

Boosting Random Write Performance for
Enterprise Flash Storage Systems

 Tao Xie Janak Koshia
Computer Science Department Computer Science Department

San Diego State University San Diego State University
San Diego, California, USA San Diego, California, USA

Abstract—NAND flash memory has been successfully
employed in mobile devices like PDAs and laptops. With
recent advances in capacity, bandwidth, and durability,
NAND flash memory based Solid State Disk (SSD) is
starting to replace hard disk drive (HDD) in desktop
systems. Integrating SSD into enterprise storage systems,
however, is much more challenging. One of the major
challenges is that server applications normally demand an
exceptional random I/O performance, whereas current
SSD performs poorly in random writes. To fundamentally
boost random write performance, in this paper we propose
a new write cache management scheme called EPO
(element-level parallel optimization), which reorders write
requests so that element-level parallelism within SSD can
be effectively exploited. We evaluate EPO using a
validated disk simulator with realistic server-class traces.
Experimental results show that EPO noticeably
outperforms traditional LRU algorithm and a state-of-the-
art flash write buffer management scheme BPLRU (block
padding least recently used).

Keywords - Flash SSD; cache management; random
write; storage system

I. INTRODUCTION
Data-intensive server applications such as OLTP

(Online Transaction Processing) [15] normally demand
a high-performance and highly reliable underlying
storage system. Currently, rotating based magnetic hard
disk drives (HDDs) are dominant building blocks for
enterprise storage systems. Although they are cost-
effective and can provide huge capacity and high-
throughput, they are facing several serious difficulties.
First of all, while disk capacity has been increasing at a
rate of about 60% per year, disk access latency has only
been improving about 10% per year [38]. As a result,
the performance gap between disk access latency and
the rest of the computer system has been widening
dramatically. Second, in order to meet the 40% annual
growth target of the internal data rates (IDR), HDD
manufacturers have to continuously increase RPMs
(revolutions per minute) and shrink platter sizes.
Constantly increasing RPMs and shrinking platter sizes,
however, negatively affect drive heat dissipation, which
in turn causes impaired disk reliability [14]. Third,
HDDs are inherently energy-inefficient and the cost of
energy is increasing at an annual rate of 20%~30%,

which makes energy consumption one of the largest
considerations in the TCO (Total Cost of Ownership) of
a data center [29]. Consequently, NAND flash memory
based solid state disk (hereafter, SSD), which does not
have the drawbacks mentioned above, becomes a
promising alternative to HDD. Because of its solid state
design, SSD is free of mechanical movements, and thus,
has enhanced reliability [3]. It also inherently consumes
much less energy than rotating based HDD [1][13][20].
Besides, SSD offers much faster random access by
eliminating unnecessary seek time delays and rotation
latencies [7][9]. It is physically robust with high
vibration-tolerance and shock-resistance [5][6]. The
main concern on current SSDs is their noticeably higher
prices. Fortunately, the price of flash memory in the last
five years has come down around 50% per year [8].
With steep annual price declines in flash memory chips,
Samsung expects SSDs to reach price parity with HDDs
within the next few years [8].

NAND flash memory has been successfully
employed in mobile devices like PDAs and laptops
[19][24]. With recent advances in capacity, bandwidth,
and durability, SSD is starting to replace HDD in
desktop systems [10][21]. Integrating SSD into
enterprise storage systems, however, is much more
challenging [5][7][13][23][31][30][36]. One of the
major challenges is that off-the-shelf SSD exhibits poor
random write performance [5][7][13]. Thus, simply
replacing existing HDDs with SSDs in enterprise-class
storage systems could lead to serious problems
[2][16][32]. One of such problems is that the poor
random write performance of SSDs can largely degrade
the overall performance of data-intensive applications,
which could generate heavy random writes with no
locality [21]. For example, Dumitru compared the
overall performance of a 32 GB SanDisk SATA SSD
with a 36 GB Seagate 15K RPM SAS HDD under a
workload with 4K operations including both reads and
writes [11]. He found that even a read-dominant
workload with only 10% 4K random writes and 90%
4K random reads can make the SSD’s overall
performance in terms of IOPS (Input/Output Operations
Per Second) 1.5 times worse than that of the HDD [11].
The culprit of SSD poor random write performance is
its intrinsic operating mechanism including out-of-place

978-1-4577-0428-4/11/$26.00 ©2011 IEEE.

Control Line

Data Lines

updating [6], time-consuming erasing and garbage
collection [7], complicated FTL (flash translation layer)
logic [13], and inefficient media transfer rate [10]. For
example, while reading a page from the flash media into
a 4 KB data register only takes 25 µs, writing a page
from data register to the flash cell needs 200 µs [1].
Even worse, erasure can only be operated at block
granularity and it takes 1.5 ms to erase a block [1].
Therefore, new techniques that can fundamentally boost
SSD random write performance are greatly needed in
order to merge SSDs into enterprise storage systems.

