
S-FTL: An Efficient Address Translation for Flash
Memory by Exploiting Spatial Locality

Song Jiang∗, Lei Zhang†, XinHao Yuan†, Hao Hu† and Yu Chen†
∗The ECE Department

Wayne State University Detroit, MI, 48202, USA
Email: sjiang@ece.wayne.edu

†Department of Computer Science and Technology
Tsinghua University

Beijing, China
Email: {sosilent.lzh,xinhaoyuan,haohu.th,chyyuu}@gmail.com

Abstract—The solid-state disk (SSD) is becoming increasingly
popular, especially among users whose workloads exhibit sub-
stantial random access patterns. As SSD competes with the
hard disk, whose per-GB cost keeps dramatically falling, the
SSD must retain its performance advantages even with low-
cost configurations, such as those with a small built-in DRAM
cache for mapping table and using MLC NAND. To this end,
we need to make the limited cache space efficiently used to
support fast logical-to-physical address translation in the flash
translation layer (FTL) with minimal access of flash memory and
minimal merge operations. Existing schemes usually require a
large number of overhead accesses, either for accessing uncached
entries of the mapping table or for the merge operation, and
achieve suboptimal performance when the cache space is limited.
In this paper we take into account spatial locality exhibited in the
workloads to obtain a highly efficient FTL even with a relatively
small cache, named as S-FTL. Specifically, we identify three access
patterns related to spatial locality, including sequential writes,
clustered access, and sparse writes. Accordingly we propose
designs to take advantage of these patterns to reduce mapping
table size, increase hit ratio for in-cache address translation, and
minimize expensive writes to flash memory.

We have conducted extensive trace-driven simulations to eval-
uate S-FTL and compared it with other state-of-the-art FTL
schemes. Our experiments show that S-FTL can reduce accesses
to the flash for address translation by up to 70% and reduce
response time of SSD by up to 25%, compared with the state-
of-the-art FTL strategies such as FAST and DFTL.

I. INTRODUCTION

The flash-memory based solid-state disk (SSD) is rapidly
gaining ground in the mainstream storage market traditionally
held by the hard disk. By using semiconductor chips instead
of rotating disk platters to store data, SSD offers strong
resistance to extreme shock, vibration, and temperature, as
well as low power consumption, which help it widely adopted
in military and aerospace industries running mission-critical
applications. Furthermore, while SSD can potentially achieve
a high I/O throughput, especially for random access, which
has been devastating hard disk’s performance, SSD becomes
increasingly popular in the enterprise computing environment
as a performance booster, such as in Sun Storage 7000 Unified
Storage Systems [1] and the SSD-based computing platforms
to be built by Google and Baidu. However, as the hard

disk keeps its trend of rapidly falling price, the significantly
uncompetitive price of SSD makes it to hold only a niche
industrial and high-priced mobile computing markets. Today’s
per-GB price of a low-end or middle-level flash SSD is around
20 - 100 times higher of that of the hard drive. For high-end
flash SSD, the ratio can be 500 or even higher [8]. To contain
the cost of flash SSD and make its price more competitive,
manufacturers need to squeeze higher performance from SSDs
with configurations of relatively low cost, such as using multi-
level cell chips and small DRAM cache size [9].

The NAND flash memory, which is used in SSD for data
storage, may use single-level cell (SLC) or multi-level cell
(MLC) technologies. The SLC flash stores only one bit of data
in one memory cell, while the MLC flash stores two or more
bits in one memory cell. The increased density of the MLC
flash significantly reduces the production cost and increases
the capacity of SSD, making it popular with the low-end
and middle-level SSDs. While for a flash memory the write
operation is usually 5-10 times slower than the read operation
in terms of page access time, the write time of MLC flash
is additionally more than three times higher that of the SLC
flash, making write a very expensive operation for the MLC
flash. In addition to the writes directly requested by users,
SSD’s internal management schemes, especially those for the
address translation, can produce additional write operations. To
maintain a high performance for the MLC SSD, these write
operations should be minimized.

As in the hard disk, SSD has a DRAM memory as buffer
cache for caching data pages and mapping table. Because
DRAM is much faster than the flash, especially for writes,
it is critical to maintain a high hit ratio in the buffer cache
for a high SSD’s performance. To contain the cost of SSD
to make it competitive to the hard disk, manufacturers prefer
to provide a smaller DRAM cache. The challenge is whether
we can still maintain a high hit ratio with a reduced cache.
While the issue on achieving a high hit ratio for data caching
in a buffer of limited size is well studied [13], [12], [14], it
is not yet clear how to minimize the number of flash memory
access associated with address translation with limited cache
space for mapping table. Like the hard disk, SSD provides

c©978-1-4577-0428-4/11/$26.00 2011 IEEE

a logical address abstraction for external software to specify
locations of their requested data. Internally SSD maintains a
flash translation layer (FTL) to translate a logical address to
its corresponding physical address on the flash. SSD is a block
device, in which the read and write operations are conducted
in the unit of page, whose size usually ranges from 0.5KB
to 4KB. Accordingly, FTL is used to translate a logical page
number (LPN) to a physical page number (PPN). If there are
not any restrictions on the way of mapping LPNs to PPNs,
the size of the table recording the LPN-to-PPN mapping for
facilitating the translation is proportional to the number of
pages in the SSD. This is referred to as the page-level FTL,
in which the so-called page-level mapping is used. The table
of the page-level FTL is almost impossible to be fully held in
the cache of any large-size SSDs. An an example, a 128GB
SSD can require 256MB cache for the table, in addition to a
usually larger cache space for caching data. If only a fraction
of mapping table is cached, a substantial number of access
misses on the table and writebacks of dirty table entries could
add to the overhead of the flash access. As we know, some
mapping tables used in the system software, such as page
table in the operating system for translating virtual address to
physical address and inodes in the file system for translating
in-file logical address to on-disk logical address, do not have
any mapping restrictions either. However, these tables do not
have similar performance concern, because they are cached in
the main memory of much larger size, instead of in-device
cache.

To contain the size of a mapping table, basically there
are two methods that impose restriction on the mapping of
a source address to a destination address. The first one is to
allow a source address to be mapped to only one or a small set
of destination addresses. This is the method used in the direct
mapped or set-associative processor cache or TLB. It can
effectively eliminate the mapping table. The second method
is to exploit or create mapping regularity between the source
addresses and destination addresses. This method is most suit-
able to the hard disk when it maps the logical block addresses
(LBAs) exposed to the external to its physical addresses,
because it intentionally maps contiguous logical addresses to
contiguous physical addresses to allow programmer to exploit
the hard-disk’s high throughput associated with sequential
access. By exploitation of this regularity, the translation can
be done using a small mapping table about segments of
contiguous mappings and some simple calculations.

