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Abstract—Currently the QoS requirements for disk-based
storage systems are usually presented in the form of service-level
agreement (SLA) to bound I/O measures such as latency and
throughput of I/O requests. However, SLA is not an effective
performance interface for users to specify their required I/O0
service quality for two major reasons. First, for users, it is
difficult to determine appropriate latency and throughput bounds
to ensure their application performance without resource over-
provisioning. Second, for storage system administrators, it is a
challenge to estimate a user’s real resource demand because
the specified SLA measures are not consistently correlated with
the user’s resource demand. This makes resource provisioning
and scheduling less informative and could greatly reduce system
efficiency.

We propose the concept of reference storage system (RSS),
which can be a storage system chosen by users and whose
performance can be measured off-line and mimicked on-line,
as a performance interface between applications and storage
servers. By designating an RSS to represent I/O performance
requirement, a user can expect the performance received from
a shared storage server servicing his I/O workload is not worse
than the performance received from the RSS servicing the same
workload. The storage system is responsible for implementing the
RSS interface. The key enabling techniques are a machine learn-
ing model that derives request-specific performance requirements
and an RSS-centric scheduling that efficiently allocates resource
among requests from different users. The proposed scheme,
named as YouChoose, supports the user-chosen performance
interface through efficiently implementing and migrating virtual
storage devices in a host storage system. Our evaluation based
on trace-driven simulations shows that YouChoose can precisely
implement the RSS performance interface, achieve a strong
performance assurance and isolation, and improve the efficiency
of a consolidated storage system consisting of different types of
storage devices.

I. INTRODUCTION

As storage consolidation provides a promising solution to
the rising cost in today’s data-centric computing, the IT in-
dustry quickly responds by providing all types of architectures
of consolidated storages, from the file-level NAS [15] to the
block-level SAN [28], from local enterprise storage servers to
Amazon’s S3 on-line storage service [1]. Today’s technology is
ready to create data centers comprising of tens of large arrays
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of different types, multi-petabytes of capacities, and potential
tens of GB/s of aggregate bandwidth.

While the technology is ready on the architectural and oper-
ational aspects, there is a critical barrier to keep performance-
sensitive users from using the service, which is the lack
of an effective performance interface through which users
can present their goals on quality of I/O service (QoS) and
the system can efficiently meet the goals. As an example,
Amazon’s cloud computing service (Amazon EC2) [2] allows
users to specify a virtual computing system (named as instance
in EC2) and upload their applications to run in the virtual
system. All major aspects of an instance affecting applications’
performance can be clearly specified except I/0O performance.
For example, in a small instance there are 1.7GB memory,
one processor equivalent to a 2007 Intel Xeon, and 160 GB
storage. Since storage system are shared among instances,
the I/O performance can only be specified with an indicator,
either moderate or high. This vague QoS specification would
deter many QoS-sensitive users from using the service to run
their I/O-intensive applications, since it leaves applications’
performance highly unpredictable.

In shared storage systems like Stonehenge [16] and Fa-
cade [20], users are allowed to present their QoS requirements
in terms of I/O latency and throughput bounds, as part of
service-level agreement (SLA) originally designed for service-
level requests to application servers (See Figure 1). However,
the adaptation raises a serious issue in the QoS manage-
ment for application-level I/O requests to storage servers.
As service-level performance of applications running on the
application servers, such as throughput of transactions or exe-
cution time of a scientific program, can be easily determined
according to users’performance expectation, it is very hard, if
not impossible, to determine corresponding response time or
throughput bounds for the I/O requests issued to the storage
server so that the service-level SLA goals are met. This is
because many aspects of the I/O service are so dynamic
that any static bounds cannot capture the real performance
demands on individual requests.

First, I/O requests can be very bursty. Applications may be
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Fig. 1.  There are three tiers in a typical system architecture involving
consolidated storage service: service subscribers, application servers, and
storage server. While the SLA-like performance interface describing bounds
on response time and throughput is suitable between service subscribers
and application servers, a different performance interface is needed between
application servers and storage server, such as the reference storage system
(RSS) proposed in this paper.
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designed to aggregate its I/O operations into several dedicated
I/O phases, such as phases for data loading or data writing
back, in anticipation that I/O system would be more efficient
by serving requests in batch. The response time of a request
issued in a busy period tends to be much larger than that
in a quiet period. This is usually not a performance issue
with users, who would also have the experience with their
dedicated system. However, if a static response time bound
is specified, all requests are treated indiscriminately on the
same performance target. It would be unrealistic, for the server
to keep response time from growing with the bursty requests
considering limited resource in a system. If the performance
target is determined based on requests issued in the quiet
period, which actually imposes artificially strict latency bound
on bursty requests, the resource has to be lavishly provisioned
to meet the bound and the I/O service can be prohibitive to
users.

Second, requests size can be highly variable. Requests
of different sizes should come with different respond time
bounds. As a request’s service time can be substantially
influenced by its size [29], one fixed bound for all requests is
fundamentally inaccurate. Moreover, determination of separate
bounds for requests of sizes in different ranges is a tedious
work and not flexible. A bandwidth bound, which specifies
amount of data accessed in a unit time (MB/s) instead of
number of I/O operations in a unit time (IOPS), is not
subject to variation of request size. However, if a storage
system guarantees the bandwidth bound, application designers
would not have the incentive to aggregate small requests into
one large request, making storage system’s efficiency being
compromised.

Last but not least, the spatial locality of requests can vary.
Spatial locality describes the sequentiality of continuously
requested data on the storage device. The hard-disk-based stor-
age systems are most sensitive to this workload characteristic,

because significant seek time is usually involved in accessing
non-sequential data. For the flash-based solid-state disk (SSD),
throughput of random write can be significantly lower than that
of sequential access. The spatial locality is a highly elusive
property that is hard for users to characterize.

