
Performance Models of Flash-based Solid-State
Drives for Real Workloads

Simona Boboila
Northeastern University

360 Huntington Ave.
Boston, MA 02115

simona@ccs.neu.edu

Peter Desnoyers
Northeastern University

360 Huntington Ave.
Boston, MA 02115

pjd@ccs.neu.edu

Abstract—There is a wide gap between the potential perfor-
mance of NAND flash-based solid state drives (SSDs) and their
performance in many real-world applications; understanding this
gap requires knowledge of their behavior and internal algorithms
for various workloads. We develop analytic models for two
commonly-used Flash Translation Layer (FTL) algorithms, as
used in SSDs, as well as a methodology for applying these
models to real-world workloads. We demonstrate the accuracy of
these models via simulation, extend this approach to incorporate
measurement-based approximations when detailed parameters
are unknown, and validate this methodology against real devices.

I. INTRODUCTION

In the last decade NAND flash has grown into a major
industry, most recently making inroads in the computing
market in the form of solid state drives, or SSDs. Although
the performance characteristics of flash devices themselves are
fairly straightforward, we know little of how they perform
when combined with internal flash translation layer (FTL)
algorithms in SSDs and similar devices. Without such informa-
tion it is difficult to design systems to use these devices most
effectively, while efforts to emulate a perfect high-performance
device on top of flash so we may ignore these characteristics
have to date been imperfect at best.

Most existing work comprises evaluation of proposed FTL
algorithms and measurement of available devices1. FTL pro-
posals (e.g. [3]–[5]) typically provide trace-driven simulation
results for various real-world scenarios, demonstrating their
performance vs. previous algorithms. However, with the ex-
ception of Park et al. [6] there is little analysis of conditions
affecting performance, and thus no guidance as to how to tune
workloads for best performance.

On the other end of the spectrum are black box measure-
ments and benchmarks of real devices. An example is uFLIP
[7], a set of benchmarks which attempts to capture relevant
aspects of SSD behavior. Although heuristically generated,
these tests measure key characteristics of SSDs; however they
leave unanswered questions such as how to predict real-world

1But note Hu [1] and Ben-Aroya & Toledo [2], discussed in Section V.

performance from benchmark results, or to modify traffic so
as to improve throughput.

We approach this problem from the inside out, starting from
well-known FTL algorithms, deriving analytic expressions for
their behavior under stationary workloads, and validating these
models via simulation. We then present and validate a method
for applying these models to real, non-ideal workloads. Finally,
we extend this methodology to extrapolate from calibrated
measurements and thereby predict performance for arbitrary
workloads, giving results for both simulation and real devices.

Our analysis targets performance models of SSDs for real
workloads. This task is complex due to various workload
characteristics and FTL algorithms. Using a piecewise de-
composition, we start from the simpler case of well-behaved
traffic given specific FTL algorithms. Building up from this,
we extend the model to real workloads running on real SSDs.

II. BACKGROUND

We begin by concisely defining the problem which a flash
translation layer must solve, and describing the FTLs analyzed.
We omit lower-level details of flash technology; the reader may
refer to other works [8], [9] for more details.

Modern NAND flash is organized into pages of 2K to 8K
bytes, grouped in erase blocks of B = 64, 128, or even 256
pages. Each page must be read as a unit with latency of about
25-200µs, and little penalty for random reads. Pages must be
written as a unit, typically taking 4 or 5 times longer than a
read, and pages in an erase block must be written from first
to last. Pages cannot be over-written; instead the entire erase
block must be cleared or erased in an operation taking several
write times; after erasure the pages in the block may be re-
written.

The role of a flash translation layer is to provide a re-
writable disk-like block abstraction on top of these devices.
This is done by a mutable mapping of logical addresses to
internal, physical pages. In particular, repeated writes to the
same logical location occupy different physical addresses, with
the logical-to-physical mapping changing for each write.; the
old or invalid copies will eventually be erased as a block and

978–1–4577–0428–4/11/$26.00 c©2011 IEEE

re-used. In essence an FTL is a log-structured file system,
optimized to support a single fixed-length file representing the
logical volume seen by the host.

The straightforward (and optimal [1]) FTL mechanism
maintains a full map from logical to physical pages. This can
be expensive, requiring 32 to 64MB of RAM for a 64GB
device (even more for older small-page devices) and long
power-on delays to reconstruct such a large map.