Unfortunately, flash memory has the unique “erase before
write” requirement, i.e., a page that has been programmed, or
has stored data, must first be erased before new data can be
written into it. In addition, the erase operation is carried out
in a much larger granularity, named as block, than page. A
block usually contains 32-128 pages. Because in-place write
is not allowed, the block-level FTL in SSD, which attempts
to maintain the mapping regularity similar to that for the hard
disk, is prohibitive, though the size of the mapping table is
small. In the block-level FTL, its mapping table records only
the mapping from logical block number (LBN) to physical

Data BlocksNew Data Blocks

LPN = 0 LPN = 0 �

Data BlocksNew Data Blocks

LPN = 1

LPN = 2

LPN = 1 x

LPN = 2 xLog Block

LPN = 1 �
LPN = 3 LPN = 3 x

LPN = 2 �

LPN = 3 �

LPN = 4 � LPN = 4

LPN = 5

LPN = 4 x

LPN = 5 �

LPN = 6

LPN = 7

LPN = 6 �

LPN = 7 �

(a)

New Data Blocks Data Blocks

LPN = 0 LPN = 0 x

LPN = 1

LPN = 2

LPN = 1 x

LPN = 2 xLog Block

LPN = 0 �

LPN 1 �

LPN = 3 LPN = 3 �

LPN = 1 �

LPN = 2 �
LPN 4 LPN 4LPN = 4 � LPN = 4

LPN = 5

LPN = 4 x

LPN = 5 �

LPN = 6

LPN = 7

LPN = 6 �

LPN = 7 �

(b)

Fig. 1. Illustration on how the block-level FTL incurs high merge operation
cost due to its inability on exploiting readily available contiguity in the page
mapping. In the example, we assume each block has four pages. For each
mapping entry, ”

√
” indicates that the corresponding physical page is valid, or

contains valid data, while ”×” indicates an invalidated physical page. (a) Eight
pages have to be copied to reclaim the log block, though the LPNs in the block
are contiguously laid out. Note that if the four LPNs in the block are 0, 1, 2,
and 3, instead of 1, 2, 3, and 4, the log block can be simply switched into a
data block without any page copying. (b) Eight pages have to be copied to
reclaim the log block, though most of the LPNs in the block are contiguously
laid out.

block number (PBN) by ensuring that the offset of an LPN
in the logical block is the same as that of its corresponding
PPN in the physical block, or, within a block contiguous
logical pages are mapped to contiguous physical pages. Once
one page in a block is to be updated, it will be written
into an erased block (instead of an in-place overwriting), and
the original copy of the page is invalidated. To enforce the
mapping regularity required by the block-level FTL, all the

other pages in the block have to be copied into the erased
block, introducing overhead flash access. Though its mapping
table is proportional to the number of blocks and is small
enough to be held in the cache, its overhead flash accesses
(reads and writes due to the copying) are unaffordable. To
alleviate the high cost, a hybrid FTL was proposed to use
a small number of blocks, called log blocks, as a buffer to
receive page writes. Log blocks are managed with the page-
level mapping. The pages in the log blocks are moved into
data blocks managed with the block-level mapping in a process
called merge operation, when erased pages for new writes are
running out. While the hybrid FTL can delay the copying of
pages from their residing block to an erased block, its merge
operation can be of high cost. As an example, if the pages
of a log block belong to multiple logical blocks, they will
be copied into multiple erased blocks, and valid pages in the
corresponding physical blocks are all needed to be copied into
the erased blocks.

Apparently FTL cannot use the first aforementioned method,
which is used in the processor cache, because in-place writes
are not allowed. Because both the block-level FTL and the
hybrid FTL require rigid mapping regularity and use a large
number of page copying or high-overhead merge operation
to enforce the regularity, they cannot be efficiently used. For
example, even if contiguous pages in a log block are also
logically contiguous but the first page’s LPN is not of multiples
of block size, all the pages need to be copied into an erased
block, which is illustrated in Figure 1 (a). In another example,
if only a few contiguous pages in a log block are not logically
contiguous, all the pages need to be copied (see illustration in
Figure (b)). This deficiency and its consequent high cost are
due to the fact that the block-level FTL takes efforts only to
create its predefined regularity, instead of exploiting available
regularity that has been naturally existing in the write request
stream as much as possible.

In this paper, we propose a design that exploits this readily
available contiguity to reduce mapping table size. Though we
cannot guarantee that the table will be always small enough to
be entirely held in cache, our design maximizes the contents
of the table cached in the buffer to improve table hit ratio
without requiring merge operations for the block-level FTL.
In other words, any workloads that contain sequential writes
would help reduce mapping table and improve address trans-
lation efficiency. Sequential write is a special spatial locality
exploited in our work. In general, spatial locality, which refers
to the access pattern in which when a page is accessed, its
logically neighboring pages are likely to be accessed soon, is
a commonly observed programs’ access behavior. Considering
the spatial locality, and the fact that the flash memory is
accessed at the page granularity, we pack mapping information
for neighboring LPNs in the same flash page, called mapping
page, and manage the mapping table with the mapping page as
a unit to improve hit ratio in the cache for address translation.
In case where the spatial locality for write is very weak, there
would be dirty table entries sparsely dispersed among many
cached mapping pages. When one of the pages has to be

evicted from the cache, it must be written back to the flash
even though it may contain only a few dirty entries and write is
a very expensive operation. To address the issue arising from
weak spatial locality on write, we choose to cache the small
number of dirty entries to avoid the expensive writebacks. As
our FTL scheme is designed around spatial locality, we name
the scheme as spatial-locality-aware FTL, or S-FTL in short.

In summary, we made the following contributions on the
design of efficient FTL in the paper.
• We designed a scheme to eliminate the need for merge

operations and to reduce mapping table size by exploiting
access regularity exiting in the write request stream.

• Our scheme is designed both to take advantage of strong
spatial locality by using mapping page as caching unit and
to address the overhead issue with weak spatial locality.

• We extensively evaluate the S-FTL scheme with repre-
sentative traces showing that it can reduce the number of
accesses to the flash for address translation by up to 70%
and reduce access response time of SSD by up to 20%,
compared with the state-of-the-art FTL strategies such as
FAST and DFTL.

The remaining of the paper is organized as follows. Section
II discusses the related work. Section III describes the design
and implementation of S-FTL. Section IV describes and ana-
lyzes experiment results, and Section V concludes.

II. RELATED WORK

As flash-memory-based SSD is built with semiconductor
chips without using any mechanical moving parts, users may
expect SSD to have superior random-access performance. The
fact is that SDD’s random write performance is much worse
than its sequential access performance (usually around 10%
of the sequential access throughput [2]). For the low-end
SSD, its performance can even be as low as that of the hard
disk [8]. This performance observation is mainly attributed
to the flash’s “erase-before-write” characteristic and the FTL
scheme designed to accommodate it. Realizing the critical role
played by FTL for the SSD’s promised high performance to be
fully delivered, researchers and practitioners have done much
work to improve FTL so that it would not be a performance
bottleneck.

An intuitive method to implement FTL is to use page-level
mapping in which a mapping table similar to the page table
for virtual memory in OS is adopted. Because it is infeasible
to hold such a big table in the cache, the block-level FTL was
proposed, in which an LPN’s offset in the logical block is the
same as PPN’s offset in the physical block and the PPNs in a
block are contiguous [20], [10]. As discussed in Section 1, it
is very expensive to maintain such a rigid mapping regularity
defined by the block-level FTL for a logical page immediately
after it is written. Therefore, the hybrid FTL was proposed to
set aside a small number of log blocks to hold newly written
pages using the page-level mapping. While majority of pages
are still expected to stay in the data blocks managed by the
block-level mapping scheme, a log block can be reclaimed
by merging its pages with pages in other blocks to recover

data blocks that follow block-level-FTL’s mapping regularity
in a garbage collection operation. As there are critical issues
associated with the hybrid FTL, several of its variants have
been proposed.