If the bounds are determined by always assuming a random
access pattern, users have to be conservative in setting the
bounds, and the server would also conservatively plan its
capability for the worst scenario. If the actual access pattern
turns out to be sequential access, the application is likely to
only receive performance as low as that with random access
when the server resource is tight with high I/O demand. This
is against the users’ experience with their dedicated storage
systems, that is, I/O performance increases as workload’s
spatial locality improves. One consequence of this experience
is that users are not motivated to take efforts in optimizing their
programs by replacing small and random I/O access with large
and sequential access, which definitely causes grave impact on
the efficiency of the storage server.

In this paper we propose to use reference storage system
(RSS) as performance interface for users to describe their QoS
requirements. When a user creates a virtual storage device
(VSD) hosted in a shared system, its performance is associated
with an RSS, which can be a user’s dedicated local system,
instead of a set of (artificial) bounds on request latency or
throughput. A user is then guaranteed to receive I/O service
whose quality is at least as good as that on the reference
system regardless of instantaneous changes of data request
pattern. The proposed scheme is named as YouChoose, as
it allows a user to choose his own RSS as performance
interface. Meanwhile, the host storage system does need to
know the required latency for each of the requests from
different users to schedule requests. To this end, YouChoose
trains a machine learning model off-line to mimic the chosen
RSS and to on-line predict the latency that the RSS would
produce for an incoming request. Relying on the latency,
YouChoose can efficiently maintain a VSD associated with
a pre-chosen RSS to meet its user’s QoS requirement. The
architecture of YouChoose is illustrated in Figure 2.

In summary, we made four contributions in the work.

« We propose a performance interface for users to conve-
niently specify their I/O QoS requirements so that they
are assured of QoS of their outsourced I/O service at
least as good as that on their dedicated reference system.
We adopt the machine learning technique to automatically
abstract performance characteristics of a reference system
for effective implementation of the performance interface.

« While a consolidated storage system is shared by multiple
users, we propose a scheduling strategy to reduce per-
formance degradation for a user’s virtual storage device
(VSD) due to the interference among different VSDs, and
to improve the entire system’s utilization.

e« Modern storage systems are complex and hybrid, con-
sisting of hard disks, solid-state disks, and other types
of devices. We design a migration policy to intelligently
map a virtual device of specific QoS requirements to a



physical device of matching performance characteristics
for high resource utilization.

o We built a storage system simulator, in which hard disks
and solid-state disks are accurately simulated. Our eval-
uation shows that YouChoose can precisely implement
the RSS performance interface, achieve a higher resource
utilization, and improve the efficiency of a consolidated
storage system consisting of different types of storage
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Fig. 2. The consolidated storage system (in the dotted line box) is shared
among multiple application servers. Performance interface is specified via ref-
erence storage system (RSS) and quantified on-line using a machine-learning
model. Each virtual storage device (VSD) has its performance interface, which
is implemented with an efficient QoS-aware scheduler. Decision on VSD
migration is made according to characteristics of I/O workloads, RSSs, and
storage devices.

The rest of this paper is organized as follows. Section II
discusses the related work; Sections III presents the design
of YouChoose; Section IV describes and analyzes experiment
results; and Section V concludes the paper.

II. RELATED WORK

As consolidated storage service promises significant bene-
fits, QoS assurance for its users is one of the most critical
issues to be addressed and much research work has been
focusing on it, including QoS specification, characterization
of storage systems’ performance, and QoS-aware scheduling.

A. Research on Performance Interfaces

The commonly used metrics for users to present their
QoS requirements are throughput and response time of data
access [16], [11]. A serious issue with the use of the simplistic
parameters is that service quality can be significantly affected
by the characteristics of I/O workloads. To mitigate the issue,
researchers have developed I/O workload models to derive
performance bounds [8], [30], [33], [35]. As a workload’s
characteristics can vary in a large range, constraints have
been introduced to guarantee QoS under the constraints. For
example, in the pClock scheduling [11], response time of a
request is bounded only if the request burstiness (the number
of pending requests) and request arrival rate are less than pre-
set thresholds. However, the relationship between the imposed

constraints and the guaranteed performance may not reflect
the performance expectation from users. To provide flexibility,
Cruz et al. introduced the notion of service curves to charac-
terize service quality in the networking domain [9], [26], [31],
[32]. With a service curve, QoS requirements can be expressed
as a function of input traffic rates. Facade [20], a high-end
storage system prototype, adopts this performance interface
to allow higher response times when I/O request arrival rate
increases. However, it is a challenge for users to determine
a series of performance bounds, each associated with an I/O
rate.

Spatial locality is a unique property for the storage system
and even harder than I/O rate to be included in the performance
interface. Performance bounds are specified without regard to
sequential and random access in most systems [7], [10], [16],
[11], [18], [20], [41], [13], [14]. An exception is the Argon
storage server [37], in which a client requests a fixed fraction
of a server’s capability, which is equivalent to setting perfor-
mance bounds aware of spatial locality. However, by binding
the QoS requirements proportionally to the host server’s ca-
pability, a user cannot flexibly designate a performance model
of his choice. Furthermore, to use the method, users need
to be aware of the server’s total capability. In contrast, our
YouChoose scheme allows a user to choose any storage system
matching his performance needs as the reference system,
which then serves as the performance interface.

B. Research on Characterizing Storage Systems’ Performance

To use a reference system as a performance interface, its
performance behaviors must be well characterized to provide
performance goals. For this purpose there are three methods,
namely, analytic device modeling, simulation, and black-box
modeling, to leverage.