Instead, FTLs typically rely on a coarser-grained block map,
at a granularity of one or more erase blocks. Much like the
mapping of a page number and direct use of the offset in a
virtual memory system, this approach maps a logical block to
a physical block, but relies on the pages within the physical
block being in logical order. Since writes are performed one
page at a time, this order cannot be perfectly preserved;
instead, writes are performed in separate log blocks which are
page-mapped, and serve as look-aside caches in front of the
block-mapped data blocks.

In the first scheme we examine, Hybrid Log Block [3] (also
referred to as BAST in [4]), each log block is associated with
exactly one data block; pages may be written in this log block
in arbitrary order. On the first write to a data block a log block
is allocated and the page written, invalidating the correspond-
ing data block page. The number of log blocks is limited;
when this limit is reached an in-use one must be evicted for
this allocation to succeed. When a log block becomes full or
is evicted, it will be merged with its corresponding data block,
resulting in a fully ordered and valid data block again. In the
best case the log block is written consecutively from beginning
to end, and can be switched into place with no overhead; for
non-sequential or partial writes it is necessary to merge valid
pages from the log and data blocks into a third block, possibly
incurring significant overhead. In particular, if a log block is
merged after n pages have been written, this will result in a
write amplification factor, or ratio of internal physical writes to
external logical writes, of B/n for block size B. For randomly
distributed small writes, virtually every write will evict a log
block containing a single page, for a write amplification factor
of B, or as high as 256.

Fully Associative Sector Translation (FAST) [4] attempts to
maximize the utilization of log blocks by allowing pages from
multiple data blocks to share a log block. The log blocks are
arranged in a queue; at the tail, any pages not invalidated while
in the queue are merged with their corresponding data blocks.
This performs well for workloads with spatial locality, as pages
are invalidated while on the log block queue; in effect the
queue functions as a fully associative cache in front of the data
blocks (vs. BAST, where associativity is only within single-
block sets.). For random traffic, however, very few pages will
be invalidated in the queue, resulting in a write amplification
factor of nearly B. If all log blocks are empty or invalid, then
random writes will be accepted at full speed until the queue
is full; at this point expensive merges will be required to free
log blocks for new writes, and performance will plummet.

Other FTLs proposed to date include Park’s N/K adaptive
algorithm [6], which combines elements of Hybrid Log Block

Multi-block request

Fig. 1: Division of a request into head, middle, and tail fragments.

Device parameters:
VP number of physical blocks
VL number of logical blocks

f free space ratio (VP−VL
VL

)
B erase block size in pages

Workload parameters:
w mean write length, in pages
T total number of writes in pages

Other variables:
E number of erasures

Ms, Mp, Mf number of switch, partial, full merges
Fh, Fm, Ft number of head, middle, tail fragments

Hl mean head length in pages
Lf total number of fragments per log (FAST)
Lv number of valid fragments per log (FAST)

TABLE I: List of variables

and FAST, and Superblock [5], which uses page mapping
within groups of data blocks. Analysis of these and other FTLs
is not reported in this work.

III. ANALYTICAL RESULTS

We examine the case of a write-only workload, aligned in
starting address and length to the page size. We assume writes
are uniformly distributed across the logical address space, with
lengths exponentially distributed with mean length w. (See
Table I for a full list of variables referenced.)

We then divide each request into head, middle, and tail
fragments as shown in Figure 1, where each fragment is the
portion of the write falling within a single erase block.

More formally, each request may be represented as a
sequence of consecutive pages (p0, p0 + 1, . . . , pj , . . .), and
fragments are the largest sub-sequences (pi, . . . , pj) such that
bpi/Bc = bpj/Bc where B is the block size in pages. The
conditions for head, middle, and tail fragments are:
• Middle: |(pi, . . . , pj)| = B (a full block); otherwise:
• Tail: pi ≡ 0 mod B (starts on block boundary); o.w.:
• Head.
First we approximate fragment distributions:
Heads: Although heads which begin on block boundaries

are classified as middles or tails, this number is small for B �
1; so the number of heads is the number of sequences:

Fh =
T

w
(1)

where T is total page writes and w is the mean write length.
Middles: The number of middle fragments in a single

request of length N pages is bN−B
B c for requests which do

not begin and end on block boundaries. The write length is
modeled as an exponentially distributed random variable W
of mean w; the total number of middles is thus

Fm =
T

B
· Pr(W ≥ B) =

T

B
· (1 +

1
w

)e−
B
w (2)

Tails: Similarly, tails are given by:

Ft =
T

B
· Pr(W < B) =

T

B
· (1− (1 +

1
w

)e−
B
w) (3)

For hybrid block-mapped FTLs, the class of a fragment is
the primary determinant of its performance, which may be
measured in several equivalent ways, e.g. write amplification,
number of writes to flash, or number of erasures; we model
erasures, but other metrics may be derived directly from these
results. We present results below for the number of erasures
for a given workload in both Hybrid Log Block and FAST.

A. Hybrid Log Block

As described above, with this scheme each logical block
is stored as a fully ordered (i.e. logical page numbers and
physical page numbers match) data block, and may in addition
be associated with a log block for unordered update pages to
that block. We approximate switch, partial and full merges
from survival probabilities of head, middle, and tail fragments
in the log list. Since the free space fraction f is comprised
of all the log blocks, for f ≤ 1 it is also the probability of
uniform writes to hit a logical block that already has a log
block allocated. Switch merges result from middles arriving
to data blocks with no allocated log block:

Ms = Fm(1− f) =
T

B
· (1 +

1
w

)e−
B
w (1− f) (4)

Partial merges result from tails arriving to data blocks with no
allocated log block in the case where no additional arrivals to
this block occur before it is evicted:

Mp = Ft(1− f)2 =
T

B
· (1− (1 +

1
w

)e−
B
w)(1− f)2 (5)

Full merges result from middles and tails arriving to data
blocks with allocated log blocks (causing fragmentation), and
heads that do not have an allocated log block (these are
counted once when the log is allocated, since several heads or
tails can be mapped to a log, but lead to a single full merge).

Mf = (Fm + Ft)f + Fh(1− f) =
T

B
f +

T

w
(1− f) (6)

The total number of erasures for the Hybrid Log scheme is:

E = Ms +Mp + 2Mf (7)

B. FAST

FAST uses a dedicated log called the sequential block
for writes that start on a block boundary. Each middle thus
translates to a switch merge, and each tail to a partial merge:

Ms = Fm =
T

B
· (1 +

1
w

)e−
B
w (8)

Mp = Ft =
T

B
· (1− (1 +

1
w

)e−
B
w) (9)

Full merges result from head fragments, and the number of
erasures is determined by the number of valid fragments in a
log block. Let Lf be the number of fragments per log (both
valid and invalid):

Lf =
B

Hl
(10)

where Hl is the expected head length. For uniform traffic,
there is a 1/B chance of the head to start in any page of the
block. Each possible head length (from 1 to B−1) is achieved
with some probability depending on the write length and the
start page. We approximate the summation with the integral:

Hl =
1
B

∫ B−1

h=1

(hPr(W > h) + h(B − h)Pr(W = h))dh

(11)
where, as before, the random variable W models the write
length. Solving equation 11 gives Hl:

Hl =
1
B

(e−
1
w (wB−w2+B−w−1)+e

1−B
w (w2−w−B+1))

(12)
We estimate the probability of fragments to remain valid

using a survival function of heads in the log list. This gives
valid fragments (Lv) per log:

Lv =
Fh

f (Lf · Fm + Fh) + Fh

Lf

(13)

Since the valid fragments correspond to data blocks con-
taining fragments in the current log to be erased, the number
of erasures resulting from full merges is computed from the
number of valid fragments per log (adding one erasure for the
log block).

Mf =
Lv + 1
Lf

· T
w

(14)

We substitute Lv in equation 14 to obtain full merges. The
total number of erasures is thus:

E = Ms +Mp +Mf (15)

Validation: We validate the analytic model against simula-
tion results. FlashSim from Pennsylvania State University [10]
was used to simulate Hybrid Log and FAST algorithms. Flash-
Sim is integrated with DiskSim [11], and implements several
FTL algorithms, including Hybrid Log and FAST schemes
analyzed here (also page-mapped FTL and DFTL [12]).