A number of investigations on SSD random write
problem have been reported recently in the literature
[13][21][28]. These state-of-the-art research studies can
be categorized into three groups: adding non-volatile
RAM (NVRAM) buffer [28], enhanced FTL engine
developing [15], and write requests buffering and
reordering [21]. Essentially, schemes in the last group
employ a hardware (i.e., RAM buffer) and software
(i.e., buffer management scheme) combined approach to
boosting SSD random write performance. Compared
with techniques in the first two groups, the last group’s
schemes have some advantages. First, there is no need
to modify existing FTL layer, and thus, they can be
easily integrated to current SSDs. Second, the RAM
buffer that they required normally is less than 128 MB
[21], whereas the size of NVRAM buffer demanded by
techniques in the first group is in the GB scale [28].
Hence, in this research we adopt the methodology used
in the last group.

However, our EPO (element-level parallel
optimization) scheme takes a different approach to
solving SSD random write performance issue. Unlike
BPLRU [21] whose objective is to reduce the number of
flushes of dirty pages from the buffer into flash
memory, EPO utilizes SSD element-level concurrency
by dispatching multiple buffered write requests to
different elements at one time so that the requests can
be processed in parallel. When page replacement

occurs, all requests in one batch will be flushed to an
array of elements. In this manner the re-ordered write
requests can be served by multiple elements
concurrently. Extensive simulations using the Microsoft
SSD model [1] inside the DiskSim 4.0 simulator [35]
and real-world server application traces demonstrate
that EPO outperforms existing write buffer management
scheme BPLRU and traditional LRU algorithm.

The rest of this paper is organized as follows.
Section II briefly introduces the basics of flash memory
followed by related work and the motivation of this
research. The design and implementation details of the
EPO scheme are presented in Section III, which is
followed by the experimental results discussed in
Section IV. Section V concludes this research work and
points out the future research.

II. RELATED WORK AND MOTIVATION
NAND flash memory based SSD is a semiconductor

storage module, which is made of arrays of NAND flash
memory elements (also called packages) [1][4]. Fig. 1
shows the internal structure of a Samsung 4 GB flash
element and an array organization with four such
elements [1]. Normally, an SSD has one or multiple
identical elements, which can work in parallel [1]. One
possible way to organize an array of elements within an
SSD, as shown in Fig. 1, is that each element has
separate data path to the controller but all elements
share one control bus [1]. This element array structure
can increase bandwidth as it supports concurrent
operations that span multiple elements. Further, each
element can have multiple dies (also called chips) that
share one serial I/O bus and common control signals
[3]. For the Samsung 4 GB flash element (Fig. 1), each
die contains four planes with each having 2,048 blocks
and one 4 KB data register as an I/O buffer. Each block
has 64 4-KB pages. While reads and writes are page-
oriented, erasure can be conducted only at block
granularity [10]. A block must be erased before being

Figure 1. Internal structure of a SSD with four elements.

Plane 0
Block 0

Page 0
Page 1

……

Page 63

Plane 1
Block 1

Page 0
Page 1

……

Page 63

Plane 2
Block 4096

Page 0
Page 1

……

Page 63

Plane 3
Block 4097

Page 0
Page 1

……

Page 63

4K Register 4K Register 4K Register 4K Register

Die 0

Die 1

Element 0

Element 1

Element 2

Element 3

Element Enables

programmed (written) [6]. SSD does not allow in-place
update as a write operation can only change bits from 1
to 0 [10][12]. In order to mimic a HDD and expose an
array of logic blocks to the upper-level components, a
critical software component called flash translation
layer (FTL) is implemented in the SSD controller [6][7].
Modern FTL [17][18][25][26][34] generally
accomplishes three major tasks: mapping logical blocks
to physical flash pages, garbage collecting, and wear
leveling. Since writes cannot be performed in place,
each write of a logic page must be executed on a
different physical flash page. Hence, FTL maintains a
mapping table to map a logic block address (LBA) to a
physical block address (PBA) [7].

While there have been a number of studies
[3][19][22][37] discussing flash memory random write
issue, little attempt had been made until very recently
[13][21][23][28] to systematically improve SSD random
write performance under desktop or server workloads.
Leventhal suggested adding non-volatile RAM
(NVRAM) in the form of battery-backed DRAM so that
writes are committed to the NVRAM ring buffer and
immediately acknowledged to the client while the data
is written out to the SSDs later [28]. Although this
technique allows for a tremendous improvement for
synchronous writes, its drawbacks are also obvious. It
requires very expensive NVRAM, whose maximum size
(normally 2 ~ 4 GB) is still so small that server-class
workloads can fill the entire ring buffer before it can be
flushed to SSD [30]. Gupta et al. [13] proposed DFTL
(Demand-based Flash Translation Layer), which
selectively caches page-level address mappings using
existing SRAM cache on SSDs. Its advantage is that it
does not require any extra hardware. Nevertheless, the
main downside of DFTL is that it requires modifying
existing FTL layer, which would bring about a high cost
for it to be integrated into current SSDs. Kim and Ahn
suggested embedding a small-scale (e.g., 1 ~ 16 MB)
RAM write buffer into SSDs and proposed BPLRU
(block padding least recently used) [21], a flash flavour
variant of the well-known LRU (least recently used)
scheme, to manage the buffer.

