
Hot Data Identification for Flash-based Storage
Systems Using Multiple Bloom Filters

Dongchul Park and David H.C. Du
Department of Computer Science and Engineering

University of Minnesota, Twin Cities
Minneapolis, MN 55455, USA
Email: {park, du}@cs.umn.edu

Abstract—Hot data identification can be applied to a variety of
fields. Particularly in flash memory, it has a critical impact on its
performance (due to a garbage collection) as well as its life span
(due to a wear leveling). Although the hot data identification
is an issue of paramount importance in flash memory, little
investigation has been made. Moreover, all existing schemes focus
almost exclusively on a frequency viewpoint. However, recency
also must be considered equally with the frequency for effective
hot data identification. In this paper, we propose a novel hot
data identification scheme adopting multiple bloom filters to
efficiently capture finer-grained recency as well as frequency.
In addition to this scheme, we propose a Window-based Direct
Address Counting (WDAC) algorithm to approximate an ideal
hot data identification as our baseline. Unlike the existing baseline
algorithm that cannot appropriately capture recency information
due to its exponential batch decay, our WDAC algorithm, using
a sliding window concept, can capture very fine-grained recency
information. Our experimental evaluation with diverse realistic
workloads including real SSD traces demonstrates that our
multiple bloom filter-based scheme outperforms the state-of-the-
art scheme. In particular, ours not only consumes 50% less
memory and requires less computational overhead up to 58%,
but also improves its performance up to 65%.

Index Terms—Hot Data Idenficiation, Hot and Cold Data,
Bloom Filter, Flash Memory, SSD, WDAC

I. Introduction

A tendency toward flash-based Solid State Drives (SSD)
now holds sway even in the enterprise servers as well as in
personal computers, especially, laptops. This trend of the stor-
age world results from the recent technological breakthroughs
in flash memory and dramatic reduction of its price [1].

Flash memory is organized in units of blocks and pages.
Each block consists of a fixed number (32 or 64) of pages.
Reads and writes in flash memory are performed on a page
basis, while erases operate on a block basis. Its most distin-
guishing feature is that it does not allow in-place updates. That
is, the flash memory system cannot overwrite new data into
existing data. Instead, the new data are written to clean spaces
somewhere (i.e., out-of-place updates), and then the old data
are invalidated for reclamation in the future.

In order to resolve this in-place update issue, Flash Trans-
lation Layer (FTL) has been developed and deployed to flash
memory to emulate in-place update like block devices [2],
[3], [4], [5], [6], [7]. This layer enables users to utilize the

flash memory like disks or main memory on top of existing
conventional file systems without significant modification by
hiding the characteristics of the out-of-place update. As time
goes on, this out-of-place update inevitably causes the coex-
istence of numerous invalid (i.e., outdated) and valid data. In
order to reclaim the spaces occupied by the invalid data, a
new recycling policy is required, which is a so-called garbage
collection. However, the garbage collection can give rise to not
only considerable amount of valid data copies to other clean
spaces, but also data erases to reclaim the invalidated data
spaces. Data erase (1,500µs) is the most expensive operation
in flash memory compared to data read (25µs) and write
(200µs) [8]. Consequently, a garbage collection results in
a significant performance overhead as well as unpredictable
operational latency. Flash memory exhibits another limitation:
cells can be erased for a limited number of times (e.g., 10K-
100K). Thus, frequent erase operations reduce the lifetime of
the flash memory, which causes a wear leveling issue. The ob-
jective of wear leveling is to improve flash lifetime by evenly
distributing cell erases over the entire flash memory [8]. Both
the wear leveling and garbage collection are fundamentally
based on the hot data identification.

We can simply classify the frequently accessed data as hot
data. Otherwise, they are regarded as cold data. This definition
is still vague and takes only frequency (i.e., the number of
appearance) into account. However, there is another important
factor–recency (i.e., closeness to the present)–to identify hot
data. In general, many access patterns in workloads exhibit
high temporal localities [9]; therefore, recently accessed data
are more likely to be accessed again in near future. This
is the rationale for including the recency factor in hot data
classification.

The definition of hot data can be different for each appli-
cation and also can be applied to a variety of fields. First of
all, this can be primarily used in data caching [10], [11]. By
caching these hot data in the memory space in advance, we can
significantly improve system performance. It is also applied to
B-tree indexing in sensor networks [12]. FlashDB is a flash-
based B-tree index structure optimized for sensor networks.
In FlashDB, the B-tree node can be stored either in read-
optimized mode or in write-optimized mode, whose decision

978-1-4577-0428-4/11/$26.00 c⃝ 2011 IEEE

can be easily made on the basis of a hot data identification
algorithm. Flash memory adopts this classification algorithm
particularly for a garbage collection and a wear leveling [13],
[14], [15]. We can perform a garbage collection more effi-
ciently by collecting and storing hot data to the same block,
which can reduce the garbage collection overhead. Moreover,
we also improve flash reliability by allocating hot data to the
flash blocks with low erase count. Hybrid SSD is another good
application of hot data identification [16], [17]. We can store
hot data to SLC (Single-Level Cell) flash memory, while cold
data can be stored to MLC (Multi-Level Cell) part in the SLC-
MLC hybrid SSD. In addition to these, hot data identification
has a big potential to be exploited by many other applications.
In this paper, we focus on flash-based applications; thus, we
consider only write accesses, not read accesses.

Flash memory contains a fixed small amount of memory
(SRAM) inside; so we need to exploit the SRAM efficiently.
Since FTL needs the majority of this memory for a more
efficient address translation, we have to minimize this memory
usage for the hot data identification. This is one of the
challenges to design an efficient hot data identification scheme.
Moreover, computational overhead is another important issue
since it has to be triggered whenever every write request is
issued.

Although this hot data identification is an issue of
paramount importance in flash memory, it has been least
investigated. Existing schemes either suffer from large memory
space requirements [18] or incur huge computational over-
head [19]. To overcome these problems, Hsieh et al. recently
proposed a multiple hash function framework [20] to identify
hot data. This scheme adopts multiple hash functions and a
counting bloom filter to capture a frequency. Although this
approach accurately captures frequency information because
it maintains counters, it cannot appropriately capture recency
information due to its exponential batch decay process (i.e.,
to decreases all counter values by a half at a time). While
investigating other hot data identification schemes, we also
posed a question about the existing baseline algorithm (i.e.,
direct address method in [20]): it cannot properly capture
recency either. The direct address method assumes that un-
limited memory space is available to keep track of hot data.
It maintains a counter for each LBA to store access counts
and periodically decays all LBA counting information thereby
dividing by two at once. However, this algorithm also still
retains the same limitation as the multihash function scheme.

Considering these observations, an efficient hot data iden-
tification scheme has to meet the following requirements:
1) effective capture of recency information as well as fre-
quency information, 2) small memory consumption, and 3) low
computational overhead. Based on these requirements, in this
paper, we propose a novel hot data identification scheme based
on multiple bloom filters. The key idea of this scheme is that
each bloom filter has a different weight and recency coverage
so that it can capture finer-grained recency information.

