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Abstract—NAND flash memory has been successfully 
employed in mobile devices like PDAs and laptops. With 
recent advances in capacity, bandwidth, and durability, 
NAND flash memory based Solid State Disk (SSD) is 
starting to replace hard disk drive (HDD) in desktop 
systems. Integrating SSD into enterprise storage systems, 
however, is much more challenging. One of the major 
challenges is that server applications normally demand an 
exceptional random I/O performance, whereas current 
SSD performs poorly in random writes. To fundamentally 
boost random write performance, in this paper we propose 
a new write cache management scheme called EPO 
(element-level parallel optimization), which reorders write 
requests so that element-level parallelism within SSD can 
be effectively exploited. We evaluate EPO using a 
validated disk simulator with realistic server-class traces. 
Experimental results show that EPO noticeably 
outperforms traditional LRU algorithm and a state-of-the-
art flash write buffer management scheme BPLRU (block 
padding least recently used). 

Keywords - Flash SSD; cache management; random 
write; storage system 

I. INTRODUCTION 
Data-intensive server applications such as OLTP 

(Online Transaction Processing) [15] normally demand 
a high-performance and highly reliable underlying 
storage system. Currently, rotating based magnetic hard 
disk drives (HDDs) are dominant building blocks for 
enterprise storage systems. Although they are cost-
effective and can provide huge capacity and high-
throughput, they are facing several serious difficulties. 
First of all, while disk capacity has been increasing at a 
rate of about 60% per year, disk access latency has only 
been improving about 10% per year [38]. As a result, 
the performance gap between disk access latency and 
the rest of the computer system has been widening 
dramatically. Second, in order to meet the 40% annual 
growth target of the internal data rates (IDR), HDD 
manufacturers have to continuously increase RPMs 
(revolutions per minute) and shrink platter sizes. 
Constantly increasing RPMs and shrinking platter sizes, 
however, negatively affect drive heat dissipation, which 
in turn causes impaired disk reliability [14]. Third, 
HDDs are inherently energy-inefficient and the cost of 
energy is increasing at an annual rate of 20%~30%, 

which makes energy consumption one of the largest 
considerations in the TCO (Total Cost of Ownership) of 
a data center [29]. Consequently, NAND flash memory 
based solid state disk (hereafter, SSD), which does not 
have the drawbacks mentioned above, becomes a 
promising alternative to HDD. Because of its solid state 
design, SSD is free of mechanical movements, and thus, 
has enhanced reliability [3]. It also inherently consumes 
much less energy than rotating based HDD [1][13][20]. 
Besides, SSD offers much faster random access by 
eliminating unnecessary seek time delays and rotation 
latencies [7][9]. It is physically robust with high 
vibration-tolerance and shock-resistance [5][6]. The 
main concern on current SSDs is their noticeably higher 
prices. Fortunately, the price of flash memory in the last 
five years has come down around 50% per year [8]. 
With steep annual price declines in flash memory chips, 
Samsung expects SSDs to reach price parity with HDDs 
within the next few years [8].  

NAND flash memory has been successfully 
employed in mobile devices like PDAs and laptops 
[19][24]. With recent advances in capacity, bandwidth, 
and durability, SSD is starting to replace HDD in 
desktop systems [10][21]. Integrating SSD into 
enterprise storage systems, however, is much more 
challenging [5][7][13][23][31][30][36]. One of the 
major challenges is that off-the-shelf SSD exhibits poor 
random write performance [5][7][13]. Thus, simply 
replacing existing HDDs with SSDs in enterprise-class 
storage systems could lead to serious problems 
[2][16][32]. One of such problems is that the poor 
random write performance of SSDs can largely degrade 
the overall performance of data-intensive applications, 
which could generate heavy random writes with no 
locality [21]. For example, Dumitru compared the 
overall performance of a 32 GB SanDisk SATA SSD 
with a 36 GB Seagate 15K RPM SAS HDD under a 
workload with 4K operations including both reads and 
writes [11]. He found that even a read-dominant 
workload with only 10% 4K random writes and 90% 
4K random reads can make the SSD’s overall 
performance in terms of IOPS (Input/Output Operations 
Per Second) 1.5 times worse than that of the HDD [11]. 
The culprit of SSD poor random write performance is 
its intrinsic operating mechanism including out-of-place 
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updating [6], time-consuming erasing and garbage 
collection [7], complicated FTL (flash translation layer) 
logic [13], and inefficient media transfer rate [10]. For 
example, while reading a page from the flash media into 
a 4 KB data register only takes 25 µs, writing a page 
from data register to the flash cell needs 200 µs [1]. 
Even worse, erasure can only be operated at block 
granularity and it takes 1.5 ms to erase a block [1]. 
Therefore, new techniques that can fundamentally boost 
SSD random write performance are greatly needed in 
order to merge SSDs into enterprise storage systems.  