Several recent investigations [1][7][10] on SSD

internal characteristics and system-level organization
analyzed the multi-level concurrency presented in
SSDs, which inspires us to develop a parallelism-driven
software/hardware combined scheme to improve
random write performance. The EPO scheme
judiciously reshapes a random write access pattern to a
parallelism-aware batch-based write stream so that the
element-level concurrency can be mostly utilized to
improve SSD random write performance. EPO opens a
new avenue to boost SSD random write performance as
it is orthogonal to existing approaches.

III. THE EPO SCHEME
We now present our EPO scheme that exploits the

element-level parallelism in SSD to boost random write
performance. The basic idea of EPO is illustrated using
an example followed by a detailed description.

A. An Illustrative Example
Fig. 2a illustrates the request processing flow of

EPO. Similar to BPLRU [21], EPO only processes write
requests. For read requests, it simply forwards them to
the FTL. An original request issued by the host is first
processed by a pre-processor, which transforms it into a
flash request by replacing its size to the closest times of
the size of a flash page (e.g., 4 KB). As a result, the size
of a flash request is either equal to one flash page or
multiple flash pages (see Fig. 1). Each flash request
then enters the FTL layer where its logical address is
mapped to a physical address. Next, every request goes
to the write buffer B, which is a RAM buffer embedded
in an SSD. To prevent data loss in the event of a power
failure, we assume that the RAM buffer B is protected
via an onboard battery. Finally, EPO manages flash
requests in the write buffer B and outputs reshaped
requests to flash memory.

The basic unit in the write buffer B is a block whose
size is equal to the size of a flash memory page (e.g., 4
KB in our experiments). Within B, EPO maintains a
free block pool and multiple queues (Fig. 2b). Each
queue is a linked-list that contains all requests visiting
one particular element. The number of queues in B is
equal to the number of elements in the underlying SSD.

 (a) (b) (c)
Figure 2. (a) Request processing flow; (b) internal structure of B; (c) states of Q1 in sequence (1, 2, 3, 2, 4, 3).

 Q1

Write Buffer B

 Q2

 Q3

 Q4

Free Block
Pool

3 Q1 2 1

Head Tail

Scenario 1

2 Q1

 Original Request

3 1

Head Tail

Scenario 2

4 Q1 2 3 1

Head Tail

Scenario 3

Pre-processor

3 Q1 4 2 1

Head Tail

Scenario 4

Dirty
 Flash Request

Clean

 Reshaped Request

Flash Memory

FTL

Write Buffer B

Assume that there are only four elements in an SSD,
Fig. 2b demonstrates how EPO manages the free block
pool and the four queues with each queue
corresponding to one element. When a new request
arrives in B, EPO acquires one empty block from the
free block pool to accommodate the new request, and
then, places it into its corresponding queue based on its
physical address. After more requests enter B, the free
block pool shrinks until it is empty. At this moment,
victims need to be chosen when a new request comes.
Every time when free space is needed for a new request
while the free block pool is empty, EPO selects multiple
victims each from one queue and flushes them to SSD.
One of the freed blocks will be used for the new request
and all others shall be reclaimed into free block pool.
We will illustrate how EPO selects the victims next.

Assume that all six requests shown in Fig. 2c are
single-page requests and they all target on element one.
Also, suppose that at the beginning three requests with
distinct physical addresses (i.e., 1, 2, and 3) sequentially
arrive in B. EPO inserts the three requests into Q1 one
by one. Consequently, request with address 1 is at the
tail and the request with address 3 stays in the head
position (see Scenario 1 in Fig. 2c). Assume that the
physical address of the fourth request is also 2. In other
words, the fourth request would overwrite the second
request, which has been located in Q1. Therefore, EPO
updates the address 2 block with the content in the
fourth request and then moves it to the head of Q1 (see
Scenario 2 in Fig. 2c). Now block 2 becomes a dirty
block, whereas block 1 and 3 are all clean. After a
while, the fifth request with physical address 4 comes.
EPO simply inserts it into the head of Q1 (see Scenario 3
in Fig. 2c). The last request again accesses the block
address 3 as the third request does. Thus, EPO moves
block 3 into the head of Q1 (see Scenario 4 in Fig. 2c).
If at this time a victim is needed, EPO will evict first
request with block address 1, i.e., the tail of the queue
Q1. Apparently, EPO also exploits the temporal locality.

Input: P, a pre-processed write request set; B, a write buffer
managed by the EPO scheme
Output: R, a re-shaped write request set that is aware of the
element-level parallelism in SSD
1. Clear B and R; k = 1; e = number of elements in SSD;
 create e queues from Q1 to Qe in B
2. for each request rk ∈ P do
3. j = number of pages requested by rk
4. Create a temporary array T with j cells
5. if j > 1 /* the request rk is a multiple-page request */
6. Divide the request rk into j single-page write requests
 and store them in T sequentially
7. else
8. Store rk in T
9. end if
10. h = 1
11. for each single-page write request th ∈ T do
12. i = the element number that th targets on and 1 ≤ i ≤ e
13. Search th in the corresponding queue Qi in B
14. if the page requested by th is found in Qi
15. Replace it with th and move th to the head of Qi
16. else
17. if there is no free space in B to accommodate th
18. for each queue from Q1 to Qe in B
19. Evict the request at the tail to R
20. Change its arrival time to the arrival time of th
21. end for
22. end if
23. Insert th at the head of Qi
24. The free block pool is increased by e - 1 blocks
24. end if
25. h = h + 1
26. end for
27. Delete the temporary array T
28. k = k + 1
29. end for

Figure 3. Algorithm of the EPO scheme.

