumed in states where the drive is
not serving I/O requests. Because the Standby state
is dramatically lower power than the other states, it
contributes little to the total energy consumption even
when it dominates the run time. In fact, the percentage
of time spent in Standby is a good proxy for the overall
energy saved.

The high power consumption of SAS drives and the
inability to spin down results in extremely high energy
consumption for SAS compared to the other policies.
This configuration is not competitive from an energy
efficiency standpoint, but may be required for critical
enterprise environments that cannot tolerate even rare
spinup latencies, e.g., mission-critical OLTP workloads.

Simply replacing SAS drives with lower power SATA
drives and enabling autonomous power savings results
in a greater than 50% reduction in energy consumption
compared to SAS, reducing weeklong energy consump-
tion from over 60 MJ to under 30 MJ. However, almost

7e+07

Energy Consumed (by policy) by each trace

6e+07 |-
5e+07 |-
4e+07 |-
3e+07 |-
2e+07 |-

1e+07 |-

Energy Consumed in each state (Joules)

proj_1 proj_2 prxy_1

usr_1 src1_1 averages

(Microsoft Trace Used)

—= IDLE_C
=== |DLE B

s DLE A
= Active Idle
mmmm Active (R, W, S)

s SSD

Fig. 3. Energy Consumption for all traces and all policies

of the energy savings come from the inherently lower
Active power consumption of these lower RPM SATA
drives, not from spindown, and the SATA configuration
is lower performance than SAS. We simulated a con-
figuration using SATA disks with power management
disabled but we omit this data from the graphs to save
space; the energy consumption is virtually the same for
all workloads: 29 M1J. For prxy_1 and usr_1 in particular,
the energy consumption for an all-SATA configuration is
the same whether power management is enabled or not.

By delaying and combining writes, the power-aware
flash caching (WC) policy is able to exploit the lower
disk power states far more effectively than the no-
cache SATA configuration. For example, prxy_1l and
usr_1 contain frequent background writes which keep
the disks active in the SATA configuration, but not WC.
Although the cost and complexity of a write cache is
higher than a read cache due to the need to replicate
dirty data to ensure its integrity, these results show that
this added complexity pays significant dividends in terms
of additional energy savings. For all of the workloads,
even those for which flash caching was only marginally
successful, the energy savings from flash caching more
than offset the energy consumed by the SSDs that were
added to the system to implement the caching. The net

EE Spin-
— STANDBY

Up (all)

result is that the WC policy results in additional average
energy savings of roughly 40% compared to the SATA
policy.

By better exploiting opportunities to enter deeper idle
states, the TB policy is able to spin down much more
frequently and thus save substantially more energy than
even a less tuned power-aware flash caching policy
(WC). On average, TB reduces energy consumption
85% compared to a design based on all SAS drives,
65% compared to a design employing “green” SATA
drives, and 45% compared to a traditional power-aware
flash caching policy. Note that the energy consumed by
spinups is negligible for all policies, including the TB
policy that spins disks up and down far more frequently.

Finally, the TB policy performs within 10% of the safe
oracle (SO) policy for all of the traces, which indicates
there is little benefit to exploring more complex policies.

D. Disk and SSD Reliability

In addition to saving energy, any storage power man-
agement policy that is likely to be employed in a
commercial system must ensure that it does not reduce
the useful lifetime of the disks and SSDs. For disks, this

Energy Consumed (by policy) by each trace

8 2.5e+07
>
o
<)
2 2e+07
ks
7]
~
S 1.5e+07
(0]
£
é 1e+07
>
%)
c
K] 5e+06
>
=
2 0
L

proj_1

—= IDLE_C
mmmm DLE B

s DLE A
=1 Active Idle
mmmm Active (R, W, S)

Fig. 4. Zoomed in Energy Consumption Comparison

Number of Standby Tokens Accumulated over Entire Week
250

disk-proj 1 ——

A\/WW

150

100

Number of Tokens

50

L L
<
% % %, %, %, %,
>, * > o) g %
R % 3, 6, ® 2,
% %, % " %,
2 2 % 3 A
2 N N \J%) %, N *
£ %, e, <.
% 7. %, %, o
£ % 2, %. 2.
° 4 % o v