A number of investigations on SSD random write 
problem have been reported recently in the literature 
[13][21][28]. These state-of-the-art research studies can 
be categorized into three groups: adding non-volatile 
RAM (NVRAM) buffer [28], enhanced FTL engine 
developing [15], and write requests buffering and 
reordering [21]. Essentially, schemes in the last group 
employ a hardware (i.e., RAM buffer) and software 
(i.e., buffer management scheme) combined approach to 
boosting SSD random write performance. Compared 
with techniques in the first two groups, the last group’s 
schemes have some advantages. First, there is no need 
to modify existing FTL layer, and thus, they can be 
easily integrated to current SSDs. Second, the RAM 
buffer that they required normally is less than 128 MB 
[21], whereas the size of NVRAM buffer demanded by 
techniques in the first group is in the GB scale [28]. 
Hence, in this research we adopt the methodology used 
in the last group.  

However, our EPO (element-level parallel 
optimization) scheme takes a different approach to 
solving SSD random write performance issue. Unlike 
BPLRU [21] whose objective is to reduce the number of 
flushes of dirty pages from the buffer into flash 
memory, EPO utilizes SSD element-level concurrency 
by dispatching multiple buffered write requests to 
different elements at one time so that the requests can 
be processed in parallel. When page replacement 

occurs, all requests in one batch will be flushed to an 
array of elements. In this manner the re-ordered write 
requests can be served by multiple elements 
concurrently. Extensive simulations using the Microsoft 
SSD model [1] inside the DiskSim 4.0 simulator [35] 
and real-world server application traces demonstrate 
that EPO outperforms existing write buffer management 
scheme BPLRU and traditional LRU algorithm.  

The rest of this paper is organized as follows. 
Section II briefly introduces the basics of flash memory 
followed by related work and the motivation of this 
research. The design and implementation details of the 
EPO scheme are presented in Section III, which is 
followed by the experimental results discussed in 
Section IV. Section V concludes this research work and 
points out the future research.  

II. RELATED WORK AND MOTIVATION 
NAND flash memory based SSD is a semiconductor 

storage module, which is made of arrays of NAND flash 
memory elements (also called packages) [1][4]. Fig. 1 
shows the internal structure of a Samsung 4 GB flash 
element and an array organization with four such 
elements [1]. Normally, an SSD has one or multiple 
identical elements, which can work in parallel [1]. One 
possible way to organize an array of elements within an 
SSD, as shown in Fig. 1, is that each element has 
separate data path to the controller but all elements 
share one control bus [1]. This element array structure 
can increase bandwidth as it supports concurrent 
operations that span multiple elements. Further, each 
element can have multiple dies (also called chips) that 
share one serial I/O bus and common control signals 
[3]. For the Samsung 4 GB flash element (Fig. 1), each 
die contains four planes with each having 2,048 blocks 
and one 4 KB data register as an I/O buffer. Each block 
has 64 4-KB pages. While reads and writes are page-
oriented, erasure can be conducted only at block 
granularity [10]. A block must be erased before being 

Figure 1. Internal structure of a SSD with four elements. 
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programmed (written) [6]. SSD does not allow in-place 
update as a write operation can only change bits from 1 
to 0 [10][12]. In order to mimic a HDD and expose an 
array of logic blocks to the upper-level components, a 
critical software component called flash translation 
layer (FTL) is implemented in the SSD controller [6][7]. 
Modern FTL [17][18][25][26][34] generally 
accomplishes three major tasks: mapping logical blocks 
to physical flash pages, garbage collecting, and wear 
leveling. Since writes cannot be performed in place, 
each write of a logic page must be executed on a 
different physical flash page. Hence, FTL maintains a 
mapping table to map a logic block address (LBA) to a 
physical block address (PBA) [7].  