Whenever a write request is issued, the hash values of

the LBA are recorded into one of multiple bloom filters (for
short, BFs) in a round robin fashion. All information of each
BF will be periodically erased by turns in order to maintain
fine-grained recency information, which corresponds to an
aging mechanism. Thus, each BF retains a different recency
coverage. We also dynamically assign a different recency
weight to each BF: the BF that just erased (i.e., reset BF)
has higher recency weight, while the lowest recency weight
is assigned to the BF that will be erased in right next turn
because this BF has stored LBA access information for the
longest period of time. For frequency, our proposed scheme
does not maintain a specific counter for all LBAs; instead, the
number of BF recording the LBA information can exhibit its
frequency information. The main contributions of this paper
are as follows:
• An Efficient Hot Data Identification Scheme: A bloom

filter can provide computational and space efficiency.
Both multihash scheme and our proposed scheme try
to take advantage of the bloom filter. Unlike the for-
mer using one counting bloom filter, the latter adopts
multiple bloom filters. The multiple bloom filters enable
our proposed scheme to capture finer-grained recency
information so that we can achieve more accurate hot data
classification. Multiple and smaller bloom filters empower
our scheme to require not only less memory space, but
also lower computational overhead.

• A More Reasonable Baseline Algorithm: Our proposed
approximation algorithm named Window-based Direct
Address Counting (WDAC) adopts a window that is a
conceptual buffer with a predefined size to store each
coming request. Each LBA maintains a corresponding
access counter. Whenever a write request is issued, the
LBA is stored in the head of the window and the oldest
one is evicted like a FIFO (First In First Out) queue.
WDAC assigns different recency weights to all LBAs in
the window according to the closeness to the present.
Thus, when a new request arrives, all LBAs are shifted
toward the tail of the window and all their recency values
are reevaluated. Consequently, WDAC can catch precise
(very fine-grained) recency as well as frequency.

The remainder of this paper is organized as follows. Sec-
tion II gives an overview of flash memory and bloom filters.
It also describes existing hot data identification schemes.
Section III explains the design and operations of our proposed
hot identification scheme and WDAC scheme. Section IV
provides a variety of our experimental results and analyses.
Finally, Section V concludes the discussion.

II. Background and RelatedWork
In this section, we explain flash memory characteristics and

introduce the existing hot data identification schemes with
their pros and cons.

A. The Characteristics of Flash Memory

Figure 1 describes a typical system architecture of flash
memory-based storage systems. Both Memory Technology

Application 1 Application 2 Application N

File Systems

Address Allocator

(Address translation / Block assignment)

Garbage Collector

Wear Leveler

Hot Data

Identifier

Memory Technology Device Layer

Flash Memory

Flash Translation Layer

fwrite (file, data)

block write (LBS, size)

flash write (block, page)

control signals

...

Fig. 1. Typical System Architecture of Flash Memory-based Storage Systems

Device (MTD) and Flash Translation Layer (FTL) are two
major parts of flash memory architecture. The MTD provides
primitive flash operations such as read, write, and erase. The
FTL plays a role in address translation between Logical Block
Address (LBA) and its Physical Block Address (PBA) so that
users can utilize the flash memory with existing conventional
file systems without significant modification. A typical FTL is
largely composed of an address allocator and a cleaner. The
address allocator deals with address translation and the cleaner
tries to collect blocks filled with invalid data pages to reclaim
them for its near future use [21]. This garbage collection is
performed on a block basis; so all valid pages in the victim
block must be copied to other clean spaces before the victim
block is to be erased. Another crucial issue in flash memory
is wear leveling. The motivation of wear leveling is to prevent
any cold data from staying at any block for a long period
of time. Its main goal is to minimize the variance among
erase count values for each block so that the life span of flash
memory is to be maximized [22], [23], [13]. Currently, the
most common allowable number of write per block is typically
10K for MLC and 100K for SLC [24].

B. Bloom Filters

The main goal of the bloom filter (for short, BF) is to
probabilistically test set membership with a space efficient
data structure [25]. Since the space efficiency is an important
factor for the BF, the correctness can be sacrificed in order to
maximize it. Thus, although a given key is not in the set, a BF
may provide a wrong positive answer called a false positive.
However, the basic BFs never provide a false negative. We can
also adjust design parameters (i.e., BF size (M), the number
of hash function (K) and the number of unique element (N))
of a BF to allow a very low probability of the false positive.

The BF is a bit array of M bits and all bits are initially
set to 0. In addition to this bit array, there must also be K
independent hash functions, each of which maps the given
elements to the corresponding bit positions of the array thereby

0

1

0

0

1

0

0

0

1

1

1

1

0

1

1

0

0

0

1

0

1

0

1

1

1

0

0

1

1

1

0

0

0

1

1

0

1

0

0

0

0

0

1

0

1

1

0

1

1

0

0

0

1

0

0

0

1

0

1

0

0

1

1

0

1

0

0

1

X

f1(X)

f4(X)

f3(X)

f2(X)

+1

+1

+1

+1

LBA

Hash Functions

D-bit counters

B-Most Significant Bits

1 0

0 1

Fig. 2. Multiple Hash Function Framework. Here, D = 4 and B = 2.

setting them all to 1. To insert an element to the BF, the key
value of the element is fed to the K hash functions so that
we can get K hash values which correspond to the bit array
positions. Then all the K bit positions are set to 1. To execute
a membership query (i.e., check if the element is in the set),
we first need to get the K bit positions by feeding the key
value of the element to all K hash functions. If any of the K
bits are 0, this means the element is not in the set because all
the bits would have been set to 1 when the element was fed.
If all are 1, there exist two possible cases: the corresponding
element is in the set, or it is just a false positive due to the
insertions of other elements. Assuming the probability of a
false positive is very low, the answer to the query is positive.

C. Hot and Cold Data Identification Schemes

In this subsection, we describe the existing hot and cold
data classification schemes and explore their advantages and
disadvantages.

Chiang et al. [18] proposed an out-of-update scheme called
Flash Memory Server (FMS) in order to reduce the number
of erase operations in flash memory. They made an attempt to
classify data into three types for an efficient garbage collection:
read-only, hot and cold data. Although FMS exhibits a good
hot and cold data classification performance, it requires a large
amount of memory space since it must keep the last access
time information of all LBAs.

To resolve this limitation, Chang et al. [19] used a two-level
LRU list that consists of a hot LBA list and a candidate list.
Both lists are of fixed size and operate under LRU. Whenever
a write request comes into the FTL driver, if the corresponding
LBA already exists in the hot list, the data are classified as hot
data. Otherwise, it is defined as cold data. If the LBA is not in
the hot list but in the candidate list, the data are promoted to
the hot list. If the data are not in either list, it will be inserted
into the candidate list. This two-level LRU scheme consumes

less memory than FMS; nevertheless, it incurs other problems.
The performance of hot data identification is totally dependent
on the sizes of both lists. In other words, a small hot list can
save memory space, but its performance decreases because
highly likely hot data may be demoted to the candidate list
or even evicted from the candidate list. Moreover, this scheme
requires high computing overheads to emulate LRU discipline.

Recently, Hsieh et al. [20] proposed a multiple hash function
framework to identify hot data (Figure 2). This adopts multi-
hash functions and one BF with a D-bit counter for each bit
position in the BF to capture the frequency of the data access
by incrementing the corresponding counters. The recency of
the hot data is implemented by dividing the counter value by
two periodically. If any one bit of B-most significant bits is
set to 1, this bit position is considered as 1. Similarly if all
K-bit positions (from the K-hash functions) are 1, the data are
classified as hot. For example, as shown in Figure 2, assuming
this scheme adopts 4-bit counters and 2-most significant bits, 4
will be its hot threshold value. Thus, the access counter values
of corresponding positions are all greater than or equal to 4,
the data in the LBA are identified as hot. After a specified time
period, this scheme decreases all the counter values by a half
with 1-bit right shifting to implement a decay effect. Compared
to the other schemes, this achieves relatively less memory
consumption as well as less computing overhead. However,
it does not appropriately catch recency information due to its
exponential decrement of all LBA counters.