B. Algorithm Description
Fig. 3 outlines the algorithm of the EPO scheme.

Note that the input P of the EPO algorithm is the output
of the FTL layer (Fig. 2a), which translates each flash-
style write request into a physical request. A flash-style
request is a request whose size is equal to either one
flash page or multiple flash pages. The size of a flash
page is normally 2 KB or 4 KB for modern SSDs.
Another input B is an empty buffer managed by EPO.
The write buffer B is implemented as a RAM cache
inside an SSD and its size is configured to be in the
range 4 ─ 32 MB in our simulations. The output of the
EPO scheme is a reshaped single-page write request set
R, which is then fed into the flash SSD (Fig. 2a). More
importantly, the request stream in R can mostly exploit

the element-level concurrency in the flash SSD.
Now we describe each step in Fig. 3 in detail. First,

EPO creates e empty queues from Q1 to Qe in B, where e
is the number of elements in SSD. Each queue will be
used to maintain requests that target on a particular
element. Next, EPO processes each request in P within
the outmost loop (Step 2 ~ 29) in the same manner.
EPO first judges whether a request in P is a multiple-
page request or a single-page request (Step 5). If the
request is a multiple-page request, EPO breaks it down
into multiple single-page requests (Step 6).
Consequently, only single-page requests will be
maintained in each queue, which in turn increases the
element-level concurrency later. For each newly arrived
single-page request, EPO searches its physical address
in its corresponding queue, which is a linked-list data
structure. If the same address is found in an existing
request in the queue, the existing request will be
overwritten by the new single-page request. Further, the
new request will be moved to the head of the queue so
that the temporal locality can be utilized (Step 15). If
the same physical address in the queue is not found,

EPO needs to acquire a free block from the free block
pool to accommodate the new request (Fig. 2b). When
the free block pool is not empty, EPO inserts the new
quest at the head of the queue. Otherwise, EPO starts to
select e victims each from one queue (Step 18 ~ 21).
Each request at the tail of a queue will be chosen as a
victim and its arrival time is updated to the arrival time
of the new request (Step 19 ~ 20). All victims are then
inserted into R, which contains requests to the SSD.
While the original request set P exhibits a random
access pattern, the reshaped request set R becomes a
batch-based request stream. Requests that are evicted
from B at the same time are bundled together to form a
batch. Requests in one batch go to different elements of
an SSD and they share the same arrival time. Thus, all
elements can serve requests in one batch in parallel.

IV. PERFORMANCE EVALUATION
In this section, we present our experimental results

for a variety of configurations including write buffer
size, number of elements, and flash page size. Mean
response time will be the primary performance metric in
this study. We also measure throughput for all of the
four algorithms. Three real system traces Financial1
[33], Financial2 [33], and TPC-C [27] are used in this
simulation study to evaluate the performance of EPO as
well as NoCache, LRU, and BPLRU. In Section IV.A,
the experimental settings for the simulations are
described. In addition, we investigate the impact of
write buffer size in Section IV.B and the impact of the
flash page size in Section IV.C. Finally, we study the
scalability of the four schemes in Section IV.D.

A. Experimental Setup
All simulation experiments are conducted in three

stages sequentially: pre-processing, reshaping, and
feeding. In the pre-processing stage, the pre-processor
(Fig. 2a) performs the following tasks. First, it filters
out all read requests from an original trace. Second, it
truncates the entire write request set so that only the
first several millions of write requests will be used later.
Third, for large logical space trace like TPC-C, it evenly
shrinks the trace’s logical address space so that each
write request’s logical address can be mapped to a
physical address within the scope of an SSD
configuration. Finally, it changes each write request’s
size to its closet multiples of 4 KB pages. The output of
the pre-processor is called flash request trace (Fig. 2a)
because it is a trace suitable for flash disk storage
systems. In the reshaping stage, we implemented and
run the four buffer management schemes NoCache,
LRU, BPLRU, and EPO on a Dell PowerEdge 1900
server with two Quad Core Intel® Xeon® E5310 1.60
GHz processors and 8GB FB-DIMM memory. After the
FTL layer, all requests in a flash request trace are then

buffered in the writer buffer B (Fig. 2a) and are
managed by a particular scheme like EPO. The output
of the write buffer B is a reshaped request set, which
contains all requests evicted from the buffer according
to the victim selection policy of a buffer management
scheme. In the final feeding stage, requests in the
reshaped request set are fed into the Microsoft SSD
model [1], which was derived from the generic rotating
disk module for DiskSim 4.0 [35]. DiskSim emulates a
hierarchy of storage components including buses,
controllers, and disks [35]. It is a well-known and
validated disk system simulator [35].