Because of its nonlinear, state-dependent behavior, building
accurate analytic models for the disk drive is a non-trivial
task. In [27], Ruemmler and Wilkes developed analytic disk
models that take into account head positioning, platter rotation,
and data caching and read-ahead. The model is further fine-
tuned by Worthington et al. [38], resulting in the widely
used disk simulator, DiskSim [34], which represents the state
of the art in disk simulation. DiskSim models almost all
performance-relevant components of a disk, including device
drivers, buses, controllers, adapters, caches. Compared with
simulations, analytic models are much faster. However, they
usually cannot capture as many details as simulators. Both
approaches require human expertise on the target system. Thus
these methods are called white box approach. The internal
architectures of today’s storage systems have become more
and more complex, and may include proprietary configurations
and use of algorithms and optimizations that are not disclosed.
Therefore, building an accurate model or simulator using the
white-box method cannot be a general solution for defining
any given storage system as a reference system. In contrast,
the so-called black box approach treats the system as a
black box without assuming the knowledge of its internal
components or algorithms. In the approach, the training data



set, containing the quantified description of characteristics of
input requests and their corresponding responses from the
system, are recorded in a table [4], [24], fed into a statistical
model [19], or a machine learning model [40], [22]. To predict
response to an input, some form of interpolation is required.
It is recognized that the accuracy of the method relies on the
selection of training data set and design of feature vectors
(the set of input characteristics) [19], [40]. In our proposed
YouChoose, we use the machine-learning method to model
the chosen reference storage system by selecting effective
training data sets. In addition, the effectiveness of YouChoose
scheduling depends only on the model accuracy with aggregate
performance value for requests issued in a time slot, rather than
for individual requests.

C. Research on QoS-Aware Scheduling

Many QoS-aware 1I/0 scheduling policies guarantee I/O ser-
vice quality by tagging requests from different request streams
with deadlines (or finish times) calculated from users-specified
performance bounds and estimated service times [16], [25].
While the service time is heavily dependent on spatial locality
in the disk-based storage systems, the locality is usually not
included in the performance interface and random access
is usually assumed. However, this can cause resource over-
provisioning. To fix this problem, Stonehenge [16] allows
additional streams to keep joining the system until the system
is found to be overloaded. They have to use the trial-and-
error method because the performance interface does not
contain information of spatial locality and planning of re-
source provisioning is difficult. In contrast, VSD proposed in
our paper comes with a well-defined performance interface
containing each VSD’s resource consumption to enable well-
planned scheduling. The resource consumption is also included
in the Argon’s interface through setting explicit quanta of
disk service time for each stream [37]. However, in a shared
environment it is a challenge to know to which stream a service
time should be accounted [25].

Consolidated storage systems could achieve a higher ef-
ficiency and become more cost effective with data migra-
tion. HP AutoRAID [39] balances I/O performance with
data redundancy through hierarchical storage system design.
It allows data to automatically migrate between a RAID-5
disk array of low speed and a RAID-1 disk array of high
speed. Anderson et al. [5] discussed data migration due to
optimized storage device configurations, which are obtained
by customized analytic performance model. However, users’
QoS requirements are not included in both of the designs.
Lu et al. [21] demonstrated that QoS of I/O services can
be statistically guaranteed during data migration. However,
the QoS requirement is simply presented with latency bound.
Our YouChoose is designed to improve system efficiency by
automating VSD migration among storage devices exhibiting
different capabilities with different workloads, without com-
promising their QoS requirements.

III. DESIGN OF YouChoose

In this section we will define a performance interface with
a reference storage system (RSS) using a machine learning
model. We then present the I/O scheduling strategy to ef-
ficiently implement the interface. Finally, we will describe
a virtual-storage-device (VSD) migration policy to improve
storage system efficiency by considering characteristics of both
I/0 workloads and a hybrid storage system.

A. Defining Reference Systems as Performance Interface

By defining a reference system, we mean the consolidated
storage server knows how the system would behave if a
request, which is currently sent to the host server, was received
by the reference system, or more specifically, the server knows
what the request’s service time on the reference system was.
As the machine learning model is general enough to predict
service time in all types of storage systems, we choose to use
the classification and regression tree (CART) machine-learning
model [40] to obtain request service time on the reference
system, or RSS, for its efficiency and simplicity.
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Fig. 3. Basic steps involved in: (a) the training a CART model for a reference
system, and (b) using the model to predict per-request service time.

A wuser may choose a dedicated storage system as his
RSS and the system administrator is responsible to profile
the system by running representative workloads to obtain
the I/O traces including requests and their service times.
The I/O traces are used to train a machine-learning model
representing the RSS. Figure 3 shows the basic steps involved



in training a model for a reference device and using the model
to predict system response time. In the process, a request’s
characteristics that affect its service time are abstracted into
a set of measures, called feature vector. The vector together
with measured service time of the request, as a member of
the training data set, is then fed into the model. The measures
in the feature vector include request size, on-disk location
of requested data, and the gap between the locations of two
consecutive requests. Note that number of outstanding requests
is not included in the vector, because the model is used to
predict request service time, rather than request response time.
A trained model will be deployed in the host storage system
to on-line predict the service time of a request on the RSS,
instead of the time on the host system, by feeding the feature
vector of the request into the model.

To allow the trained model to make accurate predictions,
the training data set must provide a comprehensive coverage of
workload characteristics. To this end, we developed a synthetic
I/0 request generator producing workloads covering a large
spectrum of request size and spatial locality. In addition, we
found that using part of real workload presented to the host
system to train the model is helpful to improve the accuracy
due to existence of self-similarity in a stabilized workload.
This is possible if a user’s actual workload is known in advance
or if the reference system is still available for profiling to
collect training data set after the service is deployed. Because
of complexity of storage devices, building a model of high
accuracy for each individual request is hard. Fortunately,
request-level accuracy is not required for our scheduling, and
only accuracy for requests in a time window is needed. This
makes it feasible to use the machine-learning method for
implementing the RSS interface.