If pages from any logical blocks can be written into the
same log block, a log block may contain pages mapped from
different logical blocks. When the log block is to be reclaimed,
its pages will be copied into multiple erased blocks, and valid
pages in other physical blocks are also needed to be copied
into the erased blocks to turn them into data blocks. To reduce
the copying cost, the Block Associative Sector Translation
(BAST) scheme allows a log block dedicated to one data
block [16]. If a data block has its dedicated log block, write
requests to the data block will be fulfilled in the log block.
Accordingly, only one data block is involved when the log
block is reclaimed. However, if a write request is sent to a
data block to which a log block is not yet assigned, it has to
reclaim a log block assigned to another data block. If there
are many small random writes, this scheme suffers from “log
block thrashing” [18], where under-utilized log blocks are
transferred frequently among data blocks with high garbage
collection cost. To address this issue, the Fully Associative
Sector Translation (FAST) scheme [18], [17] is proposed to
allow a log block to be shared by all data blocks to increase
the utilization of the log block, which unfortunately increases
garbage collection cost.

In addition, the FAST scheme designates a log block ded-
icated for sequential writes with the hope that the log block
can be filled with pages following the regularity required by
the block-level FTL. Recognizing that there could be multiple
sequential streams mixed in a workload, Lee et al. proposed
the Locality-Aware Sector Translation (LAST) scheme, which
uses multiple log blocks to exclusively receive sequential
requests attempting to preserve the spatial locality [19]. Use of
these dedicated log blocks can reduce garbage collection cost
if they can turn into data blocks without copying their pages
to other erased blocks (switch merge). To make this design
effective, one has to ensure that pages in a sequential write
meet three conditions: (1) The pages must be written to the
physical pages (in one log block) whose offsets equals to their
respective offsets in the logical block; (2) The writing must
start from the first page of a log block, and carry out contigu-
ously according to the rule of sequential programming within
a block, required by today’s popular large-block flash [3]; and
(3) Significant number of pages in a log block, whose size
is usually 64 pages or larger, must be filled by sequential
requests before the log block is reclaimed. Although sequential
requests are common in many workloads, it would be rare
to have all these conditions met. In fact, the deficiency with
these schemes are due to their adherence to the block-level-
FTL’s mapping regularity. In contract, The S-FTL scheme
gives up the adherence, and is able to exploit any sequentiality
available in the write requests to reduce mapping table size.
For example, if the size of every request is two (or four)
contiguous pages, the table size can be reduced to its half
(or its quarter, respectively) in S-FTL. However, this weak

sequentiality would be of little value in the LAST scheme.
As long as pages are in the same logic block, they are

mapped to the same physical data block in the hybrid FTL
regardless of their difference on update frequency. This raises
another issue with block-level-FTL’s mapping regularity. That
is, frequently updated pages (hot pages) can be significantly
mixed with infrequently updated pages (cold pages) in the
same blocks. This makes garbage collection expensive because
it has to copy valid cold pages of a block each time the
invalidated hot pages in the block are collected. To address
this issue, the Superblock scheme combines consecutive blocks
into a superblock, in which page-level mapping is applied [15].
Without enforcing the block-level-FTL’s mapping regularity
within a superblock, hot and cold pages can be separated into
different blocks. Instead of distinguishing hot and cold pages
within a superblock, another scheme, Locality-Aware Sector
Translation (LAST), distinguishes the log blocks for holding
either non-sequentially-written hot pages or non-sequentially-
written cold pages [19]. However, because both the number
of pages in a superblock and the number of log blocks
for non-sequential-written pages are relatively small, their
effectiveness is limited. In contrast, S-FTL allows any page
to be mapped into any block in the flash memory. Therefore,
hot pages tend to move into the same blocks together during
their re-writes.

Recently the DFTL scheme was proposed to use page-
level mapping to avoid the high cost required for maintaining
the mapping regularity in hybrid FTL [11]. As the mapping
table of a page-level FTL is too large to be held entirely in
the cache, DFTL exploits temporal locality to cache recently
used mapping entries, each entry specifying which PPN an
LPN is mapped to. The full mapping table is stored on the
flash, where the mapping entries are packed into translation
pages in the order of their LPNs. A small set of blocks are
designated as translation blocks to hold the translation pages.
Like the blocks holding user data, the translation pages are
also managed with page-level mapping, with in-cache global
translation directory recording where the translation page for
a range of LPNs is. While S-FTL also adopts page-level
mapping to avoid merge and garbage collection operations,
it caches entire translation pages so as to benefit from the
effect of mapping-entry prefetching. Meanwhile, by exploiting
sequential writes, S-FTL does not necessarily have to spend a
page-size space to hold a translation page in cache. In contrast,
DFTL does not take any efforts on efficient use of cache space
for storing mapping information – it simply disregards any
mapping regularity exploited by the block-level or hybrid FTL.

III. THE DESIGN OF S-FTL

There are several objectives to achieve in the design of
spatial-locality-aware FTL (S-FTL). First, it should not impose
the mapping regularity that is required by the block-level
and hybrid FTLs for reduction of the mapping table size
but carries a high garbage collection cost. Second, it should
be able to benefit from sequential writes to reduce mapping
table and make limited cache space well utilized. Third, it

78
79
80
81

21
22
23
24

Data PPN

TransLPN = 0

TransPPN = 10

203
204
205
206

199
200
201
202

Data PPN

TransLPN = 1

TransPPN = 50

10 �
50 x

…

TransPPN

… …
TransLPN = 0

TransLPN = 6

TransLPN = 10

TransLPN = 8

… …

Mapping Table

Cached Trans. Pages

Global Translation
Directory

The Flash The Cache

Fig. 2. Illustration of management of the mapping table in S-FTL. The
complete table is stored in the flash. It consists of multiple translation pages,
each recording m PPN entries. The LPN mapped to the nth PPN in a
translation page with its TransLPN of k is m ∗ k + n. For example the
first mapping entry in the second translation page (TransLPN = 1) states that
logical data page 8 (m = 8, k = 1, and n = 0) is mapped to physical page
199. The nth entry in the Global Translation Directory (GTD) records the
transPPN for the translation page whose TransPPN is n. Cached translation
pages are linked in the LRU list. Each entry of the GTD also indicates whether
the corresponding translation page is cached: ”

√
” for cached and ”×” for

uncached. As an example, when logical page (LPN 9) is requested, we know
its TransLPN is 1 (9÷ 8 = 1). The GTD shows that the translation page is
not cached and its TransPPN is 50. Then the physical page 50 is retrieved
and cached, and PPN 200 is obtained at the offset 1 (9 modulo 8 = 1) of the
translation page. Note that we intentionally use a very small m (m = 8) for
easy illustration. The actual number of entries in a translation page can be
512 or more.

should be able to minimize the impact of sparse writes on
the efficiency of writing back mapping-table pages. To this
end, S-FTL adopts the page-level mapping and uses page as
unit to manage mapping entries. It exploits sequentiality in the
write requests to create a concise representation of in-cache
mapping table pages. In addition, S-FTL holds a small number
of dirty mapping entries in the cache to avoid writing mostly
clean table pages to the flash memory.