While there have been a number of studies 
[3][19][22][37] discussing flash memory random write 
issue, little attempt had been made until very recently 
[13][21][23][28] to systematically improve SSD random 
write performance under desktop or server workloads. 
Leventhal suggested adding non-volatile RAM 
(NVRAM) in the form of battery-backed DRAM so that 
writes are committed to the NVRAM ring buffer and 
immediately acknowledged to the client while the data 
is written out to the SSDs later [28]. Although this 
technique allows for a tremendous improvement for 
synchronous writes, its drawbacks are also obvious. It 
requires very expensive NVRAM, whose maximum size 
(normally 2 ~ 4 GB) is still so small that server-class 
workloads can fill the entire ring buffer before it can be 
flushed to SSD [30]. Gupta et al. [13] proposed DFTL 
(Demand-based Flash Translation Layer), which 
selectively caches page-level address mappings using 
existing SRAM cache on SSDs. Its advantage is that it 
does not require any extra hardware. Nevertheless, the 
main downside of DFTL is that it requires modifying 
existing FTL layer, which would bring about a high cost 
for it to be integrated into current SSDs. Kim and Ahn 
suggested embedding a small-scale (e.g., 1 ~ 16 MB) 
RAM write buffer into SSDs and proposed BPLRU 
(block padding least recently used) [21], a flash flavour 
variant of the well-known LRU (least recently used) 
scheme, to manage the buffer.  

Several recent investigations [1][7][10] on SSD 

internal characteristics and system-level organization 
analyzed the multi-level concurrency presented in 
SSDs, which inspires us to develop a parallelism-driven 
software/hardware combined scheme to improve 
random write performance. The EPO scheme 
judiciously reshapes a random write access pattern to a 
parallelism-aware batch-based write stream so that the 
element-level concurrency can be mostly utilized to 
improve SSD random write performance. EPO opens a 
new avenue to boost SSD random write performance as 
it is orthogonal to existing approaches. 

III. THE EPO SCHEME 
We now present our EPO scheme that exploits the 

element-level parallelism in SSD to boost random write 
performance. The basic idea of EPO is illustrated using 
an example followed by a detailed description.  

A. An Illustrative Example 
Fig. 2a illustrates the request processing flow of 

EPO. Similar to BPLRU [21], EPO only processes write 
requests. For read requests, it simply forwards them to 
the FTL. An original request issued by the host is first 
processed by a pre-processor, which transforms it into a 
flash request by replacing its size to the closest times of 
the size of a flash page (e.g., 4 KB). As a result, the size 
of a flash request is either equal to one flash page or 
multiple flash pages (see Fig. 1). Each flash request 
then enters the FTL layer where its logical address is 
mapped to a physical address. Next, every request goes 
to the write buffer B, which is a RAM buffer embedded 
in an SSD. To prevent data loss in the event of a power 
failure, we assume that the RAM buffer B is protected 
via an onboard battery. Finally, EPO manages flash 
requests in the write buffer B and outputs reshaped 
requests to flash memory. 

The basic unit in the write buffer B is a block whose 
size is equal to the size of a flash memory page (e.g., 4 
KB in our experiments). Within B, EPO maintains a 
free block pool and multiple queues (Fig. 2b). Each 
queue is a linked-list that contains all requests visiting 
one particular element. The number of queues in B is 
equal to the number of elements in the underlying SSD. 