B. Supporting Virtual Storage Devices

When an RSS is chosen and its corresponding CART model
is trained and deployed in the host system, a virtual storage
device (VSD) is created for the RSS in a disk array and
managed together with other VSDs. To allocate the resource
to the hosted VSDs according to their QoS requirements, the
scheduler needs to keep track of how the requirements are
met for each VSD and schedule requests to these VSDs ac-
cordingly. To this end, YouChoose uses a multi-clock schedul-
ing framework, which sets up N + 1 clocks, including one
reference clock (ref_clock) for each of the N co-existing
VSDs, and the wall clock (wall_clock) (see Figure 4(a)). A
reference clock of a VSD is advanced in this way: (1) When
a VSD’s request arrives at the host system, its service time
(ref_service_time) on the VSD’s RSS is computed via the
RSS’s trained CART model and the VSD’s clock is advanced
by the service time (ref_clock += ref_service_time); (2)
When it is the turn for the VSD to be served but the VSD
does not have any pending requests, its reference clock is set
to be the wall clock time (ref_clock = wall_clock). Using
the clocks, YouChoose can easily monitor whether or not a
VSD meets its performance requirement by simply comparing
ref_clock and wall_clock. The next VSD selected by the

Stream 1 Stream 2 | Stream 3]
QoS Scheduling
EEES

Reference Reference Reference
Clock 1 Clock 2 Clock 3
Wall Clock @ @
(a)
Slot K+2
Slot K+1
Slot K
(b)
Fig. 4. (a) Illustration of the YouChoose scheduling policy that implements

the RSS performance interface. Besides the wall clock, each VSD, serving
a stream of requests from applications, has its reference clock. A request is
represented by a rectangle, whose height indicates the service time of the
request on the chosen reference system. Thus, the reference clock tracks
received service with respect to the reference system. Note that at a lower
level each disk also has its disk scheduler, such as C-SCAN (not depicted).
(b) Batching is used to minimize interference among VSDs. Requests to the
same VSD are grouped into time slots of fixed size, and the sum of on-RSS
service times of requests in a slot is not greater than the slot size. Slots of
each VSD are numbered consecutively.

scheduler for service is the one whose reference clock is
slower than the wall clock, which indicates the VSD’s perfor-
mance has not kept up with that of its RSS. The gaps between
the wall clock and each of reference clocks show quality of
service for VSDs and tightness of resource provisioning. This
framework enables YouChoose to automatically take all the
dynamics of workload’s characteristics into account, including
spatial locality, I/O rate, and request size, in the assurance of
QoS. Furthermore, it does not need to quantify host-system’s
physical resources consumed by each VSD in making the
scheduling decision, which is a very challenging task [25].
When multiple VSDs are hosted on the same physical
system, their interference can be a serious performance barrier.
To mitigate the interference, YouChoose batches requests to
the same VSD into time slots and schedules requests from
the same slot together (see Figure 4(b)). All slots are of the
same capacity in seconds, and the sum of the service times



VSD1 | VSD2 | VSD3 | VSD 4
HDD Array A | 53% 2% | 33% 2%
ODD Aray B | 10% | 54% | 30% 6%
SSD Array 8% 63% 16% 8%
TABLE I

AN EXAMPLE RESOURCE-CONSUMPTION MATRIX. IN THE EXAMPLE,
THERE ARE FOUR VSDS HOSTED ON THREE ARRAYS, INCLUDING TWO
HDD ARRAYS A AND B AND ONE SSD ARRAY C. EACH ROW OF THE
MATRIX LISTS THE PERCENTAGE OF SERVICE TIME FOR ANY VSD ON A
PARTICULAR DEVICE ARRAY OVER TOTAL SERVICE TIME ON THE ARRAY.
THEREFORE, THE SUM OF THE PERCENTAGES IN A ROW IS 100%. THE
CHANGE OF PERCENTAGES IN THE MATRIX HINTS ACCESS PATTERNS OF
THE VSDS. FOR EXAMPLE, VSD 1 CHANGES ITS PERCENTAGE FROM 53%
TO 8% WHEN IT MOVES FROM HDD ARRAY A TO THE SSD ARRAY,
WHICH SHOWS IT’S PROBABLY A RANDOM WORKLOAD. VSD 2 CHANGES
ITS PERCENTAGE FROM 12% TO 68% WHEN IT MOVES FROM HDD ARRAY
A TO THE SSD ARRAY C, WHICH SHOWS IT’S PROBABLY A SEQUENTIAL
WORKLOAD AND THE SYSTEM HAS OTHER SIGNIFICANT RANDOM VSDs.
IF CURRENTLY VSD 1 1s ON HDD ARRAY A AND VSD 2 1s ON SSD
ARRAY, BOTH ARRAYS CAN SIGNIFICANTLY REDUCE THEIR LOADS IF WE
SWITCH THE HOSTS OF THE TWO VSDS. IN CONTRAST, VSD 4 1S
INSIGNIFICANT IN TERMS OF RESOURCE CONSUMPTION AND SHOULD BE
EXCLUDED FROM MIGRATION AS MIGRATION OF DATA CAN BE
EXPENSIVE.

of requests held in a slot cannot exceed a slot’s capacity.
Note that these are service times on the reference systems
and are obtained from the CART models. Therefore, the RSS
performance interface is maintained. In the case where there
are too few requests in a slot of a VSD, YouChoose may move
requests from neighboring slots into the slot to improve disk
efficiency.

C. Migrating Virtual Storage Devices

The consolidated system usually consists of heterogeneous
devices, including arrays of hard drive disks (HDD) and
solid-state disks (SSD). Because VSD is created based on
a reference system, its actual resource demand is bounded
by the capability of the reference system. Thus, a capacity
planning is possible to determine the largest number of VSDs
that can be co-hosted in a disk array with its known capability
without performance violation. However, this is not necessarily
translated into efficient use of the storage system, as the
efficiency relies on both device and workload characteristics.