III. Multiple Bloom Filter-based Hot Data Identification
Scheme

This section describes our proposed multiple bloom filter-
based hot data identification scheme (Section III-A) and our
Window-based Direct Address Counting (WDAC) scheme as
our baseline algorithm (Section III-B).

A. The Framework

As shown in Figure 3, our scheme adopts a set of V
independent bloom filters (for short, BFs) and K independent
hash functions to capture both frequency and finer-grained
recency. Each BF consists of M bits to record K hash values.
The basic operation is simple: whenever a write request is
issued to the Flash Translation Layer (FTL), the corresponding
LBA is hashed by the K hash functions. The output values of
each hash function ranges from 1 to M, and each hash value
corresponds to a bit position of the M-bit BF respectively.
Thus, K hash values set the corresponding K bits in the first
BF to 1. When the next write request comes in, our scheme
chooses the next BF in a round robin fashion to record its hash
values. In addition, it periodically selects one BF in a round
robin manner and erases all information in that BF to reflect
a decay effect.
• Frequency: Unlike the multihash function framework adopt-
ing 4-bit counters, we do not maintain the specific BF counters
for each LBA to count the number of appearance. Instead, our
scheme investigates multiple BFs to check if each BF has

h2

X,Y,Z...LBAs

h1
(X
)

h
2(X)

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

1

0

0

0

0

0

0

0

1

1

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

1

1

0

1

1

1

0

0

0

0

0

0

0

0

0

1

0

0

1

...

1 2 3 V...

Hash Functions

V Independent Bloom Filters

h1

h
1 (Y
)

h2
(Y
)

1

h1(Z)

h
2(Z)

Whenever write requests are issued, one

bloom filter is selected sequentially and

the hash values (LBA) are recorded to it

Currently chosen bloom filter

Fig. 3. Our Framework and Its Operations

recorded the corresponding LBA. The number of BF retaining
the LBAs can show its frequency.

For precise frequency capturing, when it chooses one of
the V BFs and marks the corresponding bits to 1, if the
selected BF has already recorded the hash values of the LBA,
it sequentially (in a round robin manner) examines other BFs
until it finds a new one that has not recorded the LBA. This
sequential examination minimizes disruption of our recency
analysis. If it finds such a new one, it records the hash values
to the BF. If it turns out that all (or predefined number of)
BFs have already contained the LBA information, our scheme
simply defines the data as hot and skips its further processes
such as a BF checking or a recency weight assignment
since this will be definitely over the threshold. This shortcut
decision reduces its overhead (this will be demonstrated in our
experiment section). Consequently, assuming the hash values
of an LBA appear in r (0 ≤ r ≤ V) numbers of the BFs out of V
BFs, we can say the corresponding LBA has appeared r times
before. On the other hand, if all bloom filters have already
recorded the LBA, we do not know its precise frequency
number from then on. However, for hot data identification in
our scheme, the information required is simply the fact if the
value r is larger than the threshold, not the precise counter
value. If this r is larger than a threshold, it passes the frequency
check.
• Recency: Even though the total access counters of two LBAs
are equivalent in a period, the one accessed heavily in the
further past and has never been accessed afterwards should
be classified differently from the other one heavily accessed
recently. If a hot data identifier depends only on counter values
(frequency information), it cannot make distinction between
them. Even though it has a decay mechanism, it cannot classify
them well if the identifier captures coarse-grained recency.

1

0

1

...

0

0

0

1

0

1

0

1

...

0

0

0

0

0

0

0

0

...

0

0

0

0

0

1

0

0

...

1

1

0

0

0

1

0

1

...

1

1

0

0

0

(a) First T Interval

0

0

0

...

0

0

0

0

0

1

0

1

...

0

0

0

0

0

1

0

1

...

1

1

0

0

0

1

0

0

...

1

1

0

0

0

0

0

0

...

1

1

0

0

0

(b) Second T Interval

1

0

1

...

0

0

0

1

0

0

0

0

...

0

0

0

0

0

0

0

0

...

1

1

0

0

0

1

0

0

...

1

1

0

0

0

1

0

1

...

1

1

0

0

0

(c) Third T Interval

...

...

BFVBFV-1BF2BF1 BF3 ... BFVBFV-1BF2BF1 BF3 ... BFVBFV-1BF2BF1 BF3

Fig. 4. Our Aging Mechanism. Here, a white (i.e., not-shaded) bloom filter
corresponds to a reset bloom filter

...

Present1T2T(V-2)×T(V-1)×TV×T

BFV

BFV-1

BF2

BF1

1

0

1

...
0

0

0

1

0

1

0

1

...
0

0

0

0

0

0

0

0

...
0

0

0

0

0

1

0

0

...
1

1

0

0

0

1

0

1

...
1

1

0

0

0

(a) Recency Coverage (b) Bloom Filter Status

...

...

BFVBFV-1BF2BF1 BF3

Fig. 5. Recency Coverage for Each Bloom Filter

Since our scheme does not maintain LBA counters, we
need to devise a different aging mechanism to capture recency
information. Figure 4 illustrates our aging mechanism to decay
old information. Consider that we adopt V independent BFs
and the hash values of LBAs are recorded to each BF in a
round-robin manner during a predefined interval T. An interval
T represents a fixed number of consecutive write requests, not
the time interval. As shown in Figure 4 (a), after the interval T,
the BF that has not been selected in the longest time interval
is selected and all bits in the BF (i.e., BFV) are reset to 0. As
soon as it is reset, the hashed LBA values start to be recorded
again to all BFs including the reset BF. After the interval T,
the next BF (BF1) is selected and all the bits are reset (shown
in Figure 4 (b)). Similarly, after the next T interval, the next
BF (BF2) is chosen in a right cyclic shift manner and all
information is erased (shown in Figure 4 (c)) as time goes on.

Figure 5 shows the recency coverage after the interval T
as soon as (BFV) is reset. The reset BF (BFV) can remember
LBA information accessed during only the last one interval
T (i.e., latest 1T interval). The previously reset BF (BFV−1)
can record the LBA information accessed during the last two
intervals. Similarly, the BF 1 (BF1) which will be chosen as
a next reset BF after this period can cover the longest interval
V × T . This means BF1 records all LBA information for the
last V × T intervals.