            (a)                                                     (b)                                                                                      (c) 
Figure 2. (a) Request processing flow; (b) internal structure of B; (c) states of Q1 in sequence (1, 2, 3, 2, 4, 3). 
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Assume that there are only four elements in an SSD, 
Fig. 2b demonstrates how EPO manages the free block 
pool and the four queues with each queue 
corresponding to one element. When a new request 
arrives in B, EPO acquires one empty block from the 
free block pool to accommodate the new request, and 
then, places it into its corresponding queue based on its 
physical address. After more requests enter B, the free 
block pool shrinks until it is empty. At this moment, 
victims need to be chosen when a new request comes. 
Every time when free space is needed for a new request 
while the free block pool is empty, EPO selects multiple 
victims each from one queue and flushes them to SSD. 
One of the freed blocks will be used for the new request 
and all others shall be reclaimed into free block pool. 
We will illustrate how EPO selects the victims next. 

Assume that all six requests shown in Fig. 2c are 
single-page requests and they all target on element one. 
Also, suppose that at the beginning three requests with 
distinct physical addresses (i.e., 1, 2, and 3) sequentially 
arrive in B. EPO inserts the three requests into Q1 one 
by one. Consequently, request with address 1 is at the 
tail and the request with address 3 stays in the head 
position (see Scenario 1 in Fig. 2c). Assume that the 
physical address of the fourth request is also 2. In other 
words, the fourth request would overwrite the second 
request, which has been located in Q1. Therefore, EPO 
updates the address 2 block with the content in the 
fourth request and then moves it to the head of Q1 (see 
Scenario 2 in Fig. 2c). Now block 2 becomes a dirty 
block, whereas block 1 and 3 are all clean. After a 
while, the fifth request with physical address 4 comes. 
EPO simply inserts it into the head of Q1 (see Scenario 3 
in Fig. 2c). The last request again accesses the block 
address 3 as the third request does. Thus, EPO moves 
block 3 into the head of Q1 (see Scenario 4 in Fig. 2c). 
If at this time a victim is needed, EPO will evict first 
request with block address 1, i.e., the tail of the queue 
Q1. Apparently, EPO also exploits the temporal locality. 

Input: P, a pre-processed write request set; B, a write buffer 
managed by the EPO scheme 
Output: R, a re-shaped write request set that is aware of the 
element-level parallelism in SSD 
1.  Clear B and R; k = 1; e = number of elements in SSD; 
     create e queues from Q1 to Qe in B 
2.  for each request rk ∈ P do  
3.    j = number of pages requested by rk  
4.    Create a temporary array T with j cells 
5.    if  j > 1 /* the request rk is a multiple-page request */ 
6.       Divide the request rk into j single-page write requests  
         and store them in T sequentially 
7.    else 
8.       Store rk in T 
9.    end if  
10.   h = 1 
11.   for each single-page write request th ∈ T do 
12.      i = the element number that th targets on and 1 ≤ i ≤ e 
13.     Search th in the corresponding queue Qi in B  
14.     if the page requested by th is found in Qi 
15.       Replace it with th and move th to the head of Qi 
16.     else      
17.       if there is no free space in B to accommodate th 
18.          for each queue from Q1 to Qe in B                   
19.             Evict the request at the tail to R  
20.             Change its arrival time to the arrival time of th 
21.          end for  
22.       end if 
23.       Insert th at the head of Qi  
24.       The free block pool is increased by e - 1 blocks 
24.     end if 
25.     h = h + 1 
26.   end for 
27.   Delete the temporary array T   
28.   k = k + 1 
29. end for 

Figure 3. Algorithm of the EPO scheme. 

B. Algorithm Description 
Fig. 3 outlines the algorithm of the EPO scheme. 

Note that the input P of the EPO algorithm is the output 
of the FTL layer (Fig. 2a), which translates each flash-
style write request into a physical request. A flash-style 
request is a request whose size is equal to either one 
flash page or multiple flash pages. The size of a flash 
page is normally 2 KB or 4 KB for modern SSDs. 
Another input B is an empty buffer managed by EPO. 
The write buffer B is implemented as a RAM cache 
inside an SSD and its size is configured to be in the 
range 4 ─ 32 MB in our simulations. The output of the 
EPO scheme is a reshaped single-page write request set 
R, which is then fed into the flash SSD (Fig. 2a). More 
importantly, the request stream in R can mostly exploit 

the element-level concurrency in the flash SSD.  
Now we describe each step in Fig. 3 in detail. First, 