The goal of VSD migration is to make the host system
most efficiently used so as to accommodate as many VSDs as
possible. This is achieved through migrating those significant
but misplaced VSDs to the device arrays that can most
efficiently host the VSDs, if such device arrays are available. A
VSD becomes significant when it consumes a relatively large
proportion of resources by being associated with a relatively
powerful RSS and having a high request-arrival rate. A VSD
is misplaced if there exists a device array that can more
efficiently host the VSD and is able to make room to host
the VSD. Therefore, a significant and misplaced VSD can be
identified only when a VSD is deployed and the characteristics
of other VSDs and all device arrays are known. To this end,
we introduce the resource-consumption matrix.

As we know, all requests to a VSD are packed into the
VSD’s slots, whose capacity is determined by the VSD’s RSS
(see Figure 4(b)). For each VSD hosted on a shared storage
system, we pick the same set of contiguous slots to form a
slot group. The requests in a VSD’s slot group are used as
a sample of the VSD’s characteristics including arrival rate,
access pattern, and RSS requirements. Moreover, we train
the CART models for each device array using the synthetic
training data set described in Section III.A, and use the models
to represent the arrays. On each device array, we feed the
requests in each VSD’s slot group into the array’s model
to obtain the service time for the VSD. We then calculate
the percentage of a VSD’s service time on an array over
total service time of all VSDs on the array, and write the
percentage in the cell of the matrix for the VSD on the array
(see an example in Table I). The percentage indicates the
relative resource consumption for a VSD, or its significance,
on an array. There can be two scenarios where the percentage
for a VSD becomes smaller when its host is changed from
array A to array B. In the first scenario, the VSD’s service
time is reduced. For example, when the VSD has mostly
random requests, array A is an HDD array, and array B is
an SSD array. In the second scenario, other VSDs’ service
times are increased. For example, when the VSD has mostly
sequential requests, and some of other VSDs have random
requests, array A is an SSD array, and array B is an HDD
array. A significant reduction of the percentage indicates an
opportunity to improve efficiency of the shared storage system.
Migration manager of YouChoose runs in the controller of the
shared storage system to periodically take samples of VSD
slots and update the matrix by executing the CART models.
The manager monitors the matrix to identify a VSD whose
resource consumption percentage can be reduced by more than
a threshold value if it is migrated from its currently source
device array to a destination array. If a VSD is consistently
identified, the manager will check whether the destination
array has spare capacity to hold the VSD or has one or
multiple VSDs that can reduce their percentages by more than
the threshold if they are migrated to the source array. If yes,
these migration operations are carried out, which improves the
system efficiency and allows more VSDs to be hosted with
their QoS requirements met.

IV. PERFORMANCE EVALUATION

We built a trace-driven simulator to evaluate the perfor-
mance of the YouChoose scheme. The simulator is designed to
simulate consolidated storage system consisting of heteroge-
neous devices, including arrays of hard drive disks and arrays
of solid state disks. Each array can be configured to have
different types of disks, number of disks, array organizations
(RAID 1 vs RAID 5), and data striping patterns. The archi-
tecture of the simulator is shown in Figure 2. The simulated
consolidated storage system is shared by multiple application
servers. I/O workloads from the applications are viewed as
I/0O request streams to different VSDs. Each VSD has its own
RSS interface, which is converted into latency requirements
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on I/O requests by the trained CART models. Our simulator
integrates the widely used DiskSim [34] to simulate the hard
disk. DiskSim faithfully captures many details of a hard drive
and has demonstrated a very high accuracy with validated
hard disks. In the experiments, we simulated two validated
hard disk models: QUANTUM_TORNADO with 10025RPMs
and an average seek time of 1.245ms (hereafter referred to as
the fast disk) and SEAGATE_ST32171W with 7200RPMs and
an average seek time of 1.943ms(hereafter referred to as the
slow disk). In addition, we patch the DiskSim software with
a flash translation layer [3] implementing the DFTL page-
level mapping scheme [12] to simulate the solid-state disk,
which has a read speed of 32us/page and a write speed of
101 us/page. For a disk array, the striping unit size is 4KB.
The simulator has components to receive and enqueue requests
from multiple streams and dispatch them to their respective
VSDs. A centralized manager in the frontend controller makes
decisions on VSD migrations.

The simulator is driven by both synthetic and real-world
traces. The ratio of numbers of read requests and write requests
is 2 : 1 in the synthetic traces. Size of each request is 4KB.
To generate traces of various spatial locality, we adjust the
probability with which the data requested in any two consecu-
tive requests are contiguous and use the probability to quantify
the spatial locality. Thus, a 0% spatial locality indicates fully
random requests, in which none of two consecutive requests
are for adjacent data, and 100% spatial locality indicates
that the entire trace consists a sequence of requests for fully
sequential data. In addition to the synthetic traces, we select
four real-world traces. Three of them are widely used ones
(OpenMail [17], WebSearch [23]), and Financial [23]). The
fourth one (VideoStreaming) was collected when we continu-
ously played movies in a local workstation. Trace OpenMail
was collected on a production e-mail system running the HP
OpenMail application. Both traces WebSearch and Financial
are made available by the Storage Performance Council (SPC).
Among them, WebSearch is collected from a popular search
engine, and Financial is collected when an OLTP application
runs in a financial institute. Except VideoStreaming, all the
real-world traces contain mostly random requests. Among
them, OpenMail and WebSearch are read dominant and Finan-

Time (Seconds)

Window Size (0.08s)

Relative Error (%)

Time (Seconds)

(b) (c)

Relative errors of request service times with different window sizes.

cial is write dominant. VideoStreaming contains almost fully
sequential reads.