Our proposed scheme assigns a different recency weight to
each BF so that recency value is combined with frequency
value for hot data decision. The reset BF (BFV) records most
recent access information; so highest recency weight has to
be assigned to it, whereas lowest recency weight is allotted to

1500

2000

2500

3000

3500

4000

4500

5000

5500

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

T
h

e
 N

u
m

b
e

r
o

f
U

n
iq

u
e

 L
B

A

The Number of Write Requests (Unit: 5,117 Writes)

Financial1 Distilled MSR RealSSD

4096

Fig. 6. The Number of Unique LBAs within Unit Periods under Various
Workloads (Unit: 5,117 Writes). A large number of unique LBAs exceed the
bloom filter size of 4,096 (a dotted square).

the BF that will be chosen as a next reset BF (BF1) because
it has recorded the access information for the longest time.
We intend to use recency value as a weight to the frequency
value such that a final value combining both can be produced.
Consequently, even though two different LBAs have appeared
once in BFV and BF1 respectively, both frequency values are
regarded differently as follows: assuming BFV is a current
reset BF, we first choose one BF (BF⌊V/2⌋) that has medium
recency coverage and then assign a weight value of 1 to it.
Next, we assign a double weight value (this is explained in
subsection III-B) to the reset BF (BFV), which means the LBA
appearance in this BF counts as a double frequency. Third, we
calculate the difference of recency weights between each BF
by 1/(V − ⌊V/2⌋) and assign evenly decreasing weight value
from BFV−1 to BF1. For example, consider we adopt 4 BFs
(V = 4) and BF4 is a current reset BF, we first select BF2

and assign a weight value of 1 to it. Then, we allot a double
weight value (i.e., 2) to the reset BF (BF4). Next, we can get
0.5 (= 1/(4−2)) as a difference of recency weights and finally
distribute different recency weight values 2, 1.5, 1, and 0.5
to BF4, BF3, BF2, and BF1 respectively. Here, if any LBA
appears both in BF3 and BF4, the original frequency value
would be 2, but our scheme regards the final value as 3.5
because each BF has different recency weights. In this paper,
we define this combination value of frequency and recency as
a hot data index. Thus, if the value of hot data index is greater
than or equal to a predefined threshold value, we regard the
data as hot.
• A Bloom Filter Size and Decay Period: According to [26],
we can estimate an optimal BF size (M) using the following
formula, M = KN/ln2, given K and N. It is clear that the BF
size (M) needs to be quite large compared to the size of the
element set (N). For example, assuming we adopt two hash
functions (K = 2) and there are 4,096 unique elements, we
should adopt an 11,819-bit vector as an appropriate size of
the BF to minimize a false positive probability. This basic
BF allows the elements to be only added to it, but not
removed from it. Thus, as the number of input elements
grows, the data recorded in the BF are also continuously
accumulated, which causes a higher false positive probability.
To reduce this, the traditional BF scheme requires a large
BF size as described in the formula. However, we cannot
simply apply this relationship to both our proposed scheme

and multihash function scheme. The BFs in both schemes
retain a distinguishing feature from the basic BF–information
in the bloom filters can be removed. Especially our proposed
scheme completely removes all information in one of the V
BFs periodically. This prevents continuous data accumulation
to the BF. Therefore, we can adopt a smaller BF than the
aforementioned traditional BF.

Multihash function scheme consists of 4,096 entries of a BF
each of which is composed of a 4-bit counter. It also adopts
5,117 write requests (N) as its decay period. This is based on
their expectation that the number of hash table entry (M) can
accommodate all those LBAs which correspond to cold data
within every N (where, N ≤ M/(1 − R)) write request (here,
R is the hot ratio of a workload and the authors assumed
R is 20%) [20]. To verify their assumption, as displayed
in Figure 6, we measured the number of unique LBA for
every 5,117 write request under several real traces such as
Financial1, Distilled, MSR and RealSSD (these traces will be
explained in our experiment section). Figure 6 clearly shows
that the number of unique LBA very frequently exceeds their
BF size (4,096) for each unit period (every 5,117 write request)
under all four traces. This necessarily causes hash collisions
so that it results in a higher false positive probability.

We also measured the average number of unique LBA
within both 2,048 and 4,096 write request periods under the
same workloads. They vary from 1,548 to 1,991 for 2,048 unit
and from 3,014 to 3,900 for 4,096 unit. This is closely related
with average hot ratios of each workload: intuitively the higher
average hot ratio, the less number of unique LBA. Based on
these observations, as our decay interval T, we adopt M/V
numbers of write requests, where M is a BF size and V is the
number of BF. To reduce the probability of a false positive,
the BF size (i.e., the number of hash table entries) must be
able to accommodate at least all unique LBAs that came in
for the last V × T interval. Thus, whenever M/V numbers of
write requests are issued, one of the BFs are selected in a
round robin fashion and all the bits in the BF are reset to 0.
For example, assuming our BF size is 2,048, our decay period
corresponds to 512 write requests. Since memory consumption
is also very important factor, we adopt even less (a half) size
of BF than the BF size in multihash scheme.

B. WDAC: A Window-based Direct Address Counting
Hsieh et al. proposed an approximated hot data identification

algorithm named a direct address method (hereafter, we refer
to this as DAM) as their baseline. By using counters DAM can
capture the frequency information well, whereas, with respect
to recency, it retains the same limitation as the multihash
function scheme: all LBAs accessed within the same decay
period have an identical recency regardless of their access time
or sequence. For instance, assuming the decay period is 4,096
write requests, the LBA accessed in the first request within
this period is considered as having the same recency as the
LBA accessed in the last (4, 096th) request.

To resolve this limitation, in this subsection, we propose
a more reasonable baseline algorithm to approximate ideal

11, 30, 5, 11, 24, 11, 30, 3, 11, 5, 10, 24, 3, 17...

11, 30, 5, 11, 24, 11, 30, 3, 11, 5, 10, 24, 3, 17...

11, 30, 5, 11, 24, 11, 30, 3, 11, 5, 10, 24, 3, 17...

11, 30, 5, 11, 24, 11, 30, 3, 11, 5, 10, 24, 3, 17...

LBA HDI

11 3.2

30 1.4

5 2.2

24 0.8

3 1.4

10 2.0

LBA HDI

11 2.6

30 1.0

5 1.8

24 2.6

3 1.2

10 1.8

LBA HDI

11 2.0

30 0.8

5 1.4

24 2.2

3 3.0

10 1.6

LBA HDI

11 4.0

30 1.8

5 2.6

24 1.0

3 1.6

(a) LBAs and Sliding Window

(b) Total Hot Data Index for Each LBA

Higher Recency Weight

(1)

(2)

(3)

(4)

(1) (2) (3) (4)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Fig. 7. Working Process of WDAC Algorithm. Here, the window size is 10.
HDI corresponds to the total hot data index value.

hot data identification named Window-based Direct Address
Counting (WDAC). As shown in Figure 7 (a), WDAC main-
tains a specific size of buffer like a sliding window. In addition,
it maintains total hot data index values for each LBA (shown
in Figure 7 (b)).

Within this window, all elements have a different recency
value according to their access sequences: the closer to the
present, the higher recency weight is assigned to the LBA.
That is, highest recency value (i.e., 2) is assigned to the most
recently accessed element (head) in the window, whereas,
the lowest recency is allotted to the last element (tail) in
the window. All intermediate LBAs in the window have all
different recency values with an evenly decreasing manner.
Assuming the window size is W, we can get the recency
difference between two adjacent elements in the window
as 2/W. Thus, all recency weights assigned to each LBA
evenly decrease by 2/W from the head to the tail in the
window. Whenever a new LBA comes in, all recency values
are reassigned to all the LBAs shifted in the window and the
last one is evicted from the window.

Like our proposed multiple bloom filter-based scheme, as
our highest recency weight, we choose 2 (a double weight
value) since the total average of all recency values in the
window is equivalent to that within the same decay period
in the DAM. Instead, unlike the DAM, we assign a higher
recency weight to the recently accessed LBAs and vice versa.
Consequently, our proposed WDAC can properly identify hot
data thereby using very fine-grained recency information.