EPO creates e empty queues from Q1 to Qe in B, where e 
is the number of elements in SSD.  Each queue will be 
used to maintain requests that target on a particular 
element. Next, EPO processes each request in P within 
the outmost loop (Step 2 ~ 29) in the same manner. 
EPO first judges whether a request in P is a multiple-
page request or a single-page request (Step 5). If the 
request is a multiple-page request, EPO breaks it down 
into multiple single-page requests (Step 6). 
Consequently, only single-page requests will be 
maintained in each queue, which in turn increases the 
element-level concurrency later. For each newly arrived 
single-page request, EPO searches its physical address 
in its corresponding queue, which is a linked-list data 
structure. If the same address is found in an existing 
request in the queue, the existing request will be 
overwritten by the new single-page request. Further, the 
new request will be moved to the head of the queue so 
that the temporal locality can be utilized (Step 15). If 
the same physical address in the queue is not found, 



 

EPO needs to acquire a free block from the free block 
pool to accommodate the new request (Fig. 2b). When 
the free block pool is not empty, EPO inserts the new 
quest at the head of the queue. Otherwise, EPO starts to 
select e victims each from one queue (Step 18 ~ 21). 
Each request at the tail of a queue will be chosen as a 
victim and its arrival time is updated to the arrival time 
of the new request (Step 19 ~ 20). All victims are then 
inserted into R, which contains requests to the SSD. 
While the original request set P exhibits a random 
access pattern, the reshaped request set R becomes a 
batch-based request stream. Requests that are evicted 
from B at the same time are bundled together to form a 
batch. Requests in one batch go to different elements of 
an SSD and they share the same arrival time. Thus, all 
elements can serve requests in one batch in parallel. 

IV. PERFORMANCE EVALUATION 
In this section, we present our experimental results 

for a variety of configurations including write buffer 
size, number of elements, and flash page size. Mean 
response time will be the primary performance metric in 
this study. We also measure throughput for all of the 
four algorithms. Three real system traces Financial1 
[33], Financial2 [33], and TPC-C [27] are used in this 
simulation study to evaluate the performance of EPO as 
well as NoCache, LRU, and BPLRU. In Section IV.A, 
the experimental settings for the simulations are 
described. In addition, we investigate the impact of 
write buffer size in Section IV.B and the impact of the 
flash page size in Section IV.C. Finally, we study the 
scalability of the four schemes in Section IV.D. 

A. Experimental Setup 
All simulation experiments are conducted in three 

stages sequentially: pre-processing, reshaping, and 
feeding. In the pre-processing stage, the pre-processor 
(Fig. 2a) performs the following tasks. First, it filters 
out all read requests from an original trace. Second, it 
truncates the entire write request set so that only the 
first several millions of write requests will be used later. 
Third, for large logical space trace like TPC-C, it evenly 
shrinks the trace’s logical address space so that each 
write request’s logical address can be mapped to a 
physical address within the scope of an SSD 
configuration. Finally, it changes each write request’s 
size to its closet multiples of 4 KB pages. The output of 
the pre-processor is called flash request trace (Fig. 2a) 
because it is a trace suitable for flash disk storage 
systems. In the reshaping stage, we implemented and 
run the four buffer management schemes NoCache, 
LRU, BPLRU, and EPO on a Dell PowerEdge 1900 
server with two Quad Core Intel® Xeon® E5310 1.60 
GHz processors and 8GB FB-DIMM memory. After the 
FTL layer, all requests in a flash request trace are then 

buffered in the writer buffer B (Fig. 2a) and are 
managed by a particular scheme like EPO. The output 
of the write buffer B is a reshaped request set, which 
contains all requests evicted from the buffer according 
to the victim selection policy of a buffer management 
scheme. In the final feeding stage, requests in the 
reshaped request set are fed into the Microsoft SSD 
model [1], which was derived from the generic rotating 
disk module for DiskSim 4.0 [35]. DiskSim emulates a 
hierarchy of storage components including buses, 
controllers, and disks [35]. It is a well-known and 
validated disk system simulator [35]. 