Timestamp

Fig. 5. Tokens Accumulated over Time (proj_1)

guarantee is inherent in the design of our TB policy.
Figure 5 and Figure 6 illustrate the accumulation of
tokens over the week for two traces, proj_1 and prxy_I.
The proj_1 trace illustrates a scenario where tokens are
generated more quickly than they are consumed, due to
prolonged active or idle periods. Workloads like proj_1
do not induce enough spindowns to impact disk life-
times. In contrast, the prxy_1 trace illustrates a workload
for which a rate-limiting mechanism is needed to ensure
reliability. Tokens are consumed (on average) as fast

proj_2 prxy_1
(Microsoft Trace Used)

mmmm SSD
= Spin-Up (all)
—— STANDBY

usr_1 src1_1 averages
Number of Standby Tokens Accumulated over Entire Week
120
disk0-prxy_1 ———
100 /Al
2 g0
g
g
5 60
5
g
5 /W \
z 40 M \
2 A A
0 A.‘// L L L// \ m/__/‘ \
Y S,) 1, 4 2
% o % Y, %, o 6(40
%, =, BV %, %, %4,
%, %. s %
2 S S %, %, 7
N oo% N «-’%) éoo) <
%, %, s, <, 23
8 5. %, . .
0 2 ‘% % o

Timestamp

Fig. 6. Tokens Accumulated over Time (prxy_1)

as they are generated. Even for this workload, there
are long periods of idleness, e.g., nights and weekends,
where tokens accumulate (i.e., the graph slopes up),
interspersed with opportunities for spindown (where it
slopes down).

To determine whether our caching policy would im-
pact the lifetime of the SSDs used in the caching layer,
we measured the number of writes per SSD block over
the weeklong trace. A 100 GB SSD like the SandForce
SF-1200 used in our environment actually has 128 GB

of capacity; only 100 GB is usable because some flash
is reserved for wear-leveling, replacement of bad flash
blocks, and other FTL overhead. Table VI shows the
estimated lifetime of the SSDs when used in a cache con-
figuration for each of the workload traces. These results

Lifetime (years)
proj_1 474
proj_2 164
prxy_1 31
usr_1 236
srcl_1 677
TABLE VI

SSD LIFETIME (YEARS)

assume perfect wear-leveling, no write amplification, and
a flash endurance of 3,000 program/erase cycles, which
is typical for an SSD based on commodity 34nm MLC
NAND flash. While actual SSD lifetime will be lower
due to the extra writes induced by write amplification,
our results show that even for the most write-intensive
workload (prxy_1), the SSD lifetime far exceeds the
predicted lifetime of a storage array.

To determine whether a rate-limiting mechanism like
our token bucket is necessary to ensure disk reliability,
we estimated the lifetime of the drives used in the
optimal reliability-oblivious (UO) policy. In this analysis,
we assume that the drives are rated for 175,000 spinups
(every 15 minutes over a 5-year lifetime). As shown
in Table VII, ignoring spindown frequency creates a
serious risk of premature disk failure for several of these
workloads, perhaps as low as one year for prxy_l.

Lifetime (years)
proj_1
proj_2 14
prxy_1 1
usr_1 2
srcl_1 5

TABLE VII
ESTIMATED HDD LIFETIME WITH UO POLICY

Finally, the difference between the UO and SO poli-
cies represents the additional power savings that would
possible if we were able to spin down more often. As
seen in Figure 4, for the workloads and drives that we
modeled, we could reduce energy consumption by an
additional 18%, from an average of 8.2 MJ to 6.7 MJ
per week, with more robust disks. Given the highly
competitive nature of the disk drive industry, this may
provide an opportunity for product differentiation, but

the tradeoff between increased upfront (disk) cost and
decreased lifetime operational (energy) cost would need
to be studied more closely.