Figure 7 illustrates a simple example for our WDAC pro-
cess. This window can contain 10 LBAs and recency difference
corresponds to 0.2 (= 2/10). Whenever a write request comes

TABLE I
System Parameters and Values

System Parameters MBF MHF WDAC DAM
Bloom Filter Size 211 212 N/A N/A

Number of Bloom Filter 4 1 N/A N/A
Decay (Window Size) 29 212 212 212

Number of Hash Function 2 2 N/A N/A
Hot Threshold 4 4 4 4

Recency Weight Difference 0.5 N/A 0.000488 N/A

in to the flash translation layer (FTL), this LBA is stored in the
head of the window and the last one is evicted. At the same
time, all the others are shifted toward the tail of the window
and their recency values are reevaluated by decreasing their
values by the recency difference (0.2). All of the total hot data
index values also need to be updated accordingly. Finally, if
the total hot data index value of the corresponding LBA is
greater than or equal to a predefined hot threshold, we regard
it as hot data.

In our proposed WDAC scheme, since window size is
associated with recency and frequency, a proper window size is
an important parameter to this scheme. Therefore, the impact
of this window size will be discussed in our experiment part.

IV. Experimental Results

This section provides diverse experimental results and com-
parative analyses.

A. Evaluation Setup

We compare our Multiple Bloom Filter-based scheme (here-
after, refer to as MBF) with three other hot data identifi-
cation schemes: Multiple Hash Function scheme (hereafter,
refer to as MHF) [20], Direct Address Method (refer to as
DAM) [20], and our proposed baseline scheme named WDAC.
We, however, focus particularly on the MHF since it is the
state-of-the-art scheme. We adopt a freezing approach [20]
as a solution for a counter overflow problem in MHF since
it, in our experiments, showed a better performance than the
other approach (i.e., exponential batch decay). DAM is an
aforementioned baseline proposed in MHF scheme. Table I
shows system parameters and their values. Our scheme (MBF)
adopts a half size of a bloom filter as MHF because ours
shows a better performance than MHF even with a smaller
one. However, we also evaluate both schemes with the same
size of a bloom filter for clearer understanding.

For fair evaluation, we assign the same number of write
requests (4,096) for a decay interval in DAM as well as for a
window size in our proposed WDAC algorithm. Moreover,
we employ 4,096 write requests for the decay interval in
MHF scheme to synchronize with DAM and WDAC, while we
adopt 512 write requests for our decay period. We also adopt
identical hash functions for both MBF and MHF schemes.
Lastly, since window size is 4,096 in WDAC, there exist about
0.488 × 10−3 (= 2/4, 096) weight difference for each element
and we also assign 0.5 weight difference for each BF in MBF.

TABLE II
Workload Characteristics

Workloads Total Request Ratio Inter-arrival
Requests (Read:Write) Time (Avg.)

Financial1 5,334,987 R:1,235,633(22%) 8.19 ms
W:4,099,354(78%)

MSR 1,048,577 R:47,380(4.5%) N/A
W:1,001,197(95.5%)

Distilled 3,142,935 R:1,633,429(52%) 32 ms
W:1,509,506(48%)

RealSSD 2,138,396 R:1,083,495(51%) 492.25 ms
W:1,054,901(49%)

For more objective evaluation, we adopt four real work-
loads (Table II). Financial1 is a write intensive trace file
from the University of Massachusetts at Amherst Storage
Repository [27]. This trace file was collected from an On-
line Transaction Processing (OLTP) application running at a
financial institution. Distilled trace file [19] shows a general
and personal usage patterns in a laptop such as web surfing,
watching movies, playing games, documentation work, etc.
This is from the flash memory research group repository at
National Taiwan University, and since the MHF scheme uses
only this trace file, we also adopt this trace for fair evaluation.
We also adopt MSR trace file made up of 1-week block I/O
traces of enterprise servers at Microsoft Research Cambridge
Lab [28]. We select, in particular, prxy volume 0 trace since it
exhibits a write intensive workload [29]. Lastly, we employ a
real Solid State Drive (SSD) trace file that is 1-month block
I/O traces of a desktop computer (AMD X2 3800+, 2G RAM,
Windows XP Pro) in our lab (hereafter, refer to as RealSSD
trace file). We installed Micron’s C200 SSD (30G, SATA) to
the computer and collected personal traces such as computer
programming, running simulations, documentation work, web
surfing, watching movies etc.

The total requests in Table II correspond to the total number
of read and write requests in each trace. These requests can
also be subdivided into several or more sub-requests with
respect to LBA accessed. For example, let us consider such a
write request as WRITE 100, 5. This means ’write data into 5
consecutive LBAs from the LBA 100’. In this case, we regard
this request as 5 write requests in our experiments.

B. Performance Metrics

A hot ratio is a ratio of hot data to all data. First of all, we
choose this hot ratio to compare each performance of those
four hot data identification schemes and to examine closeness
among them. However, even though both hot ratios of two
algorithms are identical, hot data classification results of both
schemes may be able to be different since an identical hot
ratio means the same number of hot data to all data and does
not necessarily mean all classification results are identical.
Thus, in order to make up for this limitation, we employ
another evaluation metric: false identification rate. Whenever
write requests are issued, we try to compare each identification
result of each scheme. This enables us to make a more precise

0

5

10

15

20

1 5 9 13 17 21 25 29

H
o

t
R

a
ti

o
 (

%
)

Number of Write Requests (Unit: 150K)

WDAC DAM

0

5

10

15

20

1 5 9 13 17 21 25 29

H
o

t
R

a
ti

o
 (

%
)

Number of Write Requests (Unit: 300K)

WDAC DAM

0

5

10

15

1 5 9 13 17 21 25 29

H
o

t
R

a
ti

o
 (

%
)

Number of Write Requests (Unit: 300K)

WDAC DAM

(b) MSR (c) Distilled (d) RealSSD

0

5

10

15

20

25

30

1 5 9 13 17 21 25 29

H
o

t
R

a
ti

o
 (

%
)

Number of Write Requests (Unit:300K)

WDAC DAM

(a) Financial1

Fig. 8. Hot Ratios of Two Baseline Algorithms

0

2

4

6

8

10

12

14

1 5 9 13 17 21 25 29

#
 o

f
D

if
fe

re
n

t
Id

e
n

ti
fi

ca
ti

o
n

(U
n

it
:

×
1

0
0

0
)

Number of Write Requests (Unit: 150K)

0

2

4

6

8

10

12

14

1 5 9 13 17 21 25 29

#
 o

f
D

if
fe

re
n

t
Id

e
n

ti
fi

ca
ti

o
n

(U
n

it
:

×
1

0
0

0
)

Number of Write Requests (Unit: 300K)

0

1

2

3

4

5

6

7

1 5 9 13 17 21 25 29

#
 o

f
D

if
fe

re
n

t
Id

e
n

ti
fi

ca
ti

o
n

(U
n

it
:

×
1

0
0

0
)

Number of Write Requests (Unit: 300K)

0

5

10

15

20

25

30

1 5 9 13 17 21 25 29

#
 o

f
D

if
fe

re
n

t
Id

e
n

ti
fi

ca
ti

o
n

(U
n

it
:

×
1

0
0

0
)

Number of Write Requests (Unit: 300K)

(b) MSR (c) Distilled (d) RealSSD(a) Financial1

Fig. 9. The Number of Different Identification between Two Baseline Algorithms

analysis of them. Memory consumption is another important
factor to be discussed since SRAM size is very limited in
flash memory. Finally, runtime overhead also must be taken
in account. To evaluate it, we choose two main operations and
measure CPU clock cycles per operation in each scheme.