In the following, we will present a series of experiments
to evaluate the accuracy of implementing the RSS interface
using the CART model, and the effectiveness of YouChoose
to meet its design goals.

A. Accuracy of the RSS Interface

To test how accurately a trained machine-learning CART
model can represent an RSS chosen by YouChoose’s users
as performance interface, we choose a RAID-0 disk array
consisting of three slow disks as RSS. To train a CART model
for the disk array, we generate a synthetic trace covering a full
spectrum of spatial locality. Every synthetic trace consists of
10,000 mixed I/O requests of reads and writes. In addition,
we randomly choose a segment of trace (5,000 requests) from
the actual workload on the RSS’s VSD (WebSearch in this
experiment). These traces are replayed on the disk array and
the results are used to train the model. We then run the model
with the WebSearch trace (excluding the segment that has been
used for the training purpose) and compare the service time
of each request predicted by the model and that given by the
RSS. The request’s relative error, which is the ratio of the
absolute error between these two times and service time given
by the RSS, is shown in Figure 5 (a).

The average relative error for all the requests is 24%,
which is substantial but is within the range we have expected
considering the generality of the model method. Fortunately
the errors are roughly evenly distributed in the negative and
positive sides in the graph. It is noted that it is the accuracy
of the sum of the predicted service times for all requests
placed in a VSD’s time slot that determines the accuracy of the
RSS interface, rather than the accuracy for individual requests.
For this reason, we calculate the window-wide relative error,
which is the ratio of sum of service times predicted by the
model and that given by the RSS, respectively, for all requests
within a time window. Figure 5 (b) and (c) show the window-
wide relative errors for window sizes of 0.04s and 0.08s,
respectively. Apparently, as we increase the window size, the
relative error is improved. When the window size is 0.08s,
more than 85% of the relative errors are smaller than 15%.



500 T T

500 T T

\/
/ U\’w | “J'

500 T T

T y
Spatial Locality (100%;
Spatial Locality (75%
Spatial Locality (50%,
Spatial Locality (25%
Spatial Locality (0%
hn A

Spatial Locality (100%)
Spatial Locality (75%;
)
)

Spatial Locality (50%
Spatial Locality (25%
Spatial Locality (0%

)

)
.
) 400
‘ )

MANN

Al

M
MM

A
M

300 -

Throughput (IOPS)

Spatial Locality (100%)
Spatial Locality (75%)
Spatial Locality (50%) -
400 Spatial Locality (25%) 4 400 |
. Spatial Locality (0%) .
g , 2
S 300 PVAAAAAARM AN AN 5
=1 5
a a
) )
3 200 1 3 200
< <
= [
100 4 100 |
0 . . . . 0 . .
0 20 40 60 80 100 0 20 40
Time (Seconds)
(a)
Fig. 6.

Time (Seconds)

60 80 100

Time (Seconds)

(©)

(b)
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receiving one of the workloads. The scheduling policy is YouChoose. (c) Throughput of the five workloads that use the same throughput bound (100 IOPS)

as performance interface, The scheduling policy is VirtualClock.

In the aforementioned model training, we used a segment of
real workload trace to allow the model to be more customized
to a particular type of workload for higher accuracy. We
expect that in most cases a segment of sample workload is
available when a user chooses his RSS. However, when the
sample trace is not available, or the workload is too dynamic
to select a representative segment of trace, the model accuracy
would be reduced. To investigate the issue, we train a CART
model using only the synthetic traces and compare the CDF
curves of window-wide relative errors of the models with
and without using the sample workload (time window size
of 0.08s). As shown in Figure 7, a representative sample
of real workload does considerably improve the accuracy of
the model. Meanwhile, even if the sample workload is not
used for model training, the accuracy of the model is still
acceptable with 80% of the errors less than 30%. In the
following experiments, we use relatively small samples of
actual workloads for model training.
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Fig. 7. CDF curves of window-wide relative errors. The models are trained
either using only synthetic traces or using both synthetic traces and sample
of actual workloads.

B. Spatial-Locality-Aware Performance Assurance

An important property of the YouChoose scheduling strategy
is its built-in awareness of workloads’ spatial locality. That
is, its scheduling decision is not made simply according to
number of requests. Instead, it also accounts for cost of serving
a request, which is mainly determined by the workload’s
spatial locality. To evaluate the effectiveness of the scheduling
strategy, we set up five VSDs on one host RAID-0 disk array
consisting of eight fast disks. All VSDs are associated with the
same RSS interface, a RAID-0 disk array consisting of two
slow disks. We then feed five synthetic traces into the five
VSDs, respectively. The traces uses 4KB requests, covering
a full spectrum of spatial locality from 0% (fully random)
to 100% (fully sequential) with 25% increment. All requests
arrive quickly enough to saturate the disks.

Figure 6 (a) shows the throughput of the five workloads,
each on its own dedicated reference storage system. Appar-
ently, the observed throughput is correlated to the workload’s
spatial locality — a more sequential access pattern produces
a higher throughput. When the five workloads are placed
on the five VSDs, respectively, on one host system, their
throughputs are still correlated to their spatial locality, and
each workload’s throughput is close to their counterpart in the
dedicated RSS system as the host system is sufficiently power-
ful (See Figure 6(b)). This result indicates that the scheduling
strategy of YouChoose faithfully implements the performance
interface specified with a chosen RSS, independent of spatial
locality. For comparison, we use VirtualClock [9], the schedul-
ing algorithm from which many storage policies are derived
from [16], [11], to implement an SLA-like QoS interface. Each
of the five workloads requires the same 100-IOPS throughput
bound. Figure 6(c) shows the throughput of the workloads
with the throughput bound. We can see that each of the
workloads receives almost the same throughput but none
of them consistently meets its QoS requirement. The same
throughput received by each workload does not indicate that
the host’s resource is equally provisioned to the workloads.
In fact, the random ones receive much more service than the
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Fig. 8. Throughput of two synthetic workloads. Workload 1 has three periods, each with a differing spatial locality (100%, 75%, and 0%). Workload 2 has
a uniform spatial locality (75%). (a) Each workload exclusively runs on the RSS system. (b) Each workload runs on its VSD. The two VSDs are co-hosted

on a host storage system and are associated with the same RSS. The schedulin,

g policy is YouChoose. (c) The two workloads are co-hosted on a host storage

system and use the throughput-bound performance interface. The bound is 100 IOPS for both workloads. The scheduling policy is VirtualClock.