We evaluate the four buffer management schemes
by running simulations over three real system traces:
Financial1 [33], Financial2 [33], and TPC-C [27],
which have been widely used in the literature.
Financial1 and Financial2 were collected from requests
to OLTP applications at two large financial institutions.
While the Finanical1 trace is write-dominant (more than
60% requests are writes), Financial2 trace is read-
dominant (more than 80% requests are reads). TPC-C is
an I/O trace collected on a storage system connected to
a Microsoft SQL Server via storage area network [27].
The mean write request size of TPC-C is larger than 10
KB. Financial1 trace exhibits obvious temporal locality
and spatial locality, whereas TPC-C trace manifests
itself as a completely random access pattern. We
selected the three traces so that the EPO scheme can be
evaluated under different degrees of access randomness.
Since the simulation times in our experiments are much
shorter compared with the time spans of the traces, we
truncate each trace such that only the first 2, 0.65, and 2
million write requests are included for Finanaical1,
Financial2, and TPC-C, respectively. The main
simulation parameters are shown in Table I.

TABLE I. SIMULATION PARAMETERS

The BPLRU algorithm [21] is recognized as a state-
of-the-art flash write buffer management scheme. On
the other hand, the LRU algorithm is a widely employed

Parameter Value (Fixed) – (Varied)

Write buffer capacity (MB) (8) – (4, 8, 16, 32)

Number of elements (48) – (16, 32, 48, 64)

Page size (KB) (4) – (1, 2, 4)

Flash block size (page) (64)

Element capacity (GB) (4)

Flash SSD capacity (GB) (192) – (64, 128, 192, 256)

Block erase latency (µs) (1500)

Page read latency (µs) (25)

Page write latency (µs) (200)

Chip transfer latency per byte (μs) (0.025)

Number of planes in an element (8)

Figure 4. Performance impact of write buffer size on the four schemes.

cache management policy in real systems. We also
tested the situation where no write buffer is used at all.
We call this scheme NoCache, which can demonstrate
the performance improvement due to adding a write
buffer into SSD. In order to comprehensively evaluate
the EPO scheme, we compare it with the three
algorithms in this section. A brief introduction of the
three algorithms is presented below.
(1) NoCache: NoCache forwards each arrival write
request directly to SSD without taking any actions. It
serves as a baseline algorithm.
 (2) LRU (Least Recently Used): LRU maintains the
“age” of each buffered write request and evicts the least
recently used write request first.
 (3) BPLRU (Block Padding Least Recently Used):
When free space is needed to accommodate new writes,
BPLRU selects the least recently used flash block rather
than a sector as a victim and flushes all sectors in the
victim block to flash device [21]. To reduce the buffer
flashing cost, BPLRU employs a page padding
technique for a victim block. Before a victim block is

kicked out of the buffer, BPLRU reads all pages that are
not presented in the victim block from data block. And
then it writes all sectors in the victim block sequentially
onto a log block. In this way, an expensive full merge
can be replaced by an efficient switch merge. Detailed
information about page padding and the three types of
merge can be found in [22].

B. Overall Comparisons
The goal of this experiment is to compare EPO

against two well-known cache management algorithms
LRU and BPLRU, and to understand the impact of write
buffer size on the performance of the four algorithms
including NoCache. We tested write buffer size from 4
MB to 32 MB with 48 elements.

We observe from Fig. 4 that the mean response time
of all four schemes does not noticeably change when
the size of the write buffer increases from 4 MB to 32
MB. This is because the write buffer is still very small
considering the large volume of requests from the three
server-class workloads. Consequently, the entire write
buffer even in its maximal size 32 MB is quickly filled

Figure 5. Performance impact of flash page size on the four schemes.

out by arrival requests, and thus, increasing write buffer
size does not result in an apparent performance
improvement. Still, EPO always outperforms the three
existing schemes in all cases for it exploits the element-
level concurrency. In Financial1 scenario, compared
with NoCache, LRU, and BPLRU, EPO on average
reduces mean response time by 38.9%, 33.1% and
44.6%, respectively, while on average increases
throughput by 63.8%, 49.5%, and 79.8%, respectively
(Fig. 4). Note that in all scenarios in Fig. 4, the
performance of NoCache keeps constant as write buffer
size has no impact on it. Interestingly, BPLRU exhibits
the worst performance in all situations shown in Fig. 4.
This is because BPLRU always assumes that logically
consecutive pages must also be physically located into
one block, which is not true when striping is applied
within SSDs. As a result, BPLRU generates a large
number of unnecessary reads and writes due to page
padding [21]. In Financial2 case, EPO also outperforms
the other three algorithms (Fig. 4). In TPC-C workload,
compared with NoCache, LRU, and BPLRU, EPO on

average shrinks mean response time by 42.3%, 37.6%,
and 99.9%, respectively. BPLRU, however, experiences
very large mean response times in TPC-C trace, which
also explains why the throughput of BPLRU is so low
in TPC-C workload in Fig. 4. Compared with NoCache
and LRU in TPC-C workload, EPO on average
increases throughput by 73.2% and 60.3%, respectively.
Since the access pattern of TPC-C is more random than
that of Financial1, EPO fully exhibits its strength and its
performance improvements become more noticeable.
Obviously, the performance gain achieved by EPO is at
the cost of adding a RAM buffer inside SSD.
Considering the small size of the buffer and the
substantial performance improvement, we argue that the
benefits of EPO outweigh its cost.