A. Caching Mapping Table

While S-FTL is a page-level FTL, in which any logical
page can be mapped to any physical page, we need to record
the mapping for any logical page in a table, whose size is
usually proportional to the flash memory size and too large to
be entirely held in the cache. Therefore, the table is resident
in the flash with its entries packed into pages that are called
translation pages, in contrast to the data pages that hold
users’ data. The entries in a translation page are placed in
the ascending order of the LPNs of data pages represented
by the entries. Similar to DFTL, we set a small number of
translation blocks to hold translation pages. A translation page
also has its logical page number (TransLPN) and physical page
number (TransPPN), and their mappings are also managed at
the page level. The table holding these mappings, or the Global

Translation Directory (GTD), is small and entirely resident in
the cache. The TransLPN of a translation page is determined
by LPNs of the data pages whose mappings are recorded in the
translation page. Recently used translation pages are cached
and organized in an LRU list (or LRU stack). The formats of
the mapping table and GTD are illustrated in Figure 2.

When a request is received with the LPN of requested
data, the LPN is divided by the translation page size in
terms of number of entries in the page, to get TransLPN of
the translation page containing the entry for this LPN. The
TransLPN is used to check the GDT to see if the translation
page is cached. If yes, the PPN of the requested page is
obtained by accessing the corresponding translation page. If
it is a miss, the TransPPN of the translation page is obtained
from the GTD. Using the TransPPN, the translation page can
be read from the flash and placed at the top of the LRU
stack. From this page, the PPN of requested data is found. By
choosing an entire translation page as caching object, instead
of the mapping entries that have been actually used, S-FTL
exploits spatial locality by enabling prefetching of mapping
entries. There are two advantages for the choice. First, a page
is the minimal access size on the flash. Caching an entire
translation page does not increase the cost of accessing the
page on the flash. Second, when SSD is used as a storage
device to support file I/O, cold misses, which are due to
first-time access of pages, can be of significant percentage.
This is because increasingly large DRAM buffer cache in
the host computer can satisfy many requests for reused data.
Prefetching is the only mechanism that can turn a cold miss
into a hit. Apparently, caching an entire page may consume
more space than caching only requested translation entries in
the page. S-FTL needs to reduce this space consumption.

B. Exploiting Sequential Writes to Shrink Translation Pages

With limited cache space, a translation page can be consid-
ered too large to be held entirely in cache, especially when this
strategy is compared with the block-level FTL (or the hybrid
FTL). For an SSD whose block has 64 pages and whose page
can hold 512 mapping entries, the block-level FTL needs only
eight entries in its mapping table to represent the 512 entries
in a translation page. As we have known, the space efficiency
of the block-level FTL is achieved by artificially creating
sequential writes to form the predefined mapping regularity,
which incurs high garbage collection cost. In contrast, S-FTL
takes advantage of sequentiality existing in the users’ requests
to reduce translation page size.

We have the following observation. For k pages with
LPNi (i = 0, 1, ..., k-1) continuously mapped to k con-
tiguous physical pages of PPNi (i = 0, 1, ..., k-1), we have
LPNi−LPN0 = i, if these k pages are logically sequential,
and PPNi − PPN0 = i (i = 1, 2, ..., k-1). So we have
PPNi = PPN0 + i = PPN0 + (LPNi − LPN0) (i = 0, 1,
2, ..., k-1). Therefore, if we record the mapping entry about
LPN0 and PPN0, and know the distance between LPN0 and
LPNi, we can obtain corresponding PPNi for any LPNi (i
= 1, 2, .., k-1) without actually recording these k−1 mapping

entries. There are two methods to know the distance between
LPN0 and LPNi. One is to directly record this distance.
However, it can consume substantial space. Assume there are
512 entries in a translation page and four bytes are used to
represent a PPN, it will use 9 bits to record the distance
for each entry or use about 25% of a page space to record
the distance for every entry in the page. Another problem is
that once the sequence is broken because of rewriting to page
PPN0, all the recorded distances measured from PPN0 have
to be invalidated or updated, which is expensive and inflexible.
The second method is to use a bitmap to record contiguity in
their PPNs between two neighboring entries. Specifically, we
associate one bit with each mapping entry (LPNi, PPNi).
If PPNi = PPNi−1 + 1, the bit with entry (LPNi, PPNi)
is 0. Otherwise, it is 1. Note that for any two neighboring
entries, we always have LPNi = LPNi−1 + 1 and actually
only PPNi is recorded in the entry (see Figure 1). Then a
sequential write of k pages would probably produce a bitmap
100...0 (the number of 0s is k− 1). As examples, the bitmaps
for two translation pages, whose TransLPNs are 0 and 1,
shown in Figure 1 are 10001000 and 10000000, respectively.
If we name the entry whose bit is 1 as head entry of all
its immediately following entries whose bits are 0, then the
distance of an entry to its head entry is number of 0s between
the entry and the head entry, including this entry. In particular,
the distance for head entry itself is 0. As the largest possible
distance is limited, which is one less than the number of entries
in a translation page, the circuitry in the SSD controller can
use bit-wise operations on the bitmap to efficiently calculate
the distance by counting the number of ’0’s.

As we maintain the bitmap for a translation page, only
the head entries need to be kept and all other entries can be
dropped without losing any mapping information. The larger
the distance can be, the more space can be saved. Assume
there are 512 entries in a translation page, and four bytes for
a PPN, a translation page would be shrunk to 70Bytes, about
3.4% of its original size, including the bitmap, if there is only
one head entry in a translation page. Compared with 24Bytes,
or about 1.2% of a page size, needed for the block-level FTL
to cover the mapping information in a translation page, S-
FTL effectively produces a very concise representation for the
translation page. It is not necessary to require that LPN of the
first page of a data block have a zero in-block offset so that
S-FTL can reduce the mapping table. As each ’0’ in a bitmap
implies that a mapping entry can be dropped, the number of
’0’s in a bitmap indicates how much a translation page can be
shrunk by. As any sequential write involving n pages produces
n−1 ’0’s (n > 1), the sequentiality becomes opportunities for
S-FTL to take for reducing mapping table size. In contrast to
the rigid mapping regularity required by the block-level FTL
as well as the high cost of garbage collection to restore such
regularity, S-FTL is flexible and of light weight.

While a long write sequence may help reduce the number
of head entries (see Figures 3 (a) and (b)), a small write into a
previously written long sequence can produce additional head
entries by splitting the long sequence into small sequences (see

20 21 22 23 78 79 80 81

(a)
Translation Page

1 0 0 0 1 0 0 0(a)
Bitmap

1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0
(b)

Translation Page

Bi1 0 0 0 0 0 0 0
()

Bitmap

1 2 3 32 33 6 7 8

1 0 0 1 0 1 0 0
(c)

Translation Page

Bitmapp

1 2 3 32 33 6 7 8

10 00 00 11 01 00 00 00
(d)

Translation Page

Bitmap
1

5

Fig. 3. Illustration on how the bitmap of a translation page is updated in
response to new writes. (a) contents of current page and its bitmap. (b) updated
after all pages are sequentially written. (c) further updated after another write
to the fourth and fifth entries. Note that the number of head entries is increased
from 1 to 3 when only one bit is used in the bitmap for an entry. (d) If two
bits are used for each entry, only two head entries are needed. The distance
of the fifth entry to its head entry is 1 and the distance of the sixth entry is
5.