C. Results and Analysis

We discuss our evaluation results in diverse respects.
• Baseline Algorithm: We first start to evaluate two base-
line schemes: our proposed WDAC and DAM. As shown
in Figure 8 (a) and (b), the hot ratios of both schemes
exhibit considerably different results under Financial1 and
MSR, whereas they display almost identical patterns under
Distilled and RealSSD traces. However, as mentioned before,
the identical hot ratios do not necessarily mean the same
performance of them. Thus we make another experiment for
a more comparative analysis.

Figure 9 plots the number of different identification results
between WDAC and DAM. We count the number of different
hot classification results during a specified unit time (150K or
300K write requests) between them. Thus, zero value means
all the identification results are identical between each scheme
during the corresponding unit time. Particularly, Figure 9 (c)
and (d) illustrate well the performance of both schemes can
be different even though two hot ratios look very similar each
other as shown in Figure 8 (c) and (d).
• Our Scheme (MBF) vs. MHF: Now, we make an attempt
to evaluate performance of our proposed scheme (MBF) and
the multiple hash function scheme (MHF). For references,
we include our aforementioned two baselines. In particular,
we try to compare with DAM as well as WDAC in order
to demonstrate that our proposed WDAC is not an unfairly
customized baseline algorithm which is best fit for our scheme.

As illustrated in Figure 10, our MBF presents a very close
approach to our baseline, even to DAM, while the MHF has a

tendency to exhibit considerably higher hot ratios than MBF
as well as two baselines under all traces. This results from a
higher ratio of false identification in MHF. That is, since the
BF size (i.e., hash table size) is limited, even though write
requests of cold data are increased, the chance of incorrect
counter increments also grows due to hash collisions. As
a result, it causes higher hot ratios. As Hsieh et al. are
mentioned in their paper, the MHF scheme does not show
a good performance especially when the hot data ratio in
traces is very low. To get over this limitation, they suggested
two solutions: a larger size of the hash table or a more
frequent decay operation. However, both suggestions cannot be
fundamental solutions since not only does a larger hash table
require more memory consumption, but also a more frequent
decay produces a significant performance overhead.

Our scheme, on the other side, resolves that limitation by
adopting multiple BFs. Unlike MFH adopting the exponential
batch decay after a longer decay period (here, 4,096 write
requests), our scheme erases all information only in one
BF out of V BFs (here, V=4) after a shorter decay period
(here, 512 write requests). Furthermore, a smaller BF results
in lower computational overhead as well as less memory
space consumption. Both memory consumption and runtime
overhead will be discussed in the next subsections in more
detail.

Figure 11 shows the false identification rates of both
our scheme and MHF scheme. We compare both MBF and
MHF with our proposed ideal scheme (WDAC). Thus, we
can call these results false identification rates. As presented
in Figure 11, our MBF scheme exhibits much lower false
identification rates than MHF. It improves its performance
by an average of 41%, 65%, 59%, and 36% under the four
workloads respectively.

• Runtime Overhead: Computational overhead is another

0

10

20

30

40

1 5 9 13 17 21 25 29

H
o

t
R

a
ti

o
 (

%
)

Number of Write Requests (Unit: 150K)

MBF MHF WDAC DAM

0

5

10

15

20

25

30

1 5 9 13 17 21 25 29

H
o

t
R

a
ti

o
 (

%
)

Number of Write Requests (Unit: 300K)

MBF MHF WDAC DAM

0

5

10

15

20

25

30

1 5 9 13 17 21 25 29

H
o

t
R

a
ti

o
 (

%
)

Number of Write Requests (Unit: 300K)

MBF MHF WDAC DAM

0

5

10

15

20

25

30

35

1 5 9 13 17 21 25 29

H
o

t
R

a
ti

o
 (

%
)

Number of Write Requests (Unit: 300K)

MBF MHF WDAC DAM

(b) MSR (c) Distilled (d) RealSSD(a) Financial1

Fig. 10. Hot Ratios of Four Schemes under Various Traces

0

5

10

15

20

25

30

35

1 5 9 13 17 21 25 29

F
a

ls
e

 I
d

e
n

ti
fi

ca
ti

o
n

 R
a

te
 (

%
)

Number of Write Requests (Unit: 150K)

MBF MHF

0

5

10

15

20

1 5 9 13 17 21 25 29

F
a

ls
e

 I
d

e
n

ti
fi

ca
ti

o
n

 R
a

te
 (

%
)

Number of Write Requests (Unit: 300K)

MBF MHF

0

5

10

15

20

1 5 9 13 17 21 25 29

F
a

ls
e

 I
d

e
n

ti
fi

ca
ti

o
n

 R
a

te
 (

%
)

Number of Write Requests (Unit: 300K)

MBF MHF

0

5

10

15

1 5 9 13 17 21 25 29F
a

ls
e

 I
d

e
n

ti
fi

ca
ti

o
n

 R
a

te
 (

%
)

Number of Write Requests (Unit: 300K)

MBF MHF

(b) MSR (c) Distilled (d) RealSSD(a) Financial1

Fig. 11. False Identification Rates of Both MBF and MHF

important factor to evaluate hot data identification scheme.
Figure 12 displays runtime overheads for a checkup and decay
operation in MBF and MHF. A checkup operation means the
verification process to check if the data in the corresponding
LBA are hot whenever write requests are issued. A decay
operation is the aforementioned aging mechanism. Since both
are the most representative operations in hot data identification
schemes, we choose and evaluate them. To evaluate each
operation, we measure CPU clock cycles for them under the
configurations in Table I. This measuring is done over an AMD
X2 3800+ (2GHz) system with 2G RAM under Windows
XP Professional platform. For fair and precise evaluation of
each operation in both schemes, we feed many write requests
from MSR traces (100K numbers of write requests) and then
measure their average CPU clock cycles since a CPU clock
cycle is dependent on cache misses (such as code miss and
data miss) in CPU caches. In other words, when we measure
CPU clock cycles of the operations, a lot more clock cycles
are required at the beginning stage due to CPU cache misses,
while the clock cycles start to be significantly reduced and
stabilized soon afterwards.

As presented in Figure 12, the runtime overhead of a
checkup operation in MBF is comparable to the checkup
operation in MHF because both schemes adopt identical hash
functions and BF data structures. However, our scheme re-
quires about 6% less computational overhead than MHF since
our scheme (MBF) sets only one bit for each hash function,
while MHF frequently needs to set more than one bit. That
is, since MHF scheme consists of 4-bit counters, one or more
bits can need to be set in order to increase the corresponding
counters. In the case that a chosen BF in MBF has already
recorded the corresponding LBA information, it tries to choose
another BF until it finds one available. Intuitively, this process
may require extra overhead in comparison with the MHF.