Figure 2 shows the accuracy of the model for uniform
writes. Tests are carried out for a volume of 107 2K-pages
written on 1GB storage capacity with 7% free space, and block
size 64. Results are shown for various mean write lengths,
and are in terms of equivalent throughput r = Nmin

Nobs
, where

Nmin, Nobs are the minimum and observed operation counts.
Here the examined operation is erasure, and Nmin = 156250.

C. Prediction of Real Workloads

Real workloads are not well-behaved – they are non-
stationary, and writes are not distributed uniformly across the
volume but instead show spatial locality. In order to accurately

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 50 100 150 200 250 300

W
ri

te
 t

h
ro

u
g

h
p

u
t

(*
)

Mean write length (pages)

FAST - Simulation
FAST - Analytic Model

Hybrid - Simulation
Hybrid - Analytic Model

Fig. 2: Analytic model. Validation against simulation results. The
‘write throughput’ relates full performance to erasure cost: (total page
writes / erase block size) / erasures.

predict performance we correct for the bias these factors
introduce.

Non-stationarity is corrected for by dividing time into inter-
vals during which behavior is quasi-stationary and analyzing
each such interval independently. Non-uniform address distri-
bution, however, is more complex. As seen above, performance
is strongly affected by the amount of free space available;
concentrating writes onto a smaller section of the volume has
the effect of increasing the effective free space. (Consider a
logical volume of size VL (Table I), with k free blocks, for a
free space ratio of k

VL
– if write activity is restricted to the

first half of the volume, behavior will be that of a volume with
VL

2 logical blocks, but still k free blocks, or double the free
space ratio.)

To correct for this we integrate across the LBA space of the
volume, assuming that each sub-range of the address space
consumes a share of free space proportional to the arrival rate
to that address range. In practice, we approximate the integral
with a summation; thus, the total system performance Ptotal

for non-uniform traffic is computed with a double summation
across time and address space:

Ptotal =
∑

i

M∑
j=1

P (n(i, j), w(i, j), f(i, j)) (16)

M is the number of LBA space intervals, with each interval
of size VL

M over a logical volume of size VL.
n(i, j) is the number of writes in the (i, j) interval.
w(i, j) is the mean write length in the (i, j) interval.
f(i, j) is the percentage of free space in the (i, j) interval:
f(i, j) = r(i, j) · f ·M , where
r(i, j) = n(i, j)/n(i) is the access rate to the (i, j) interval,
and f , as mentioned before, is the percentage of free space
for the whole device.

Validation: In Figure 3 we see predictions by this method
(”Prediction-Analytical”) compared with simulation results for
several traces used in previous studies as well [12]–[14]: four

from Microsoft Research [13] (rsrch0, prxy0, src11, proj2),
two database traces from the UMass Trace Repository [15]
(fin1, fin2), and two from Harvard University [14] (dea2, aka
deasna2, and lair62b)2. The traces were chosen to cover a
large number of classes of workload behavior, e.g. database,
network, email, research.

Although flash devices exhibit history-dependent perfor-
mance (i.e. the current state of the log list depends on previous
states), performance (e.g. erasures-to-writes ratio) converges in
time. All reported measurements were done after convergence.
Smaller traces have been processed repeatedly in the same run
to ensure convergence, and only the last processing reported.

Performance is estimated using the summation in equation
16. Since finer granularity of the LBA space intervals better
captures locality in real workloads, we use intervals of one
logical block in size; tests showed that predictions converge
to the real values when the number of LBA space intervals
is increased. We measure time in units of page writes, with a
time interval equal to the number of pages in the log list.

The distribution of free space per integration interval is
most challenging, since its accuracy may be affected by
FTL implementation details. Following the previous discussion
on performance integration, next we give a more detailed
description of how the free space distribution was computed
for Hybrid Log scheme and FAST. Considering a (i, j) interval
indexed in time and LBA space, its share of free space is:

free space(i, j) =
access rate(i, j) · (Z(i) · Logs)

LBA space(i, j)
(17)

where Z(i) is a measure of free space utilization and depends
on the FTL algorithm:

Z(i) =
writes(i)

logs used(i) · log size
(18)

For FAST, where logs are completely filled sequentially, Z(i)
reduces to 1.