Figure 3 (c)). The longer a sequence is, the more likely the
sequence is to be broken by small writes and the harder for
S-FTL to achieve a significant reduction of translation page.
To address the issue, we can associate two bits with each
mapping entries, instead of one bit. In the two bits, the first one
indicates whether the corresponding entry is a head entry (’1’
for yes), and the second bit indicates whether the entry belongs
to the broken long sequence or to the local short sequence
(’0’ for the broken long sequence). That is, even if a long
sequence is broken by a short sequence, the entries that follow
the short sequence but belong to the long sequence can still
be removed and their corresponding pages can keep using the
head entry of the long sequence to obtain their PPNs (see
Figure 3 (d)). Specifically, in the search of head entry for a
page, the entries whose bits are ’01’ or ’11’ are passed if
the second bit of this page is ’0’. However, if a sequence of
pages whose second bits are ’1’s is broken by a new write, this
sequence has to be shortened, or split into smaller sequences,
each with its own head entry. This problem could be addressed
by further increasing the number of bits associated with each
page. However, the increased space cost is usually not justified.

With the translation page shrinking technique, a translation
page has two representations: its in-flash form with fixed page
size and its bitmap form whose size depends on the contiguity
of the entries in the page and can change with new writes to the
page. Note that these two forms are fully convertible to each
other. When a translation page is loaded into the cache, S-FTL
calculates the size of its bitmap form. If the size is smaller
than 80% of the page size, S-FTL caches it in its bitmap form.
Otherwise, its in-flash form is used. S-FTL monitors the size of

a cached page’s bitmap form, no matter if the form is actually
used. Whenever a write occurs to a page, the size of its bitmap
form is updated. If it is smaller than 80% of the page size and
currently in the in-flash form, S-FTL converts it into its bitmap
form. If it is larger than 90% of the page size and currently
in the bitmap form, S-FTL converts it into its in-flash form.
We use these thresholds to accommodate the additional cost
for searching head entries in the bitmap form and to avoid
frequent conversions between these two forms.

All cached translation pages, regardless of which forms they
take, are managed by the LRU replacement policy. When a
translation page is loaded into cache, it is placed at the top
of the LRU stack and not recently used translation page is
replaced from the bottom of the stack. For the page to be
replaced, the space it holds would be variable if it has been
in the bitmap form. Understandably among pages of similar
temporal locality, it is preferred to replace the ones consuming
larger cache space and leave the ones with smaller space in
cache for a longer period of time [12]. For the management
of SSD cache, we take a simple strategy to address the issue.
We set up two yardsticks in the LRU stack: the first one is at
the 1/3 stack size from the stack top, and the second one is at
the 2/3 stack size from the top. When a page to be replaced is
in the bitmap form and its size in the form is less than 30%
of a page size, S-FTL re-inserts this page into the stack at the
position indicated by the first yardstick. Similarly, if the page
is less than 60% but more than 30% of the page size, S-FTL re-
inserts this page into the stack at the position indicated by the
second yardstick. A re-inserted page will be flagged, and the
flag is removed if the page is used in the address translation.
A flagged page will not be given the second chance to be
inserted.

C. Improving Efficiency of Translation Page Writeback

If a translation page to be replaced is dirty, it needs to be
written back to the flash and the corresponding GTD entry
is updated, instead of being simply discarded. As flash write
is much more expensive than flash read, the write efficiency,
which is measured as the percentage of dirty entries in a
translation page, becomes an important factor affecting address
translation performance. When write requests exhibit very
weak locality and writes are sparsely dispersed over many
pages, each translation page may contain only a few dirty
entries. It would not be cost effective to write the whole
page back only because of the few dirty entries. To improve
the writeback efficiency, we take out the dirty entries of a
translation page, keep them in the cache and simply discard
the page, if the page to be replaced contains dirty entries less
than 5% of total entries in the page. When this translation page
is loaded from the flash next time, these cached dirty entries
are moved into the page. When the page is loaded from the
flash next time, these cached dirty entries can be written back
when the SSD is idle. In our experiments, we suspend caching
of dirty entries once the cache space allocated for the purpose
is full. In the experiments, we found that a minimal amount of
allocation, space for 50 entries by default, serves the purpose

in most cases.

IV. PERFORMANCE EVALUATION

We used trace-driven simulation to evaluate S-FTL for
managing a large-block NAND SSD of 32GB, and compared
it with DFTL, FAST, and the optimal FTL. For the optimal
FTL, we assumed a page-level mapping and an infinitely large
cache for holding its mapping table, allowing it to represent
the minimal overhead any FTL can possibly have. We use
the ideal FTL to show how far S-FTL is close to the optimal
performance. The simulator is obtained by adding an S-FTL
module into the FlashSim simulator [11], which has been used
for evaluating DFTL and FAST. For the large-block SSD, the
page size is set as 2KB, and block size is 128KB [11]. The
cache size for address translation is set as what is needed
for the block-level FTL, which is 64KB. We leave 3% of the
total SSD capacity used as log buffers to accommodate out-
of-place writes. In the simulator, the page read time is set as
0.12ms, page write time is 0.41ms, and the block erase time is
2.0ms [3]. In the evaluation, we use one bit for each page to
record its sequentiality in S-FTL for experiments except that
presented in Section 4.2.4, where the option of using two bits
is evaluated.

A. Workloads and Evaluation Metrics

Workloads Request Read Seq. Seq.
Size (KB) (%) Read (%) Write (%)

Financial 9.85 23.16 0.71 0.40
MSR 9.31 18.45 13.86 2.60

Cello99 9.87 57.34 2.6 0.92
Websearch 32.29 99.98 6.47 0.94

TABLE I
CHARACTERISTICS OF SELECTED REAL-WORLD WORKLOADS, INCLUDING

THEIR AVERAGE REQUEST SIZES, PERCENTAGE OF READ REQUESTS,
PERCENTAGE OF READ REQUEST CONTIGUOUS TO ITS PREVIOUS ONE,
AND PERCENTAGE OF WRITE REQUEST CONTIGUOUS TO ITS PREVIOUS

ONE.

In the evaluation we choose several real-world and synthetic
traces to study performance impact of different FTLs. As
shown in Table I, we employ four read-world traces that
represent different application domains and a broad range of
enterprise-scale workloads. Among the traces, the Financial
trace is a write-dominant I/O trace from an OLTP applica-
tion running at a financial institution provided by the Stor-
age Performance Council (SPC) [4]. MSR is also a write-
dominant trace collected on servers at Microsoft Research
Cambridge [6]. The Celllo99 trace is mixed with substantial
reads and writes and is collected from a time-sharing server
running the HP-UX operating system at HP Laboratories [5].
The Websearch trace is a read-dominant web search engine
trace from SPC [4]. The major statistics on access behaviors
exhibited in the traces are included in Table I. In addition
to the real-world traces, we generate a synthetic trace to
comprehensively study the impact of S-FTL’s prefetching

40%

50%

60%

70%

80%

90%

100%

H
it
�R
a
ti
o

Optimal

FAST

DFTL

S�FTL

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Financial MSR Cello99 Web�Search

H
it
�R
a
ti
o

Optimal

FAST

DFTL

S�FTL

(a) Hit Ratio

1.5

2

2.5

3

e
sp
o
n
se
�T
im

e
(m

s)

Optimal

FAST

DFTL

S�FTL

0

0.5

1

1.5

2

2.5

3

Financial MSR Cello99 Web�Search

Sy
st
e
m
�R
e
sp
o
n
se
�T
im

e
(m

s)

Optimal

FAST

DFTL

S�FTL

(b) System Response Time

6

8

10

12

14

16

e
sp
o
n
se
�T
im

e
�S
td
.�

D
e
v.
(m

s)

Optimal

FAST

DFTL

S�FTL

0

2

4

6

8

10

12

14

16

Financial MSR Cello99 Web�Search

Sy
st
e
m
�R
e
sp
o
n
se
�T
im

e
�S
td
.�

D
e
v.
(m

s)

Optimal

FAST

DFTL

S�FTL

(c) System Response Time Std. Dev

Fig. 4. Average hit ratio, average system response time, and standard deviation of response times with different FTL schemes and workloads.

effect on the SSD’s performance. The details of the trace is
described in Section 4.B.5, and experimental results on the
trace are reported and analyzed.