One interesting observation from Fig. 4 is that
increasing the size of write buffer can neither
significantly reduce the mean response time nor
increase throughput. The rationale behind is that larger
buffer size has little impact on a totally random access
pattern. To understand the sensitivity of EPO to other

Figure 6. Scalability of the four schemes.

parameters, we also measured the performance of EPO
when changing the number of elements and page size.

C. The Impact of Flash Page Size
This experiment is intended to investigate the impact

of flash page size on the EPO scheme. We vary the size
of a flash page from 1 KB to 4 KB. Fig. 5 plots the
performance of the four algorithms as functions of the
size of a flash page.

Several important observations can be drawn from
Fig. 5. First of all, flash page size has a noticeable
impact on the three existing algorithms. For example,
under Finanical1 workload LRU increases its mean
response time from 0.24 ms to 0.31 ms when flash page
size varies from 1 KB to 4 KB. Meanwhile, NoCache
scheme increases its mean response time by 21.3% (Fig.
5). Recall that after the pre-processing stage each write
request’s size is configured to its closest multiples of
flash pages and each page is 4 KB (see Section IV.A).
Therefore, when flash page size enlarges to 4 KB, each
request needs to write multiple pages rather than a

single page. Therefore, the response time of NoCache
and LRU increases. The mean response time of EPO,
however, only slightly changes because it always splits
each multiple-page request into multiple single-page
requests (Step 6 in Fig.3). Second, larger page size
usually results in a higher throughput. In Financial 1
case, EPO increases the throughput by 4.9 times when
flash page size changes from 1 KB to 4 KB. The reason
is that larger flash page improves write efficiency and
decreases the number of block erasures [1]. Lastly,
TPC-C workload is so intensive that all three existing
algorithms encounter large mean response times.

D. Scalability
This experiment is intended to investigate the

scalability of the EPO scheme. We scaled the number of
elements in an SSD from 16 to 64. The size of write
buffer is set to 8 MB. Fig. 6 plots the performance of
the four algorithms as functions of number of elements.

The results show that only EPO and BPLRU
algorithms exhibit a good scalability in Financial1 and

Financial2 workload when the number of elements
increases from 16 to 48. Specifically, in Financial1 EPO
reduces its mean response time by 42.3%, whereas
BPLRU improve their mean response time performance
by 66.1%. Still, in terms of mean response time EPO on
average outperforms NoCache, LRU, and BPLRU by
20.5%, 12%, and 38.3% in Financial1 (Fig. 6). After the
48 element case, however, none of the four algorithms
show improvement in both mean response time and
throughput. The reason is that the footprint of the TPC-
C trace becomes relatively very small compared with
the enlarged capacity of the SSD due to the increment
of the number of elements. Thus, adding more elements
after 48 does not help.

Overall, Fig. 6 demonstrates that the scalability of
all algorithms including EPO is sensitive to the
workloads. In Financial1 and Financial2 cases,
increasing the number of elements does bring an
apparent improvement in either mean response time or
throughput (Fig. 6). After analyzing the two traces we
realized that the outcome is expected because both
Financial1 and Financial2 workloads have noticeable
temporal locality and spatial locality. As a result, a large
portion of requests concentrate on a small logical space
so that newly added elements cannot receive enough
requests to share the entire load. In Finanical2 case,
compared with NoCache and LRU, EPO on average
reduces mean response time by 10.5% and 10.2%,
respectively. Compared with NoCache, LRU, and
BPLRU, EPO on average improves throughput by
16.6%, 16.2%, and 59.1%, respectively. In TPC-C
scenario, EPO significantly outperforms all three
existing algorithms in terms of throughput. This is
because EPO fully employs the element-level
parallelism within an SSD.

V. CONCLUSIONS
In this paper, we address the issue of SSD random

write performance in server applications. EPO
(element-level parallel optimization), a new write buffer
management scheme, is developed. The basic idea of
EPO is to reshape write access pattern by dynamically
grouping multiple buffered write requests that target on
distinct elements into one batch. EPO exploits the
element-level concurrency to significantly shorten mean
response time and improve throughput. Although EPO
also employs an extra battery-backup RAM buffer
inside SSD and reshapes write access pattern, it is
orthogonal to current write requests buffering and
reordering schemes because it seeks to exploit element-
level parallelism within SSD, which is a new avenue to
solve the SSD random write problem. Comparing with
adding non-volatile RAM (NVRAM) buffer and
enhanced FTL engine developing approaches (see

Section I), EPO has several desired advantages. First, its
hardware cost is low because of the limited size of
RAM buffer used. Second, it does not require any
change in the FTL layer, and thus, is easy to be
integrated into modern SSDs. Lastly, its low time
complexity implies its potential to be implemented in
real applications. Further, the performance of EPO plus
three existing schemes including LRU and BPLRU [21]
has been thoroughly evaluated using a validated
simulator Microsoft SSD model [1] with DiskSim 4.0
[35] and three widely used enterprise-level traces.
Experimental results demonstrate that EPO consistently
outperforms a state-of-the-art write buffer management
scheme BPLRU. It also performs better than the
traditional LRU algorithm. When SSDs are in their
default configurations, compared with NoCache and
LRU, EPO achieves improvement in mean response
time by up to 63.8% and 49.5%, respectively. Note that
the FTL layer will not affect the performance of EPO
because it is underneath the FTL layer.