We evaluate the four buffer management schemes 
by running simulations over three real system traces: 
Financial1 [33], Financial2 [33], and TPC-C [27], 
which have been widely used in the literature. 
Financial1 and Financial2 were collected from requests 
to OLTP applications at two large financial institutions. 
While the Finanical1 trace is write-dominant (more than 
60% requests are writes), Financial2 trace is read-
dominant (more than 80% requests are reads). TPC-C is 
an I/O trace collected on a storage system connected to 
a Microsoft SQL Server via storage area network [27]. 
The mean write request size of TPC-C is larger than 10 
KB. Financial1 trace exhibits obvious temporal locality 
and spatial locality, whereas TPC-C trace manifests 
itself as a completely random access pattern. We 
selected the three traces so that the EPO scheme can be 
evaluated under different degrees of access randomness. 
Since the simulation times in our experiments are much 
shorter compared with the time spans of the traces, we 
truncate each trace such that only the first 2, 0.65, and 2 
million write requests are included for Finanaical1, 
Financial2, and TPC-C, respectively. The main 
simulation parameters are shown in Table I.  

 
TABLE I. SIMULATION PARAMETERS 

The BPLRU algorithm [21] is recognized as a state-
of-the-art flash write buffer management scheme. On 
the other hand, the LRU algorithm is a widely employed 

Parameter Value (Fixed) – (Varied) 

Write buffer capacity (MB) (8) – (4, 8, 16, 32) 

Number of elements (48) – (16, 32, 48, 64) 

Page size (KB) (4) – (1, 2, 4) 

Flash block size (page) (64) 

Element capacity (GB) (4) 

Flash SSD capacity (GB) (192) – (64, 128, 192, 256) 

Block erase latency  (µs) (1500) 

Page read latency  (µs) (25) 

Page write latency  (µs) (200) 

Chip transfer latency per byte (μs) (0.025) 

Number of planes in an element (8) 

 
 



 

Figure 4. Performance impact of write buffer size on the four schemes. 

cache management policy in real systems. We also 
tested the situation where no write buffer is used at all. 
We call this scheme NoCache, which can demonstrate 
the performance improvement due to adding a write 
buffer into SSD. In order to comprehensively evaluate 
the EPO scheme, we compare it with the three 
algorithms in this section. A brief introduction of the 
three algorithms is presented below. 
(1) NoCache: NoCache forwards each arrival write 
request directly to SSD without taking any actions. It 
serves as a baseline algorithm. 
 (2) LRU (Least Recently Used): LRU maintains the 
“age” of each buffered write request and evicts the least 
recently used write request first. 
 (3) BPLRU (Block Padding Least Recently Used): 
When free space is needed to accommodate new writes, 
BPLRU selects the least recently used flash block rather 
than a sector as a victim and flushes all sectors in the 
victim block to flash device [21]. To reduce the buffer 
flashing cost, BPLRU employs a page padding 
technique for a victim block. Before a victim block is 

kicked out of the buffer, BPLRU reads all pages that are 
not presented in the victim block from data block. And 
then it writes all sectors in the victim block sequentially 
onto a log block. In this way, an expensive full merge 
can be replaced by an efficient switch merge. Detailed 
information about page padding and the three types of 
merge can be found in [22]. 

B. Overall Comparisons 
The goal of this experiment is to compare EPO 

against two well-known cache management algorithms 
LRU and BPLRU, and to understand the impact of write 
buffer size on the performance of the four algorithms 
including NoCache. We tested write buffer size from 4 
MB to 32 MB with 48 elements. 