In the evaluation we use average request hit ratio, average
system response time, and standard deviation of the system
response times as performance metrics. The request hit ratio
refers to the ratio of requests whose address translation can be
completed in the cache without loading missing entries of the
mapping table. Thus, the ratio has a direct impact on users’
observed performance. System response time of a request
refers to the time period between its arrival at the device and
the completion of its requested operation (read or write). This
time may include the time for address translation and garbage
collection. Here we neglect the queuing delay for the requests
to be pending in the host system as it is also affected by the
host system and not directly concerned with FTL. Standard
deviation of system response time measures variability of
system response time, showing how much variation it has from
the average system response time. The smaller the standard
deviation is, the higher consistency in an SSD’s service quality.

B. Performance Analysis

1) Hit Ratio and Response Time: Figure 4 shows average
hit ratio, average response time, and standard deviation of
response times with the FTL schemes for the four real-world
workloads. We see that the hit ratios of S-FTL are close to
that of the optimal FTL for all the four workloads, though the
cache size for S-FTL is only 64KB while the optimal FTL has
a sufficiently large cache (32MB) to hold the entire mapping
table. This is because S-FTL can make an efficient use of the
smaller cache by storing a table essentially much larger than
the actually cache size. Among the workloads, Financial has
the least sequentiality (or weakest spatial locality) among its
requests (sequential reads and writes account for only 0.7%
and 0.4% of all requests, as shown in Table I). Accordingly,
S-FTL cannot fully take advantage of its compressed table and
achieve a hit ratio as high as those with other workloads. In the
meantime, it has considerable sequentiality within individual
requests. Note that average size of requests in the Financial

trace is 9.85KB, or there are almost five pages in a request
by average. This allows S-FTL to show its effectiveness. As
a result, a 90.7% hit ratio is achieved. In comparison, the
hit ratios of DFTL is much worse with the small cache size,
as the access locality exhibited in the workloads cannot be
effectively captured in the cached portion of the mapping
table. By compressing the table, S-FTL essentially caches a
much larger portion of the table and makes locality effectively
exploited. In the experiment we set the cache as large as the
mapping table for the block-level mapping, which is adopted
for data pages in FAST. Therefore, the hit ratios for FAST are
always 100%.

Figure 4(b) shows the average response times for the four
workloads. Generally, as S-FTL has higher hit ratios than
DFTL, it produces lower response times than DFTL by 25%
in average. However, its improvements on response times are
not as dramatic as those on hit ratio, this is because garbage
collection takes a major proportion in the response time and
S-FTL uses a garbage collection method similar to that of
DFTL. It is no surprise to see that FAST has significantly
higher response times than other FTL schemes for the three
workloads with substantial write requests, namely, Financial,
MSR, and Cello99. FAST has to maintain a rigid regularity of
address mapping for the block-level FTL, which greatly in-
creases overhead of garbage collection. For the read-dominant
workload Websearch, there is not any garbage collection cost
and FAST achieves response times as low as the optimal FTL.
DFTL has a higher response time because of its high miss ratio
on the in-cache mapping table. In contrast, S-FTL consistently
produces response times that are close to their counterparts for
the optimal FTL.

Figure 4(c) shows standard deviation of response times for
the workloads under the FTL schemes. The optimal FTL has
the smallest standard deviation. Each of its request address
translations in the FTL costs the same and garbage collection
cost is evenly distributed in most cases, leading to the least
variations in its request response times. The standard devia-
tions for S-FTL are also small as most of request translations
are hits. The standard deviations for DFTL are moderately

93%
94%
95%
96%
97%
98%
99%
100%

em
�R
es
po

ns
e�
Ti
m
e�

D
is
tr
ib
ut
io
n

Optimal
FAST
DFTL
S�FTL

90%
91%
92%
93%
94%
95%
96%
97%
98%
99%
100%

1 2 4 8 16 32 64 96 128 256

Sy
st
em

�R
es
po

ns
e�
Ti
m
e�

D
is
tr
ib
ut
io
n

System�Response�Time(ms)

Optimal
FAST
DFTL
S�FTL

(a) Financial

80%

85%

90%

95%

100%

m
�R
es
po

ns
e�
Ti
m
e�

D
is
tr
ib
ut
io
n

Optimal
FAST
DFTL
S�FTL

70%

75%

80%

85%

90%

95%

100%

1 2 4 8 16 32 64 96 128 256

Sy
st
em

�R
es
po

ns
e�
Ti
m
e�

D
is
tr
ib
ut
io
n

System�Response�Time(ms)

Optimal
FAST
DFTL
S�FTL

(b) MSR

70%

75%

80%

85%

90%

95%

100%

em
�R
es
po

ns
e�
Ti
m
e�

D
is
tr
ib
ut
io
n

Optimal
FAST
DFTL
S�FTL

60%

65%

70%

75%

80%

85%

90%

95%

100%

1 2 4 8 16 32 64 96 128 256

Sy
st
em

�R
es
po

ns
e�
Ti
m
e�

D
is
tr
ib
ut
io
n

System�Response�Time(ms)

Optimal
FAST
DFTL
S�FTL

(c) Cello99

65%
70%
75%
80%
85%
90%
95%
100%

em
�R
es
po

ns
e�
Ti
m
e�

D
is
tr
ib
ut
io
n

Optimal
FAST
DFTL
S�FTL

50%
55%
60%
65%
70%
75%
80%
85%
90%
95%
100%

1 2 4 8 16 32 64 96 128 256
Sy
st
em

�R
es
po

ns
e�
Ti
m
e�

D
is
tr
ib
ut
io
n

System�Response�Time(ms)

Optimal
FAST
DFTL
S�FTL

(d) Websearch

Fig. 5. Distribution of system response times represented in the CDF curves.

larger because a substantial number of the translations require
loading translation pages from the flash and become more
expensive than those hitting in the cache. FAST has much
worst standard deviations for write-dominant workloads, as it
can incur very expensive full merges in the garbage collection
from time to time.