All our experiments employ the Microsoft SSD
model [1], which only has a generic FTL layer to
accomplish tasks like logic address mapping. To
understand the combined effects of EPO and some
representative FTL schemes such as FAST [25], DFTL
[13], and HAT [17] on the performance of enterprise
flash SSDs, we are extending the SSD model so that
these specific FTL algorithms can be integrated. We
will then re-examine the impacts of EPO underneath
various modern FTLs. Also, the Microsoft SSD model
in its current format does not provide any cache
management function. Another future direction of this
study is to implement new buffer management schemes
inside the SSD model so that their performance can be
evaluated and compared. Finally, we are going to
develop SSD disk array level cache management
schemes to not only improve random write performance
but also prolong SSD life-time by evenly distributing
writes in an SSD array.

ACKNOWLEDGMENT
We thank DiskSim developers [35] who provided an

efficient, accurate, highly-configurable disk system
simulator for storage research community. Also, we
would like to thank the authors of [1] from Microsoft
Research who developed the SSD model for DiskSim
4.0. Finally, we are grateful to the anonymous reviewers
whose insightful comments greatly improve the quality
of this research work. This work was sponsored by the
US National Science Foundation under grants CNS-
0845105, CNS-0834466, and CCF-0702781.

REFERENCES
[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis, M. Manasse,

and R. Panigrahy, “Design Tradeoffs for SSD Performance,”
Proc. USENIX Annual Technical Conference, pp. 57-70, 2008.

[2] M. Balakrishnan1, A. Kadav, V. Prabhakaran, and D. Malkhi,
“Differential RAID: Rethinking RAID for SSD Reliability,”
Proc. 5th ACM European Conf. Computer Systems (EuroSys),
Paris, France, April 13-16, 2010.

[3] A. Birrell, M. Isard, C. Thacker, and T. Wobber, “A design for
high-performance flash disks,” ACM SIGOPS Operating
Systems Review, Vol. 41, Issue 2, pp. 88-93, April 2007.

[4] S. Boboila and P. Desnoyers, “Write Endurance in Flash Drives:
Measurements and Analysis,” Proc. 8th USENIX Conference on
File and Storage Technologies (FAST), 2010.

[5] K. Cash, “Flash Solid State Disks - Inferior Technology or
Closet Super-star?” BiTMICRO Networks,
http://www.storagesearch.com/bitmicro-art1.html. 2007.

[6] L.P. Chang and T.W. Kuo, “Efficient management for large-
scale flash-memory storage systems with resource conservation,”
ACM Transactions on Storage, Vol. 1, No. 4, pp. 381-418, 2005.

[7] F. Chen, D.A. Koufaty, and X. Zhang, “Understanding Intrinsic
Characteristics and System Implications Of Flash Memory based
Solid State Drives,” Proc. the Eleventh Int’l Joint Conf.
Measurement and Modeling of Computer Systems
(SIGMETRICS), pp. 181-192, 2009.

[8] B. Crothers, “Samsung: Solid state will match hard-drive price,”
CNET.NEWS, http://news.cnet.com/8301-13924_3-10196422-
64.html, March 15, 2009.

[9] P. Desnoyers, “Empirical Evaluation of NAND Flash Memory
Performance,” Workshop on Hot Topics in Storage and File
Systems (HotStorage’09), Big Sky, Montana, Oct. 11th 2009.

[10] C. Dirik and B. Jacob, “The performance of PC solid-state disks
(SSDs) as a function of bandwidth, concurrency, device
architecture, and system organization,” Proc. 36th Int’l Symp. on
Computer Architecture (ISCA), pp. 279-289, 2009.

[11] D. Dumitru, “Understanding Flash SSD Performance,”
http://managedflash.com/news/papers/easycoflashperformance-
art.pdf, August 2007.

[12] L.M. Grupp, A.M. Caulfield, J. Coburn, S. Swanson, E.
Yaakobi, P.H. Siegel, and J.K. Wolf, “Characterizing flash
memory: anomalies, observations, and applications,” Proc. 42nd
Annual IEEE/ACM Int’l Symp. Microarchitecture (Micro), pp.
24-33, 2009.

[13] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: a flash translation
layer employing demand-based selective caching of page-level
address mappings,” Proc. Fourteenth Int’l Conf. Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), pp. 229-240, 2009.

[14] S. Gurumurthi, A. Sivasubramaniam, and V.K. Natarajan, “Disk
Drive Roadmap from the Thermal Perspective: A Case for
Dynamic Thermal Management,” Proc. 32nd Int'l Symp.
Computer Architecture (ISCA), pp. 38-49, 2005.

[15] S. Harizopoulos, D.J. Abadi, S. Madden, and M. Stonebraker,
“OLTP through the looking glass, and what we found there,”
Proc. ACM Int’l Conference on Management of Data
(SIGMOD), pp. 981-992, 2008.