478
675

2251

510 510

5413

0

1000

2000

3000

4000

5000

6000

Checkup Checkup_WS Decay

C
P

U
 C

lo
ck

 C
y
cl

e

MBF MHF

Fig. 12. Average Runtime Overhead per Operations. Here, Checkup WS
means the checkup operation without a shortcut decision.

However, when it turns out that all BFs (here, 4 BFs) have
already included the LBA information, MBF simply defines
the data as hot and skips further processes such as a BF
checking or recency weight assignment. This shortcut decision
in the checkup operation considerably reduces its overhead by
an average of 29% compared to the checkup operation without
shortcut decision (478 vs. 675) in our scheme.

On the other hand, a decay operation of our scheme out-
performs that of MHF. Our scheme consists of 4 numbers
of 2,048 sizes of 1-bit array, while MHF is composed of
4,096 sizes of 4-bit array. Thus, whenever a decay operation is
executed in MHF, all 4,096 numbers of 4-bit counters must be
right-shifted by 1-bit at once. Our scheme, however, needs to
reset only 2,048 sizes of 1-bit array. Therefore, although our
scheme requires more frequent (here, 4 times more frequent)
decay operations than MHF, it requires almost a half (58%)
less runtime overhead than MHF.
• Impact of Memory Size: Our scheme consumes only 1KB,
while MHF requires a double (2KB). As mentioned before, our
proposed scheme comprises 4 BFs each of which consists of
0.25KB (i.e., 2K×1-bit). On the other hand, MHF is composed
of 4K numbers of 4-bit counters (i.e., 4K×4-bit). Therefore,

0

5

10

15

20

25

30

35

1 5 9 13 17 21 25 29F
a

ls
e

 I
d

e
n

ti
fi

ca
ti

o
n

 R
a

te
 (

%
)

Number of Write Requests (Unit: 150K)

MBF(2K) MBF MHF

0

5

10

15

20

1 5 9 13 17 21 25 29F
a

ls
e

 I
d

e
n

ti
fi

ca
ti

o
n

 R
a

te
 (

%
)

Number of Write Requests (Unit: 300K)

MBF(2K) MBF MHF

0

5

10

15

1 5 9 13 17 21 25 29F
a

ls
e

 I
d

e
n

ti
fi

ca
ti

o
n

 R
a

te
 (

%
)

Number of Write Requests (Unit: 300K)

MBF(2K) MBF MHF

(b) MSR (c) Distilled (d) RealSSD(a) Financial1

0

2

4

6

8

10

0.125K 0.25K 0.5K 1K 2K 4K

F
a

ls
e

 I
d

e
n

ti
fi

ca
ti

o
n

 R
a

te
 (

%
)

Memory Space (Bytes)

MBF MHF

Fig. 13. False Identification Rates between Two Schemes with Same Memory Space. Here, original MBF and MHF requires 1KB and 2KB respectively.
Figure (d) shows the performance change over various memory space under RealSSD traces.

0

20

40

60

80

16K 8K 4K 2K 1K

A
v
e

ra
g

e
 H

o
t

R
a

ti
o

 (
%

)

Window Size (# of Write Request)

Financial1 MSR

Distilled RealSSD

0

20

40

60

80

16K 8K 4K 2K 1K

A
v
e

ra
g

e
 H

o
t

R
a

ti
o

 (
%

)

Decay Period (# of Write Request)

Financial1 MSR

Distilled RealSSD

(a) WDAC (b) DAM

Fig. 14. Changes of Average Hot Ratios over Various Window Sizes in
WDAC and Decay Periods in DAM

0

2

4

6

8

10

12

14

1 5 9 13 17 21 25 29

F
a

ls
e

 I
d

e
n

ti
fi

ca
ti

o
n

 R
a

te
 (

%
)

No. of Write Requests (Unit: 300K)

4 BFs 8 BFs

16 BFs 32 BFs

0

1

2

3

4

5

6

4 BFs 8 BFs 16 BFs 32 BFs

F
a

ls
e

 I
d

e
n

ti
fi

ca
ti

o
n

 R
a

te
 (

%
)

Number of Bloom Filter

(a) MHF (b) Change of Total False Identification Rates

Fig. 15. Performance Change over Various Numbers of a Bloom Filter in
Our Scheme under RealSSD trace

our scheme consumes only a half of memory space of MHF
scheme.

Figure 13 illustrates false identification rates between two
schemes with same memory space. Since MHF originally
requires 2KB, we double each BF size in our scheme from
0.25KB to 0.5KB (i.e., 0.5KB×4=2KB). For reference, we
include our original MBF (1KB) into each plot. As shown
in Figure 13, MBF with 2KB improves its performance by
lowering its false identification rates further than original MBF
(1KB), which means our proposed scheme clearly outperforms
MHF under the same memory space condition. MBF with
2K benefits from a larger BF size so that it can reduce the
possibility of a false positive in each BF.

Different memory spaces (i.e., different bloom filter sizes)
will have an effect on the performance of each scheme. We
now explore the impact of memory space on both MBF
and MHF. Figure 13 (d) exhibits performance changes of
both schemes over various memory spaces under RealSSD
trace file. Both schemes with larger memory space show a

better performance than those with smaller memory space.
As a memory space grows, although each performance is
also improved accordingly, our proposed scheme still exhibits
better performance than MHF throughout all memory spaces
from 0.125KB to 4KB. Since other experimental results under
the other traces such as Financial1, MSR and Distilled also
show almost identical patterns with this experiment, we do
not provide the other ones.
• Impact of Window Size: Intuitively, a larger window will
cause a higher hot ratio because a window size is directly
associated with frequency information. All experiments in
Figure 14 demonstrate well this intuition. Since total hot
data index values for each LBA are the summation of all
weighted frequency values of the corresponding LBA within
the window, the frequency value has a great impact on the hot
data decision. A larger window can contain a more number
of LBA access information so that it necessarily causes a
higher frequency value for each LBA. This results in a higher
hot ratio. Conceptually the decay period in DAM is similar
to the window size in WDAC. Thus, we also explore the
relationship between various decay periods and hot ratios in
DAM. Figure 14 presents the changes of average hot ratios
over a different window size in WDAC and a different decay
period in DAM. Like WDAC, a longer decay period causes a
higher hot ratio in DAM. Thus, overall trends of hot ratios in
DAM exhibit very similar results.
• Impact of the Number of a Bloom Filter: In our proposed
scheme, the number of BF corresponds to the granularity of
recency. To explore its impact, we make experiments with
various numbers of BF in our scheme. For more objective
comparison, we not only assign the same memory space (1KB)
and the same number of hash function (2) to each scheme,
but also configure BF sizes and decay periods accordingly.
As presented in Figure 15 (b), as the number of BF grows,
the false identification rates also increase. This result is closely
related with BF sizes of each scheme. Since each configuration
has the same total memory consumption, smaller BFs have
to be assigned to the scheme with a more number of BF,
which results in higher false identification rates. Even though
the scheme with a more number of BF can capture finer-
grained recency information, this benefit is offset by its higher
false identification rates. To verify this, we make another
experiment with the same configurations except for memory
consumption. When we double the number of BF from 4 to

8 while remaining the same BF size (i.e., 1KB to 2KB), the
performance is improved by an average of 18% since it can
benefit from capturing its finer-grained recency.