2) Distribution of System Response Time: To obtain more
insights on the response time, we plot the cumulative distri-
bution function (CDF) curves for response times of different
workloads to show their distributions. As shown in Figure 5,
the CDF curves of S-FTL are the closest to those for the
optimal FTL. For the write-dominant Financial trace, the
number of accesses to the translation pages on the flash and
the number of translation block erases for S-FTL are smaller
than those for DFTL by 72% and 28%, respectively. This
helps S-FTL produce more response times that are smaller
than those for DFTL. For Cello99, S-FTL does not show
clear performance advantage over DFTL. S-FTL even has a
slightly smaller number of requests whose system response
time is larger than 4ms. That is because writes of Cello99 are
distributed over a large data space and S-FTL uses transaction
pages as units for caching the mapping table. This can cause
many dirty translation pages in the cache. Though S-FTL
allocates a certain amount of cache space for mapping entries
sparsely distributed over various translation pages to avoid
write-backs of the pages, the size of the cache allocation for
this purpose is small (50 entries by default). When this alloca-

tion is used up, the mechanism is disabled and many cached
entries need to be flushed back to the flash. Consequently,
more translation page write-backs would occur for S-FTL than
for DFTL. As serious shortage of the cache allocation is only
found for this workload, we did not increase the allocation to
address the issue. As a future work, we plan to study how
to dynamically determine the size adapting to the observed
access behaviors. For the read-dominant workload Websearch,
FAST provides a response-time curve overlapped with those
for the optimal FTL as it does not have any cache misses
and does not have any garbage collections. The curve for S-
FTL is also almost overlapped with that for the optimal FTL,
as S-FTL has a hit ratio of 92.8%. With a hit ratio of only
31.5% (see Figure 4(a)), DFTL incurs a much larger address
translation overhead and produces a smaller percentage of
requests of small response times. For workloads of dominant
write requests, FAST demonstrates much worse performance
(see the curves for Financial, MSR, and Cello99 in Figure 5) as
the writes cause expensive merges required by the block-level
mapping FTL.

3) Impact of Cache Size on S-FTL’s performance: As we
have shown the performance of S-FTL with a cache of the
same size as required by the block-level FTL, we would
like to see the impact of the cache size on the workloads’
performance. Figure 6 shows the hit ratios and response times
for each of the four read-world workloads with cache sizes
varying in a large range. As S-FTL uses an LRU list to record

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%
H
it
�R
at
io
�Im

pr
ov
em

en
t

Cache�Size

Financial

MSR

Cello99

Web�Search

(a) Hit Ratios

0%

1%

2%

3%

4%

5%

6%

Sy
st
em

�R
es
po

ns
e�
Ti
m
e�

Im
pr
ov
em

en
t

Cache�Size

Financial

MSR

Cello99

Web�Search

(b) System Response Times

Fig. 7. Impact of S-FTL’s cache page shrinking technique on the workloads’ performance in terms of hit ratio and response times at different cache sizes.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

H
it
�R
at
io

Cache�size

Financial

MSR

Cello99

Web�Search

(a) Hit Ratio

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sy
st
em

�R
es
po

ns
e�
Ti
m
e(
m
s)

Cache�Size

Financial

MSR
Cello99

Web�Search

(b) System Response Time

Fig. 6. Impact of cache size on S-FTL, showing average hit ratios and
response times for four real-world workloads with increasingly large cache
for storing the mapping table.

history of translation-page access, a larger cache would help
hold a larger portion of a workload’s working set in the cache
until the working set has been entirely cached. As shown in
Figure 6(a), when the cache size is very small (less than 2K),
only one translation page can be cached and the hit ratio is
almost 0%. When the cache size is increased to 8KB, the ratio
grows rapidly to around 90% except for workload Financial.
When the cache size increases beyond 64KB, further increase

of the size produces diminishing return on either hit ratio or
response time (see Figure 6(b)). This demonstrates that S-FTL
can easily hold a compressed mapping table with a very small
cache. The relatively lower hit ratio for the Financial workload
is due to its large working set. The advantage of S-FTL of
being able to achieve high hit ratios with a very small cache
is especially desired on the economically-configured systems,
including consumer electronics such as cellular phones and
digital cameras.

4) Impact of S-FTL’s Page Shrinking Technique: By using
two bits for recording sequentiality of adjacent pages, the S-
FTL’s page shrinking technique can recognize more and longer
sequences, or record fewer head entries for sequences. In other
words, with a given cache size, the technique is expected
to hold a larger portion of a mapping table in the cache so
as to improve hit ratio. In other experiments, we use the
default version of S-FTL, which employs only one bit. In
this experiment we investigate how the technique can make
a difference. Figure 7 shows the improvements made in terms
of hit ratio and response time by applying the page shrinking
technique over the default S-FTL version. As shown in the
figure, the Financial workload receives the most significant
improvements (up to 9.0% on hit ratio and up to 5.1% on
response time). As Financial has many random writes, which
can easily break long sequences, leading to relatively low hit
ratios, when only one bit is used to link pages in a sequence
(see Figure 6(a)). By using two bits, the existing sequences are
less vulnerable to the writes and S-FTL can keep maintaining
a large portion of the table in the cache. For the other three
workloads, one-bit S-FTL is sufficient to provide high hit
ratios with a small cache. Using two bits results in very limited
improvements.

5) Impact of S-FTL’s Prefetching Effect: The access unit
of the flash is page, rather than entries of the mapping table.
Accordingly, S-FTL uses translation page as caching unit,
and all mapping entries contained in a page are cached after
the page is loaded. For those entries that are not required
for the current translation, they are essentially prefetched.
To investigate how the prefetching effect would interact with

30%

40%

50%

60%

70%

80%

90%

100%

H
it
�R
at
io

DFTL(4K)
DFTL(8K)
DFTL(16K)
S�FTL(4K)
S�FTL(8K)
S�FTL(16K)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

H
it
�R
at
io

Random�Read�Range(MB)

DFTL(4K)
DFTL(8K)
DFTL(16K)
S�FTL(4K)
S�FTL(8K)
S�FTL(16K)

(a) Hit Ratio

10%

15%

20%

25%

30%

nt
ag
e�
D
iff
er
en

ce
�o
f�

em
�R
es
po

ns
e�
ti
m
e

DFTL(4K)
DFTL(8K)
DFTL(16K)
S�FTL(4K)
S�FTL(8K)
S�FTL(16K)

0%

5%

10%

15%

20%

25%

30%

32 48 64 80 96 112128144160 176 192 208224240256

Pe
rc
en

ta
ge
�D
iff
er
en

ce
�o
f�

Sy
st
em

�R
es
po

ns
e�
ti
m
e

Random�Read�Range(MB)

DFTL(4K)
DFTL(8K)
DFTL(16K)
S�FTL(4K)
S�FTL(8K)
S�FTL(16K)

(b) System Response Time

15%

20%

25%

30%

35%

40%

45%

50%

nt
ag
e�
D
iff
er
en

ce
�o
f�

es
po

ns
e�
ti
m
e�
St
d.
�D
ev

DFTL(4K)
DFTL(8K)
DFTL(16K)
S�FTL(4K)
S�FTL(8k)
S�FTL(16K)

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

32 48 64 80 96 112128144160176192208224240256

Pe
rc
en

ta
ge
�D
iff
er
en

ce
�o
f�

Sy
st
em

�R
es
po

ns
e�
ti
m
e�
St
d.
�D
ev

Random�Read�Range(MB)

DFTL(4K)
DFTL(8K)
DFTL(16K)
S�FTL(4K)
S�FTL(8k)
S�FTL(16K)

(c) System Response Time Std. Dev

Fig. 8. Hit ratios and system response times with different read ranges and upper bounds of request size.

different access patterns and impact workloads’ performance,
we designed a program that generates synthetic traces of
different access patterns. In the traces, one read request is
issued in every millisecond. The program generates a trace
by accessing each page of the 32GB SSD for once. The SSD
is divided into a number of ranges of constant size and the
program accesses the ranges one by one sequentially. However,
data are randomly requested within each range, with requests
uniformly distributed between 2KB and N KB, where N is the
upper bound of request size and configured as 4, 8, or 16 (or
2, 4, or 8 pages, respectively) in different traces.