VI. CONCLUSIONS

Through simulation, we have demonstrated the com-
bined potential of disk power management and flash
caching to greatly increase the energy proportionality of
storage systems. Our work extends prior research in this
area by considering more than two disk power states
and by explicitly managing disk reliability using a token
bucket algorithm. In addition, we quantitatively show
the energy-saving benefits of a flash cache on medium-
duty, real-world workloads without negatively impacting
request response time.

One of the major contributions of this work is to detail
the synergy between flash-caching and disk spindown.
On a collection of week-long Microsoft Research traces,
an all-SAS configuration consumes 63.3 MJ, while an
all-SATA configuration with autonomous spindown con-
sumes 25.6 MJ. Almost all of the energy savings from
using SATA drives comes from the inherently lower
Active energy of these drives, not spindown. Thus, spin-
down alone does not suffice to achieve optimal energy
savings. Adding a basic power-aware flash cache (WC)
saves an additional 38% compared to the baseline SATA
configuration, but this design is still far from optimal
(SO). Only with the combination of power-aware flash
caching, a mechanism that maximizes safe spindown
opportunities, and an aggressive spindown mechanism
(TB) can you achieve near optimal results, 85% less
than all SAS. The TB policy performed within 10% of
the safe oracle (SO) policy for all of the traces, which
indicates there is little benefit to exploring more complex
policies. These results strongly support our theses that
flash caching alone is insufficient to achieve near-optimal
power savings and that it is essential not to waste any
spindown opportunities.

REFERENCES

[1] Luiz André Barrosa and Urs Holzle. The case for energy-
proportional computing. Computer, 40(12):33-37, December
2007.

[2] Timothy Bisson, Scott A. Brandt, and Darrell D.E. Long.
Nvcache: increasing the effectiveness of disk spin-down algo-
rithms with caching. pages 422-432. In Proceedings of the
14th IEEE Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems, 2006.

[3] John Carter and Karthick Rajamani. Designing energy-efficient
servers and data centers. [EEE Computer, 43(7):76-78, July
2010.

[4] Feng Chen and Xiaodong Zhang. Caching for bursts (C-Burst):
let hard disks sleep well and work energetically. pages 141—
146. In Proceedings of the 13th International Symposium on Low
Power Electronics and Design, 2008.

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

David D. Clark, Scott Shenker, and Lixia Zhang. Supporting
real-time applications in an Integrated Services Packet Network:
architecture and mechanism. pages 14-26. In Proceedings of
the Conference on Communications Architectures and Protocols,
August 1993.

Dennis Colarelli and Dirk Grunwald. Massive arrays of idle
disks for storage archives. pages 1-11. In Proceedings of the
2002 ACM/IEEE International Conference on Supercomputing,
2002.

Fred Douglis, P. Krishnan, and Brian Bershad. Adaptive disk
spin-down policies for mobile computers. pages 121-137. In
Proceedings of the 2nd Symposium on Mobile and Location-
Independent Computing, 1995.

EMC Corporation. New levels of emc midrange storage effi-
ciency and simplicity accelerate journey to the private cloud,
2010. http://www.emc.com/about/news/press/2010/20100511-
02.htm.

Paul Greenawalt. Modeling power management for hard disks.
pages 62-66. In Proceedings of the 1994 IEEE International
Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS), 1994.

Jorge Guerra, Wendy Belluomini, Joseph Glider, Karan Gupta,
and Himabindu Pucha. Energy proportionality for storage: Impact
and feasibility. HotStorage 2009, 2009.

Sudhanva Gurumurthi, Anand Sivasubramaniam, Mahmut Kan-
demir, and Hubertus Franke. DRPM: dynamic speed control for
power management in server class disks. In Proceedings of the
30th International Symposium on Computer Architecture (ISCA),
2003.

Eric Van Hensbergen and Ming Zhao.
caching for storage networking, 2006.
Anthony Hylick and Ripduman Sohan. A methodology for
generating disk drive energy models using performance data. In
Proceedings of the 2009 Workshop on Power Aware Computing
and Systems (HotPower), 2009.