V. Conclusion

In this paper, we proposed a novel hot data identification
scheme for flash memory-based storage systems. Unlike the
multihash framework, our scheme adopts multiple bloom
filters and each bloom filter has a different weight and a
different recency coverage so that it can capture finer-grained
recency information. Furthermore, multiple and smaller bloom
filters empower our scheme to achieve not only lower runtime
overheads, but also less memory consumption.

In addition to this novel scheme, we proposed a more
reasonable baseline algorithm to approximate an ideal hot data
identification named Window-based Direct Address Counting
(WDAC). The existing algorithm (i.e., direct address method)
cannot properly catch recency information because it assigns
an identical recency weight to all LBAs accessed within a
decay period. However, our WDAC allots all different recency
weights to all LBAs within a window according to their access
sequences so that it can capture precise recency as well as
frequency information. Consequently, WDAC can properly
identify hot data.

We made experiments in many respects under diverse real
traces including real SSD traces. All hot data identification
results (i.e., hot ratios) of our scheme display much closer
results to those of the baseline scheme than the other one.
Furthermore, to make up for the limitation of a hot ratio-
based analysis, we also compared the number (or rate) of
false identification by making one-to-one comparison of each
identification result. This pinpoint evaluation not only enables
us to make a comparative analysis of each performance, but
also demonstrates that our scheme more precisely identifies hot
data. Lastly, we carried out experiments on variable memory
size, window size, and the number of a bloom filter in our
scheme to explore their impacts. Our experiments present that
our proposed scheme improves the performance up to 65%
although its runtime overhead of, in particular, decay operation
in our scheme requires less CPU clocks up to 58% and less
memory space, by an average of 50%.

Acknowledgment

This research was partially supported by the National Sci-
ence Foundation (NSF) grants 0960833 and 0934396.

References

[1] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Rowstron,
“Migrating server storage to ssds: analysis of tradeoffs,” in EuroSys ’09,
2009, pp. 145–158.

[2] S. Lee, D. Park, T. Chung, D. Lee, S. Park, and H. Song, “A Log
Buffer-based Flash Translation Layer Using Fully-associative Sector
Translation,” ACM Transactions on Embedded Computing Systems,
vol. 6, no. 3, 2007.

[3] C.-H. Wu and T.-W. Kuo, “An adaptive two-level management for the
flash translation layer in embedded systems,” in ICCAD, 2006.

[4] C. Park, W. Cheon, J. Kang, K. Roh, W. Cho, and J. Kim, “A
reconfigurable FTL (flash translation layer) architecture for NAND
flash-based applications,” ACM Transactions on Embedded Computing
Systems, vol. 7, no. 4, 2008.

[5] J. Shin, Z. Xia, N. Xu, R. Gao, X. Cai, S. Maeng, and F. Hsu, “FTL
Design Exploration in Reconfigurable High-Performance SSD for Server
Applications,” in ICS, 2009.

[6] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: a Flash Translation Layer
Employing Demand-based Selective Caching of Page-level Address
Mappings,” in ASPLOS, 2009.

[7] D. Park, B. Debnath, and D. Du, “CFTL: A Convertible Flash Transla-
tion Layer Adaptive to Data Access Patterns,” in SIGMETRICS, 2010.

[8] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis, M. Manasse, and
R. Panigrahy, “Design Tradeoffs for SSD Performance,” in USENIX,
2008.

[9] L.-P. Chang and T.-W. Kuo, “Efficient Management for Large-scale
Flash Memory Storage Systems with Resource Conservation,” in ACM
Transactions on Storage, vol. 1, no. 4, 2005.

[10] B. Debnath, S. Subramanya, D. Du, and D. J. Lilja, “Large Block
CLOCK (LB-CLOCK): A Write Caching Algorithm for Solid State
Disks,” in MASCOTS, 2009.

[11] H. Kim and S. Ahn, “BPLRU: A Buffer Management Scheme for
Improving Random Writes in Flash Storage,” in FAST, 2008.

[12] S. Nath and A. Kansal, “FlashDB: Dynamic Self-tuning Database for
NAND Flash,” in IPSN, 2007.

[13] Y. Chang, J. Hsieh, and T. Kuo, “Endurance enhancement of flash-
memory storage systems: an efficient static wear leveling design,” in
DAC, 2007.

[14] S. Boboila and P. Desnoyers, “Write Endurance in Flash Drives: Mea-
surements and Analysis,” in FAST, 2010.

[15] G. Soundararajan, V. Prabhakaran, M. Balakrishnan, and T. Wobber,
“Extending SSD Lifetimes with Disk-Based Write Caches,” in FAST,
2010.

[16] G. Sun, Y. Joo, Y. Chen, D. Niu, Y. Xie, Y. Chen, and H. Li, “A Hybrid
Solid-State Storage Architecture for Performance, Energy Consumption
and Lifetime Improvement,” in HPCA, 2010.

[17] L.-P. Chang, “Hybrid solid-state disks: combining heterogeneous
NAND flash in large SSDs,” in Proceedings of the Asia and South
Pacific Design Automation Conference, ser. ASP-DAC ’08, 2008,
pp. 428–433. [Online]. Available: http://portal.acm.org/citation.cfm?id=
1356802.1356908

[18] M.-L. Chiang, P. C. H. Lee, and R. chuan Chang, “Managing flash
memory in personal communication devices,” in Proceedings of the 1997
International Symposium on Consumer Electronics, 1997, pp. 177–182.

[19] L.-P. Chang and T.-W. Kuo, “An Adaptive Striping Architecture for
Flash Memory Storage Systems of Embedded Systems,” in RTAS, 2002.

[20] J.-W. Hsieh, T.-W. Kuo, and L.-P. Chang, “Efficient Identification of
Hot Data for Flash Memory Storage Systems,” ACM Transactions on
Storage, vol. 2, no. 1, 2006.

[21] L.-P. Chang, T.-W. Kuo, and S.-W. Lo, “Real-time garbage collection
for flash-memory storage systems of real-time embedded systems,” ACM
Transactions on Embedded Computing Systems, vol. 3, no. 4, pp. 837–
863, 2004.

[22] A. Ban, “Wear Leveling of Static Areas in Flash memory,” US
Patent,6732221, M-Systems, 2004.

[23] L. Chang, “An Efficient Wear Leveling for Large-Scale Flash-Memory
Storage Systems,” in SAC, 2007.

[24] M. Bauer, R. Alexis, G. Atwood, B. Baltar, A. Fazio, K. Frary,
M. Hensel, M. Ishac, J. Javanifard, M. Landgraf, D. Leak, K. Loe,
D. Mills, P. Ruby, R. Rozman, S. Sweha, S. Talreja, and K. Woj-
ciechowski, “A multilevel-cell 32 mb flash memory,” feb. 1995, pp.
132–133, 351.

[25] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, 1970.

[26] S. Dharmapurikar, P. Krishnamurthy, and D. Taylor, “Longest prefix
matching using bloom filters,” IEEE/ACM Transactions on Networking,
vol. 14, no. 2, pp. 397 – 409, April 2006.

[27] UMass, “OLTP Trace from UMass Trace Repository,” http://traces.cs.
umass.edu/index.php/Storage/Storage, 2002.

[28] Microsoft, “SNIA IOTTA Repository: MSR Cambridge Block I/O
Traces,” http://iotta.snia.org/traces/list/BlockIO, 2007.

[29] D. Narayanan and A. Donnelly, “Write Off-Loading: Practical Power
Management for Enterprise Storage,” in FAST, 2008.