The tests reported here use the following configuration:
30GB of storage, with 7% free space, 2K pages, 64-page
blocks. FlashSim was used to simulate Hybrid and FAST
behavior for each trace and record the number of erasures.
The simulation values are compared against the predictions.

While most of the predictions give good accuracy, we
observe the following error factors. lair62b trace has a high
number of block boundary accesses, translated by FAST into
partial merges. FAST attempts to exploit sequentiality by using
a new log block every time a boundary write occurs, even if
the same data block is accessed. For some workloads, this
policy leads to a high number of partial merges, which was
observed in the simulation of lair62b with FAST. Unlike the
other traces, dea2 has very long write lengths of 100 2K-pages
on average and high variance, ranging up to 2000 2K-pages.
In this case, free space distribution may be harder to compute,
which is shown in Hybrid Log scheme predictions for dea2.

2These are file system traces; they were converted to block traces by replay
and capture of block level operations.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

fin1 fin2 dea2 lair62b rsrch0 prxy0 src11 proj2

W
ri

te
 t

h
ro

u
g

h
p

u
t

(*
)

Simulation
Prediction - Analytical

Prediction - Interpolation

(a) Hybrid

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

fin1 fin2 dea2 lair62b rsrch0 prxy0 src11 proj2

W
ri

te
 t

h
ro

u
g

h
p

u
t

(*
)

Simulation
Prediction - Analytical

Prediction - Interpolation

(b) FAST

Fig. 3: Simulation results. Analytical and interpolation-based predictions on real workloads. The ‘write throughput’ relates full performance
to erasure cost: (total page writes / erase block size) / erasures.

IV. INTERPOLATION FROM MEASUREMENTS

The approach used in the previous section relies on the
availability of an analytical expression for the FTL perfor-
mance, but it is possible to approximate this function by mea-
surement of performance for different values of write length
and free space fraction, and interpolating from these points.
In simulation, where these parameters may be easily modified,
this is straightforward. We use FlashSim to generate multiple
interpolation points from synthetic data with uniformly dis-
tributed start addresses, exponentially distributed write lengths.
Interpolation points relate performance (erasures-to-writes ra-
tios) to various mean write lengths and free space fractions.
FAST and Hybrid Log Block were simulated with mean write
lengths from 1 to 2500 pages and free space ratios from 0.001
to 1000; additional tests on the same workloads have given
comparable accuracy for smaller ranges as well.

The interpolation points generated with FlashSim are used
in the integration instead of the analytical formulas. We use
Matlab to generate an interpolation function from multiple
data points. Results are shown in Figure 3 (”Prediction-
Interpolation”) using the same set of traces and test config-
uration as above. While performance on most workloads is
predicted with good accuracy, again, lair62b FAST and dea2
Hybrid Log schemes give less accurate predictions; the same
workload-related aspects discussed for analytical results apply
here as well and may affect estimations.

Application of this approach to real devices is similar,
except that variation of the free space parameter is more
difficult to predict. We do this by testing on varying fractions
of the device LBA space, assuming that, as described above,
the entire free space of the device will be available even when
operating on only a fraction. This does not allow testing of
free space ratios less than that of the device itself; however
in practice this does not appear to introduce significant error.
(These data points would only apply to a small fraction of
arrivals, thus diminishing the effect of any errors.)

Tests were performed on two mass market SSDs (Kingston
SNV425 64GB and Plextor 64GB), and are shown in Figure
4. We considered the amount of free space to be the difference
from the total internal device capacity of 64 · 230 B and the
size exposed to the host (approx. 7%). Write throughput was
measured for uniformly distributed memoryless-length bursts,
as modeled above. For Kingston 39 measurements were made
with write lengths ranging from 1 to 256 pages, and free space
ratios from 0.07 to 100. For Plextor 62 measurements with
write lengths from 1 to 256 pages and free space ratios from
0.07 to 1000 were used. We use the FAST-like distribution of
free space presented in Section III-C, as other measurements
have indicated FAST-like behavior for these devices.

The SSDs’ internal algorithms appear to take advantage of
locality more than the standard FAST or Hybrid Log Block.
We account for this by determining time intervals for each
LBA range independently; however, traces with very high
locality still present problems, e.g. proj2 where one fifth of the
writes access only 1% of the logical address space. Using the
actual LBA region size accessed in each integration interval
instead of the LBA interval size/range (which differs especially
for sparsely distributed writes) improves accuracy for some
workloads (e.g. prxy0 on both SSDs; fin1, dea2 on Kingston).