Figure 8 shows the average hit ratio, the average degradation
of response times over those of the optimal FTL in percentage,
and standard deviation of the percentages for traces with
different range sizes and upper bounds of request sizes in the
SSD under S-FTL and DFTL. We can see from the figure that
S-FTL consistently achieves high hit ratios across different
range sizes from 32MB to 256MB and different request size
distributions. When the upper bound of request sizes is 16KB
(8 pages), S-FTL’s hit ratio stays at almost 100%. In addition,
as shown in Figure 8(b) S-FTL produces response times as low
as those of the optimal FTL (approximately 0% degradation)
in this scenario. This is because large request sizes make
the prefetched mapping entries well utilized. As we know,
one translation page contains 512 mapping entry, providing a
translation coverage of a 1MB data. When the request sizes are
small and random access ranges are large (more than 160MB),
the prefetched mapping entries may not be used before the
corresponding translation pages are evicted out of the cache.

That is why we see reduced hit ratios for smaller requests with
the increase of range sizes in Figure 8(a). Compared to S-FTL,
DFTL caches individual mapping entries and does not fully
exploit the prefetching opportunity. Therefore, its hit ratios are
significantly lower than those for S-FTL.

In terms of response times, DFTL has dramatic degradation
over the optimal FTL with the increase of random access
ranges (see Figure 8(b)). The degradation can be as high
as 27%. When the random read range is only about 64MB, its
hit ratio and response time start to deteriorate. In contrast, S-
FTL is sensitive to the range size only when the upper bound
of request size is less than 16KB. In such a case, it is not
affected by the increasing randomness until the range size
increases to around 160MB. From Figure 8(c) we can see
that variations of S-FTL performance are much smaller than
those of DFTL, echoing the trends on the improvements of
response time shown in Figure 8(b).

V. CONCLUSIONS

This paper proposes a new FTL mapping scheme (S-FTL)
that can exploit readily available spatial locality in the SSD’s
workloads and significantly reduce page mapping table size
without imposing any restriction on page mapping method. By
doing so, S-FTL can benefit from the page-level mapping with
a low garbage collection cost. It effectively addresses (1) the
challenge of high garbage collection cost experienced by the
block-level mapping and hybrid mapping such as BAST and
FAST; and (2) the challenge of limited cache size experienced
by the page-level mapping such as DFTL. The extensive

evaluation with real-world and synthetic traces shows that S-
FTL can significantly improve hit ratio with limited cache size,
reduce garbage collection overhead, and provide consistently
improved response times across workloads of a variety of
access patterns.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive
comments that helped us to improve the paper. This re-
search is partially supported by U.S. NSF CAREER award
CCF-0845711 and partially supported by China National
High-Tech Research and Development Plan under Grant No.
2009AA011906.

REFERENCES

[1] Sun Storage 7000 Unified Storage Systems.
“http://www.sun.com/storage/disk systems/unified storage/”

[2] MTRON, Solid State Drive MSD-SATA3035 Product Specifi-
cation, “http://mtron.net/Upload Data/Spec/ASiC/ MOBI/SATA/MSD-
SATA3035 rev0.4.pdf”, 2008.

[3] Micron, “Small-Block vs. Large- Block NAND Flash Devices. Technical
Report (TN-29-07), “http: //www.micron.com/products/nand/technotes”,
2007.

[4] UMass, “UMass Trace from UMass Trace Repository”,
“http://traces.cs.umass.edu/index.php/Storage/Storage”, 2002.

[5] HP Labs, “Tools and Traces”, “http://www.hpl.hp.com/research/ssp/software/”,
1999.

[6] Microsoft Research, “MSR Cambridge Traces”,
“http://iotta.snia.org/traces/list/Subtrace?parent=MSR+Cambridge+Traces”,
2007.

[7] The DiskSim Simulation Environment(v4.0), Parallel Data Lab, URL:
http://www.pdl.cmu.edu/DiskSim/

[8] F. Chen, D. Koufaty, and X. Zhang. “Understanding Intrinsic Charac-
teristics and System Implications of Flash Memory based Solid State
Drives”. In Proc. of International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS’09), 2009.

[9] T. Chung, D. Park, S. Park, D. Lee, S. Lee, and H. Song. “System Soft-
ware for Flash Memory: A Survey”. In Proc. of International Conference
on Embedded and Ubiquitous Computing (ICEUC’06), 2006.

[10] P. Estakhri and B. Iman. “Moving sequential sectors within a block of
information in a flash memory mass storage architecture”, United States
Patent, No. 5,930,815, 1999.

[11] A. Gupta, Y. Kim, and B. Urgaonkar. “DFTL: a Flash Translation Layer
Employing Demand-based Selective Caching of Page-level Address
Mappings. In Proc. of the 14th international Conference on Architectural
Support For Programming Languages and Operating Systems (ASP-
LOS’09), 2009.

[12] S. Jiang, X. Ding, F. Chen, E. Tan, and X. Zhang. “DULO: An
Effective Buffer Cache Management Scheme to Exploit Both Temporal
and Spatial Localities”. In Proc. of USENIX Confernece on File and
Storage Technoologies (FAST’05), 2005.

[13] S. Jiang and X. Zhang, “LIRS: An Efficient Low Inter-reference Recency
Set Replacement Policy to Improve Buffer Cache Performance”, in Pro.
of ACM International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS’02), 2002.

[14] H. Kim and S. Ahn, “BPLRU: Buffer Management Scheme for Im-
proving Random Writes in Flash Storage”. In Proc. of 6th USENIX
Conference on File and Storage Technologies (FAST’08), 2008.

[15] J. Kang, H. Jo, J. Kim, and J. Lee. “A Superblock-based Flash Transla-
tion Layer for NAND Flash Memory”. in Proc. of 6th ACM and IEEE
International conference on Embedded software, 2006.

[16] J. Kim, J. Kim, S. Noh, S. Min, and Y. Cho. “A space-efficient
flash translation layer for compactflash systems”. IEEE Transactions on
Consumer Electronics, 48(2), 2002.

[17] S. Lim, S. Lee, and B. Moon. “FASTer FTL for Enterprise-Class Flash
Memory SSDs”. in Proc. of 6th IEEE International Workshop on Storage
Network Architecture and Parallel IOs (SNAPI), 2010.

[18] S. Lee, D. Park, T. Chung, D. Lee, S. Park, and H. Song. “A Log
Buffer-based Flash Translation Layer Using Fully-associative Sector
Translation”. in ACM Trans. in Embedded Compututing Systems, Vol.
6, Issue 3, 2007.

[19] S. Lee, D. Shin, Y. Kim, and J. Kim. “LAST: Locality-Aware Sector
Translation for NAND Flash Memory-Based Storage Systems”. in
Proc. of the International Workshop on Storage and I/O Virtualization,
Performance, Energy, Evaluation and Dependability, 2008.

[20] T. Shinohara. “Flash memory card with block memory address arrange-
ment”. United States Patent, no. 5,905,993, 1999.