sequential ones by maintaining an equalized throughput. When
the same QoS bound is requested for the workloads, it is
usually intended that they are going to be fairly treated by
the scheduler in terms of the amount of received service. If
this was taken accounted of, at least the sequential workloads
should have had their throughput bound met. In contrast, as
the workloads specify the same RSS performance interface,
YouChoose does equally provide services to them. In addition,
we observe that the throughput of a workload in Figure 6(c)
varies more greatly than that in Figure 6(b). The reason why
YouChoose can reduce the variation is that it packs more low-
cost sequential requests in a VSD’s slot than random requests
to ensure that each slot is of the same size. However, if the
objective is to meet the throughput bound, each slot has the
same number of requests, and the actual size of slot holding
random requests can be much larger than that for sequential
requests. While requests are scheduled in a slot-by-slot fashion
to minimize overhead, the variation of the slot size causes the
large throughput variation, which is usually undesirable.

C. Performance Isolation

Performance isolation is an important design objective for
a policy scheduling requests from different users with QoS
requirements. For YouChoose, this means workload on one
VSD should not interfere with other VSDs. Specifically, the
performance requirement of the workload on one VSD should
not be violated because of the change of access pattern in
the workloads on other VSDs sharing the same host system.
To evaluate the effectiveness of YouChoose on this aspect,
we generate two synthetic traces. One of them (Workload 1)
has three segments of requests, each with a differing spatial
locality (100%, 75%, and 0%), running on one VSD; the other
one (Workload 2) has 75% spatial locality and runs on another
VSD. These two VSDs are associated with the same RSS, a
RAID-0 disk array composed of two slow disks. A RAID-0
disk array of three fast disks is employed to host these two
VSDs.

Figure 8 (a) shows throughput of the two synthetic work-
loads running on their respective dedicated reference systems.

As shown in Figure 8(b), with the YouChoose scheme, the
trend of throughput curves of the two workloads is similar
to that in their dedicated runs on the RSS. When Workload
1 reduces its spatial locality from 100% to 75%, its resource
demand would significantly increase if the same throughput
was to be maintained, probably resulting in reduced resource
provisioning to Workload 2. However, YouChoose bounds re-
source allocation to a VSD with its associated RSS regardless
workloads’ spatial locality, when the resource is competed by
multiple VSDs. Therefore, we see Workload 1’s throughput
is accordingly reduced to 112 IOPS at the 28th second, and
further reduced to 39 IOPS at the 81th second when its spatial
locality keeps reducing to 0%. In the meantime, the throughput
of Workload 2 is only insignificantly affected, showing the
increased demand from Workload 1 does not cause the loss of
resource allocated to Workload 2. Of course, when Workload
2 comes to its end, the host can use the released resource
to serve Workload 1 at the 165th second. Figure 8(c) shows
the throughput when throughput-bound QoS requirement is
required. We can see that the throughput of Workload 2 is
accordingly reduced whenever Workload 1 reduces its spatial
locality and increases its resource demand. To keep the two
workloads to have the same throughput at any circumstance,
the scheduler is hard to maintain performance isolation when
the resource is constrained.

To observe how YouChoose would perform with real-world
workloads, we run a segment of WebSearch trace (referred
to as Workload 1) on VSD 1, and initially run a segment
of OpenMail trace on VSD 2, followed by a segment of
another WebSearch trace and a segment of Financial trace
(referred to as Workload 2). We change the component traces
of the Workload 2 to show how differing spatial locality and
arrival rate would affect the throughput. Figure 9 (a) shows
throughput of the two workloads, each running on its dedicated
RSS. When Workload 2 changes from the OpenMail trace to
the WebSearch trace, the throughput increases due to Web-
Search’s higher spatial locality. When the trace further changes
to Financial, the throughput decreases because of the reduced
arrival rate, which is reduced by more than ten times. Figure 9



VSD1 | VSD2 VSD3 VSD4 VSD5 | VSD6 VSD7
HDD Array A | 7.6%* | 7.6%* 7.6% 31.0% 7.6% 7.6% 31.0%*
HDD Array B 8.4% 8.4% 8.4% 29.0% 8.4%* | 8.4%* 8.4%
SSD Array 142% | 142% | 142%* | 14.5%* | 14.2% | 14.2% 14.5%
TABLE II

THE RESOURCE-CONSUMPTION MATRIX FOR A HYBRID HOST STORAGE SYSTEM CONSISTING OF THREE DISK ARRAYS (TWO HDD ARRAYS A AND B
AND ONE SSD ARRAY C). SEVEN VSDS ARE HOSTED IN THE SYSTEM. AMONG THEM, VSD 4 AND VSD 7 HAVE WebSearch AS THEIR WORKLOADS, THE
OTHER VSDS HAVE VideoStreaming AS THEIR WORKLOADS. THE ASTERISK INDICATES THE DISK ARRAY ON WHICH A VSD IS HOSTED.
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Fig. 9.  Throughput of two real-world workloads on the dedicated RSS

system (a) and on the host system (b). Workload 1 consistently uses the
WebSearch trace. Workload 2 includes traces OpenMail, WebSearch, and
Financial, running in a one-after-one manner in this order.