From these results we see that a black-box prediction based
on a very general model of FTL behavior results is fairly
accurate for a considerable number of cases, spanning a
wide range of performance. Other workloads are not as well
predicted; further investigation and refinement is ongoing.

V. PRIOR WORK

Analytic models for disk drives and arrays have been studied
for many years [16]–[20]. Shiver et al. [21] develop analytic
models of disks, where performance prediction for a storage
device is a function of both the storage device itself and the
workload. Their workload modeling, which attempts to capture
temporal and spatial locality in request streams, is analogous to

 0

 5

 10

 15

 20

 25

 30

fin1 fin2 dea2 lair62b rsrch0 prxy0 src11 proj2

W
ri

te
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Sequential - Kingston = 105 MB/s
Sequential - Plextor = 40 MB/s

Measured - Kingston
Predicted - Kingston

Measured - Plextor
Predicted - Plextor

Fig. 4: SSD performance predictions on real workloads. In all but
two cases (dea2 for Plextor, proj2 for Kingston) good correspondence
between predicted and measured throughput was observed.

our work; however, the models are designed for mechanically-
determined disk characteristics, not flash.

FTL performance models have been studied by both Toledo
[2] and Hu [1], who derives an analytic model for performance
of a page-mapped FTL as a function of the free space ratio,
using both optimal and windowed garbage collection. We
extend Hu’s work by (a) deriving models for the performance
of two hybrid block-mapped FTLs, with cleaning policies
far different from the windowed policy examined by Hu, (b)
modeling performance on larger and mixed write sizes, as is
typical of real workloads, and (c) presenting a methodology
for applying these models to real workloads.

The extension of this methodology to use interpolated
measurement-based performance functions is related to black-
box performance models, such as those proposed for disk
drives using statistical machine learning techniques [22], [23].
Li and Huang [24] present a black-box performance model for
SSDs, which utilizes statistical machine learning algorithms
to capture correlations between workload characteristics and
observed performance values. However, tests do not use real
workloads but generated ones, with a predefined set of access
patterns (sequential, random and stride).

A number of recent benchmarking studies have examined
performance characteristics of flash devices [25]–[27]. One
extensive study is uFLIP [7], a benchmark for understanding
flash device performance under various IO patterns; measure-
ments of a wide range of devices are presented.

VI. CONCLUSION

Although NAND flash offers the potential for far higher
performance than magnetic disk, in practice improvements
from all but the most expensive solid state drives have been
inconsistent at best. Yet to date there has been little under-
standing of the behavior of flash-based storage under realistic
workloads, or of how to optimize systems for its use.

We have developed an analytic model of the performance
of two commonly-used flash translation layers, along with a

methodology to apply this model to real-world workloads.

REFERENCES

[1] X. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka, “Write ampli-
fication analysis in flash-based solid state drives,” in Proc. SYSTOR’09.
Haifa, Israel: ACM, 2009, pp. 1–9.

[2] A. Ben-Aroya and S. Toledo, “Competitive analysis of Flash-Memory
algorithms,” in Proc. ESA’06, 2006, pp. 100–111.

[3] J. Kim, J. M. Kim, S. Noh, S. L. Min, and Y. Cho, “A space-efficient
flash translation layer for CompactFlash systems,” IEEE Trans. Consum.
Electron., vol. 48, no. 2, pp. 366–375, 2002.

[4] S. Lee, D. Park, T. Chung, D. Lee, S. Park, and H. Song, “A log buffer-
based flash translation layer using fully-associative sector translation,”
ACM Trans. Emb. Comp. Sys., vol. 6, no. 3, 2007.

[5] J. Kang, H. Jo, J. Kim, and J. Lee., “A Superblock-based Flash
Translation Layer for NAND Flash Memory,” in Proc. EMSOFT’06,
2006, pp. 161–170.

[6] C. Park, W. Cheon, J. Kang, K. Roh, W. Cho, and J. Kim, “A
reconfigurable FTL (flash translation layer) architecture for NAND flash-
based applications,” ACM Trans. Emb. Comp. Sys., vol. 7, no. 4, 2008.