Taeho Kgil and Trevor Mudge. Flashcache: a NAND flash
memory file cache for low power web servers. pages 103—-112. In
Proceedings of the 2006 Conference on Compilers, Architecture,
and Synthesis for Embedded Systems, 2006.

Hyo J. Lee, Kyu H. Lee, and Sam H. Noh. Augmenting RAID
with an SSD for energy relief. In Proceedings of the 2008
Workshop on Power Aware Computing and Systems, 2008.
Mark S. Manasse, Lyle A. McGeoch, and Daniel D. Sleator.
Competitive algorithms for on-line problems. pages 322-333.
In Proceedings of the 20th ACM Symposium on the Theory of
Computing (STOC), 1988.

Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron.
Write off-loading: practical power management for enterprise
storage. In Proceedings of the 6th USENIX Conference on File
and Storage Technologies (FAST), 2008.

Dushyanth Narayanan, Eno Thereska, Austin Donnelly, Sameh
Elnikety, and Antony Rowstron. Migrating server storage to
SSDs: analysis of tradeoffs. In Proceedings of the 4th ACM
European Conference on Computer Systems (Eurosys), 2009.
Eduardo Pinheiro and Ricardo Bianchini. Energy conservation
techniques for disk array-based servers. pages 68—78. In Proceed-
ings of the 18th International Conference on Supercomputing,
2004.

Eduardo Pinheiro, Ricardo Bianchini, and Cezary Dubnicki.
Exploiting redundancy to conserve energy in storage systems.
ACM SIGMETRICS Performance Evaluation Review, 31(1):15—
26, June 2006.

Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André Barrosa.
Failure trends in a large disk drive population. In Proceedings of
the Sth USENIX Conference on File and Storage Technologies,
2007.

Timothy Pritchett and Mithuna Thottethodi. Sievestore: a highly-
selective, ensemble-level disk cache for cost-performance. pages
163-174. In Proceedings of the 37th Internatinal Symposium on
Computer Architecture, 2010.

Dynamic policy disk

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

Sriram Sankar, Sudhanva Gurumurthi, and Mircea R. Stan. Intra-
disk parallelism: an idea whose time has come. pages 303-314.
In Proceedings of the 35th International Symposium on Computer
Architecture (ISCA), 2008.

Seagate Corporation. Seagate powerchoice technology pro-
vides unprecedented hard drive power savings and flexibil-
ity, 2010. http://www.seagate.com/docs/pdf/whitepaper/tp608
_powerchoice_tech_provides.pdf.

Gokul Soundararajan, Vijayan Prabhakaran, Mahesh Balakrish-
nan, and Ted Wobber. Extending ssd lifetimes with disk-based
write caches. FAST 2010, 2010.

Sun Microsystems. Solaris zfs enables hybrid storage
pools - shatters economic and performance barriers, 2009.
http://www.sun.com/x64/intel/zfs_solution_brief.pdf.

Luis Useche, Jorge Guerra, Medha Bhadkamkar, Mauricio Alar-
con, and Raju Rangaswami. Exces: EXternal Caching in Energy
Saving storage systems. In Proceedings of the 14th International
Symposium on High-PerformanceComputer Architecture, 2008.
Charles Weddle, Mathew Oldham, Jin Qian, An-I Andy Wang,
Peter Reiher, and Geoff Kuenning. PARAID: a gear-shifting
power-aware raid. ACM Transactions on Storage, 3(3):33,
October 2007.

John Wilkes. Predictive power conservation. Technical Report
HPL-CSP-92-5, Hewlett-Packard Laboratories, 1992. page 1,
February 1992.

Mark Woods. Optimizing storage performance and cost with in-
telligent caching, 2010. http://www.netapp.com/us/library/white-
papers/wp-7107.html.

Qingbo Zhu, Francis M. David, Christo F. Devaraj, Zhenmin Li,
Yuanyuan Zhou, and Pei Cao. Reducing energy consumption
of disk storage using power-aware cache management. pages
118-129. In Proceedings of the 10th International Symposium
on High Performance Computer Architecture (HPCA), 2004.