[16] J. He, A. Jagatheesan, S. Gupta, J. Bennett, and A. Snavely,
“DASH: a Recipe for a Flash-based Data Intensive
Supercomputer,” The Int’l Conf. for High Performance
Computing, Networking, Storage and Analysis (SC'10), New
Orleans, LA, November 13-19, 2010.

[17] Y. Hu, H. Jiang, D. Feng, L. Tian, S. Zhang, J. Liu, W. Tong, Y.
Qin, and L. Wang, “Achieving page-mapping FTL performance
at block-mapping FTL cost by hiding address translation,” Proc.
IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST), pp. 1-12, 2010.

[18] D. Jung, J-U Kang, H. Jo, J. Kim, and J. Lee, “Superblock FTL:
A Superblock-Based Flash Translation Layer with a Hybrid
Address Translation Scheme,” ACM Transactions on Embedded
Computing Systems, Volume 9, Issue 4, March 2010.

[19] A. Kawaguchi, S. Nishioka, and H. Motoda, “A flash-memory
based file system,” Proc. of the USENIX Technical Conference,
1995.

[20] T. Kgil, D. Roberts, and T. Mudge, “Improving NAND Flash
Based Disk Caches,” Proc. 35th Int’l Symp. on Computer
Architecture (ISCA), pp. 327-338, 2008.

[21] H. Kim and S. Ahn, “BPLRU: a buffer management scheme for
improving random writes in flash storage,” Proc 6th USENIX
Conference on File and Storage Technologies (FAST), pp. 239-
252, 2008.

[22] H. Kim, J.H. Kim, S. Choi, H. Jung, and J. Jung, “A page
padding method for fragmented flash storage,” Lecture Notes in
Computer Science, 4705, pp. 164-177, 2007.

[23] I. Koltsidas, and S. D. Viglas, “Flashing Up the Storage Layer,”
Proc. 34th Int’l Conf. on Very Large Data Bases (VLDB),
Auckland, New Zealand, August 24-30, 2008.

[24] S. Lee, B. Moon, C. Park, J. Kim, and S. Kim, “A case for flash
memory SSD in enterprise database applications,” Proc. Int’l
Conf. on Management of Data (SIGMOD), pp. 1075-1086, 2008.

[25] S. Lee, D. Park, T. Chung, D. Lee, S. Park, H. Song, “A Log
Buffer based Flash Translation Layer Using Fully Associative
Sector Translation,” IEEE Transactions on Embedded
Computing Systems, 6(3):18, 2007.

[26] S. Lee, D. Shin, Y. Kim, and J. Kim, “LAST: Locality-Aware
Sector Translation for NAND Flash Memory-Based Storage
Systems,” Proc. Int’l Workshop on Storage and I/O
Virtualization, Performance, Energy, Evaluation and
Dependability (SPEED), 2008.

[27] S.T. Leutenegger and D. Dias, “A modeling study of the TPC-C
benchmark,” Proc. ACM International Conference on
Management of Data (SIGMOD), 22(2), pp. 22–31, June 1993.

[28] A. Leventhal, “Flash Storage Memory,” Communications of the
ACM, Vol. 51, No. 7, pp. 47–51, 2008.

[29] F. Moore, “Storage and Energy – the Heat is On,” Horison
Information Strategies, http://www.horison.com, July 2007.

[30] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A.
Rowstron, “Migrating Enterprise Storage to SSDs: Analysis of
Tradeoffs,” Proc. 4th ACM European Conf. on Computer
Systems (EuroSys), pp. 145-158, 2009.

[31] K. Park, D-H Lee, Y. Woo, G. Lee, J-H Lee, and D-H Kim,
“Reliability and performance enhancement technique for SSD
array storage system using RAID mechanism,” Proc. 9th Int’l
Conf. Communications and Information Technologies, pp. 140-
145, 2009.

[32] M. Polte, J. Simsa, and G. Gibson, “Enabling enterprise solid
state disks performance,” Proc. Workshop on Integrating Solid-
state Memory into the Storage Hierarchy, Mar. 2009.

[33] SPC, “Storage Performance Council I/O traces,”
http://www.storageperformance.org/.

[34] J.Y. Shin, Z.L. Xia, N.Y Xu, R. Gao, X.F. Cai, S. Maeng, and
F.H. Hsu, “FTL design exploration in reconfigurable high-
performance SSD for server applications,” Proc. 23rd Int’l Conf.
Supercomputing, pp. 338-349, 2009.

[35] The DiskSim Simulation Environment (v4.0),
http://www.pdl.cmu.edu/DiskSim/.

[36] D. Tsirogiannis, S. Harizopoulos, and M.A. Shah, “Query
Processing Techniques for Solid State Drives,” Proc. ACM Int’l
Conference on Management of Data (SIGMOD), pp. 59-71,
2009.

[37] G. Wu, B. Eckart, and X. He, "BPAC: An Adaptive Write Buffer
Management Scheme for Flash-based Solid State Drives," Proc.
IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST), May 6-7, 2010.

[38] X. Yu, “Trading capacity for performance in disk arrays,” Ph.D.
Dissertation, Princeton University, New Jersey, USA, 2004.