[7] L. Bouganim, B. Jonsson, and P. Bonnet, “uFLIP: understanding flash
IO patterns,” in CIDR, Asilomar, California, 2009.

[8] S. Boboila and P. Desnoyers, “Write endurance in flash drives: Measure-
ments and analysis,” in Proc. FAST’10. USENIX Association, 2010.

[9] M. Sanvido, F. Chu, A. Kulkarni, and R. Selinger, “NAND flash memory
and its role in storage architectures,” Proc. IEEE, vol. 96, no. 11, pp.
1864–1874, 2008.

[10] Y. Kim, B. Tauras, A. Gupta, and B. Urgaonkar, “FlashSim: A Simulator
for NAND Flash-based Solid-State Drives,” in Proc. SIMUL’09, 2009.

[11] J. Bucy, J. Schindler, S. Schlosser, and G. Ganger, “The DiskSim
Simulation Environment Version 4.0 Reference Manual,” 2008.

[12] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: a flash translation
layer employing demand-based selective caching of page-level address
mappings,” in Proc. ASPLOS’09. ACM, 2009, pp. 229–240.

[13] D. Narayanan, A. Donnelly, and A. Rowstron, “Write Off-Loading:
Practical Power Management for Enterprise Storage,” in Proc. FAST’08.

[14] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer, “Passive NFS Tracing of
Email and Research Workloads,” in Proc. FAST’03, 2003, pp. 203–216.

[15] “OLTP Trace from UMass Trace Repository,” http://traces.cs.umass.edu/
index.php/Storage/Storage, 2007.

[16] E. K. Lee and R. H. Katz, “An analytic performance model of disk
arrays,” in Proc. SIGMETRICS’93. ACM, 1993, pp. 98–109.

[17] C. Ruemmler and J. Wilkes, “An Introduction to Disk Drive Modeling,”
Computer, vol. 27, no. 3, pp. 17 – 28, 1994.

[18] M. Uysal, G. Alvarez, and A. Merchant, “A Modular, Analytical Model
for Modern Disk Arrays,” in Proc. MASCOTS’01.

[19] E. Varki, A. Merchant, J. Xu, , and X. Qiu, “An Analytical Model
of Disk Arrays under Synchronous I/O Workloads,” Univ. of New
Hampshire, Technical Report, 2003.

[20] E. Varki, A. Merchant, J. Xu, and X. Qiu, “Issues and challenges in the
performance analysis of real disk arrays,” IEEE Trans. Parallel Distrib.
Syst., vol. 15, pp. 559 – 574, June 2004.

[21] E. A. M. Shriver, A. Merchant, and J. Wilkes, “An Analytic Behavior
Model for Disk Drives with Readahead Caches and Request Reordering,”
in Proc. SIGMETRICS’98, 1998, pp. 182–191.

[22] M. Wang, K. Au, A. Ailamaki, A. Brockwell, C. Faloutsos, and G. R.
Ganger, “Storage Device Performance Prediction with CART Models,”
in Proc. MASCOTS’04, 2004, pp. 588–595.

[23] L. Yin, S. Uttamchandani, and R. Katz, “An empirical exploration of
black-box performance models for storage systems,” in Proc. MAS-
COTS’06, 2006, pp. 433–440.

[24] S. Li and H. Huang, “Black-Box Performance Modeling for Solid-State
Drives,” in Proc. MASCOTS’10, 2010, pp. 391 – 393.

[25] D. Ajwani, I. Malinger, U. Meyer, and S. Toledo, “Characterizing
the performance of flash memory storage devices and its impact on
algorithm design,” in Experimental Algorithms, 2008, pp. 208–219.

[26] P. Huang, Y. Chang, T. Kuo, J. Hsieh, and M. Lin, “The Behavior
Analysis of Flash-Memory Storage Systems,” in IEEE Symposium on
Object Oriented Real-Time Distributed Computing, 2008, pp. 529–534.

[27] K. O’Brien, D. C. Salyers, A. D. Striegel, and C. Poellabauer, “Power
and performance characteristics of USB flash drives,” in World of
Wireless, Mobile and Multimedia Networks (WoWMoM), 2008, pp. 1–4.