(b) shows throughput of the two workloads co-hosted on the
host disk array. We can find that the trends of two VSDs’
throughput curves are similar to their counterparts in Figure 9
(a). One difference between them is that the throughput on
the host system is higher than that on the dedicated RSS,
because the system has extra capability to provide the VSDs
with more services than they require. For their throughput
improvements, we can see that the extra capability is allocated
to the two workloads in proportion to their RSS capability.
In this example, both VSDs use the same RSS. However,
Workload 1 has a higher spatial locality, and thus it receives
a larger throughput increase. Figure 9 (b) clearly shows that
the throughput of Workload 1 is insignificantly affected by the
changes of spatial locality and arrival rate. In particular, when

Workload 2 runs into the Financial trace with a much reduced
arrival rate, it cannot fully use the reserved RSS capability and
the released capability helps improve VSD-1’s throughput.

D. Efficiency of Multi-array Host System

A consolidated system may consist of hybrid storage devices
like HDD and flash-based SSD. In this section, we evaluate
the impact of VSD migration on the efficiency of the host
systems. We configure three disk arrays: an HDD array of
four fast disks (HDD array A), another HDD array of six fast
disks (HDD array B), and an SSD array of six solid-state
disks (SSD array). To make the experiment manageable, we
let all VSDs use the same RSS, an array of two slow disks,
and only two traces, VideoStreaming and WebSearch, are used
to form workloads. These two traces represent sequential and
random access patterns, respectively. For a number of VSDs
to be hosted in the hybrid system, we set a sequentiality
factor to control the number of VSDs using VideoStreaming
as their workload. The factor is defined as the ratio between
the number of VSDs receiving the VideoStreaming workload
and the total number of VSDs in the system. For example, if
we have ten VSDs with a factor of 0.7, there are seven VSDs
receiving sequential requests from VideoStreaming, and the
rest receiving random requests from WebSearch. Furthermore,
we assume that initially the VSDs on any disk array take their
workloads from the two traces in a proportion consistent with
the factor. We stress the host system by keeping adding VSDs
onto it until no spare capability in any array is available.
VSDs are initially placed on the disk array with the largest
spare capability. In the process, the pre-set sequentiality factor
is maintained for all the VSDs in the system, and is also
maintained for the VSDs on disk arrays when the YouChoose
migration policy is disabled.

When the YouChoose migration policy is in effect, a
resource-consumption matrix is maintained to track how ef-
ficiently a VSD’s hosted on a disk array. Table II shows the
matrix when there are seven VSDs in the system and the
factor is 0.7. We use 10% as the threshold value for making
migration decision. The table shows that VSD 7 is currently
on HDD array A with a service-time percentage of 31.0%,
and a migration to the SSD array can reduce the percentage
to 14.5%. The migration will be carried out as the percentage
is reduced by 16.5%, larger the 10% threshold. As the SSD
array still has spare capability, none of its currently hosted
VSDs needs to be migrated out.



Sequentiality | Migration | Migration
Factor Disable Enabled
0% 22 22
30% 17 21
70% 15 18
100% 13 13
TABLE III

A COMPARISON OF THE LARGEST NUMBER OF VSDS A HYBRID STORAGE
SYSTEM CAN HOLD WITHOUT PERFORMANCE VIOLATION WHEN THE
YouChoose MIGRATION POLICY IS DISABLED OR ENABLED.

Table III shows the largest number of VSDs that can be held
in the system without performance violation with the migration
policy enabled or disabled at four different sequentiality factor
values. In the table, we see that as the factor value is O or 1,
i.e., the VSDs all with random workload or all with sequential
workload, migration does not make a difference. Actually the
migration is not activated because it cannot improve system
efficiency. It is observed that the more random-workload VSDs
there are, the larger number of VSDs can be accommodated
in the system. This is because the chosen RSS is a hard-
disk based array, which is inefficient in serving random work-
load. While a flash-based SSD array exhibits only moderate
performance advantage over the HDD array with sequential
workload, it exhibits a much better performance than the HDD
array with random workload. In addition, the existence of
random workload and SSD arrays allow the migration strategy
to identify opportunity for efficiency improvement through
migrating random workload to the SSD array and moving
sequential workload out of the SSD array. With the factor
values of 0.3 and 0.7, 24% and 20% more VSDs, respectively,
can be held in the system. Apparently, in a real prototyping
of the design, a tradeoff must be made between the improved
efficiency and the cost of VSD migration. The tradeoff can be
implemented by adjusting the threshold value for activating
migration.

V. CONCLUSIONS

In this paper, we propose the YouChoose scheme to support
using user-chosen storage system (RSS) as a performance
interface for I/O requests. Compared with traditional interfaces
like throughput and latency bounds, RSS provides a highly
effective method for users to specify I/O performance require-
ment and for system administrators to cap a user’s resource
consumption and to efficiently schedule resource. Note that
YouChoose can accommodate a best-effort VSD. Further-
more, the performance interface with fixed latency/throughout
bounds is only a special case of the RSS interface, in which
the CART model generates a constant service time as the
performance requirement.

By leveraging machine-learning technique, YouChoose does
not need to explicit consider many dynamics in the service
of I/O requests, such as spatial locality and arrival rate, that
are usually hard to be accounted in the designs. The RSS

interface is efficiently supported with a multi-clock scheduling
framework and an efficiency-improvement migration strategy.
Our experiment evaluation using synthetic and real-world
traces shows that YouChoose can faithfully implement QoS
requirement specified with the RSS interface and provide
strong performance isolations. In addition, the VSD migration
in YouChoose can increase system efficiency by matching
characteristics of storage devices and workloads.
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