We observe from Fig. 4 that the mean response time 
of all four schemes does not noticeably change when 
the size of the write buffer increases from 4 MB to 32 
MB.  This is because the write buffer is still very small 
considering the large volume of requests from the three 
server-class workloads. Consequently, the entire write 
buffer even in its maximal size 32 MB is quickly filled 

 
 



 

Figure 5. Performance impact of flash page size on the four schemes. 

out by arrival requests, and thus, increasing write buffer 
size does not result in an apparent performance 
improvement. Still, EPO always outperforms the three 
existing schemes in all cases for it exploits the element-
level concurrency. In Financial1 scenario, compared 
with NoCache, LRU, and BPLRU, EPO on average 
reduces mean response time by 38.9%, 33.1% and 
44.6%, respectively, while on average increases 
throughput by 63.8%, 49.5%, and 79.8%, respectively 
(Fig. 4). Note that in all scenarios in Fig. 4, the 
performance of NoCache keeps constant as write buffer 
size has no impact on it. Interestingly, BPLRU exhibits 
the worst performance in all situations shown in Fig. 4. 
This is because BPLRU always assumes that logically 
consecutive pages must also be physically located into 
one block, which is not true when striping is applied 
within SSDs. As a result, BPLRU generates a large 
number of unnecessary reads and writes due to page 
padding [21]. In Financial2 case, EPO also outperforms 
the other three algorithms (Fig. 4). In TPC-C workload, 
compared with NoCache, LRU, and BPLRU, EPO on 

average shrinks mean response time by 42.3%, 37.6%, 
and 99.9%, respectively. BPLRU, however, experiences 
very large mean response times in TPC-C trace, which 
also explains why the throughput of BPLRU is so low 
in TPC-C workload in Fig. 4. Compared with NoCache 
and LRU in TPC-C workload, EPO on average 
increases throughput by 73.2% and 60.3%, respectively. 
Since the access pattern of TPC-C is more random than 
that of Financial1, EPO fully exhibits its strength and its 
performance improvements become more noticeable. 
Obviously, the performance gain achieved by EPO is at 
the cost of adding a RAM buffer inside SSD. 
Considering the small size of the buffer and the 
substantial performance improvement, we argue that the 
benefits of EPO outweigh its cost. 

One interesting observation from Fig. 4 is that 
increasing the size of write buffer can neither 
significantly reduce the mean response time nor 
increase throughput. The rationale behind is that larger 
buffer size has little impact on a totally random access 
pattern. To understand the sensitivity of EPO to other 

 
 



 

Figure 6. Scalability of the four schemes. 

parameters, we also measured the performance of EPO 
when changing the number of elements and page size. 

C. The Impact of Flash Page Size 
This experiment is intended to investigate the impact 

of flash page size on the EPO scheme. We vary the size 
of a flash page from 1 KB to 4 KB. Fig. 5 plots the 
performance of the four algorithms as functions of the 
size of a flash page. 

Several important observations can be drawn from 
Fig. 5. First of all, flash page size has a noticeable 
impact on the three existing algorithms. For example, 
under Finanical1 workload LRU increases its mean 
response time from 0.24 ms to 0.31 ms when flash page 
size varies from 1 KB to 4 KB. Meanwhile, NoCache 
scheme increases its mean response time by 21.3% (Fig. 
5). Recall that after the pre-processing stage each write 
request’s size is configured to its closest multiples of 
flash pages and each page is 4 KB (see Section IV.A). 
Therefore, when flash page size enlarges to 4 KB, each 
request needs to write multiple pages rather than a 

single page. Therefore, the response time of NoCache 
and LRU increases. The mean response time of EPO, 
however, only slightly changes because it always splits 
each multiple-page request into multiple single-page 
requests (Step 6 in Fig.3). Second, larger page size 
usually results in a higher throughput. In Financial 1 
case, EPO increases the throughput by 4.9 times when 
flash page size changes from 1 KB to 4 KB. The reason 
is that larger flash page improves write efficiency and 
decreases the number of block erasures [1]. Lastly, 
TPC-C workload is so intensive that all three existing 
algorithms encounter large mean response times. 

D. Scalability 
This experiment is intended to investigate the 

scalability of the EPO scheme. We scaled the number of 
elements in an SSD from 16 to 64. The size of write 
buffer is set to 8 MB. Fig. 6 plots the performance of 
the four algorithms as functions of number of elements. 

The results show that only EPO and BPLRU 
algorithms exhibit a good scalability in Financial1 and 

 
 



 

Financial2 workload when the number of elements 
increases from 16 to 48. Specifically, in Financial1 EPO 
reduces its mean response time by 42.3%, whereas 
BPLRU improve their mean response time performance 
by 66.1%. Still, in terms of mean response time EPO on 
average outperforms NoCache, LRU, and BPLRU by 
20.5%, 12%, and 38.3% in Financial1 (Fig. 6). After the 
48 element case, however, none of the four algorithms 
show improvement in both mean response time and 
throughput. The reason is that the footprint of the TPC-
C trace becomes relatively very small compared with 
the enlarged capacity of the SSD due to the increment 
of the number of elements. Thus, adding more elements 
after 48 does not help. 

Overall, Fig. 6 demonstrates that the scalability of 
all algorithms including EPO is sensitive to the 
workloads. In Financial1 and Financial2 cases, 
increasing the number of elements does bring an 
apparent improvement in either mean response time or 
throughput (Fig. 6). After analyzing the two traces we 
realized that the outcome is expected because both 
Financial1 and Financial2 workloads have noticeable 
temporal locality and spatial locality. As a result, a large 
portion of requests concentrate on a small logical space 
so that newly added elements cannot receive enough 
requests to share the entire load. In Finanical2 case, 
compared with NoCache and LRU, EPO on average 
reduces mean response time by 10.5% and 10.2%, 
respectively. Compared with NoCache, LRU, and 
BPLRU, EPO on average improves throughput by 
16.6%, 16.2%, and 59.1%, respectively. In TPC-C 
scenario, EPO significantly outperforms all three 
existing algorithms in terms of throughput. This is 
because EPO fully employs the element-level 
parallelism within an SSD. 

V. CONCLUSIONS 
In this paper, we address the issue of SSD random 

write performance in server applications. EPO 
(element-level parallel optimization), a new write buffer 
management scheme, is developed. The basic idea of 
EPO is to reshape write access pattern by dynamically 
grouping multiple buffered write requests that target on 
distinct elements into one batch. EPO exploits the 
element-level concurrency to significantly shorten mean 
response time and improve throughput. Although EPO 
also employs an extra battery-backup RAM buffer 
inside SSD and reshapes write access pattern, it is 
orthogonal to current write requests buffering and 
reordering schemes because it seeks to exploit element-
level parallelism within SSD, which is a new avenue to 
solve the SSD random write problem.  Comparing with 
adding non-volatile RAM (NVRAM) buffer and 
enhanced FTL engine developing approaches (see 

Section I), EPO has several desired advantages. First, its 
hardware cost is low because of the limited size of 
RAM buffer used.  Second, it does not require any 
change in the FTL layer, and thus, is easy to be 
integrated into modern SSDs. Lastly, its low time 
complexity implies its potential to be implemented in 
real applications. Further, the performance of EPO plus 
three existing schemes including LRU and BPLRU [21] 
has been thoroughly evaluated using a validated 
simulator Microsoft SSD model [1] with DiskSim 4.0 
[35] and three widely used enterprise-level traces. 
Experimental results demonstrate that EPO consistently 
outperforms a state-of-the-art write buffer management 
scheme BPLRU. It also performs better than the 
traditional LRU algorithm.  When SSDs are in their 
default configurations, compared with NoCache and 
LRU, EPO achieves improvement in mean response 
time by up to 63.8% and 49.5%, respectively. Note that 
the FTL layer will not affect the performance of EPO 
because it is underneath the FTL layer.  

All our experiments employ the Microsoft SSD 
model [1], which only has a generic FTL layer to 
accomplish tasks like logic address mapping. To 
understand the combined effects of EPO and some 
representative FTL schemes such as FAST [25], DFTL 
[13], and HAT [17] on the performance of enterprise 
flash SSDs, we are extending the SSD model so that 
these specific FTL algorithms can be integrated. We 
will then re-examine the impacts of EPO underneath 
various modern FTLs. Also, the Microsoft SSD model   
in its current format does not provide any cache 
management function. Another future direction of this 
study is to implement new buffer management schemes 
inside the SSD model so that their performance can be 
evaluated and compared. Finally, we are going to 
develop SSD disk array level cache management 
schemes to not only improve random write performance 
but also prolong SSD life-time by evenly distributing 
writes in an SSD array.  
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