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Abstract—In this paper we look at the performance character-
istics of three tools used to move large data sets over dedicated
long distance networking infrastructure. Although performance
studies of wide area networks have been a frequent topic of
interest, performance analyses have tended to focus on network
latency characteristics and peak throughput using network traffic
generators. In this study we instead perform an end-to-end long
distance networking analysis that includes reading large data
sets from a source file system and committing the data to a
remote destination file system. An evaluation of end-to-end data
movement is also an evaluation of the system configurations
employed and the tools used to move the data. For this paper,
we have built several storage platforms and connected them with
a high performance long distance network configuration. We use
these systems to analyze the capabilities of three data movement
tools: BBcp, GridFTP, and XDD. Our studies demonstrate that
existing data movement tools do not provide efficient performance
levels or exercise the storage devices in their highest performance
modes.

I. INTRODUCTION

The time spent manipulating large data sets is often one

of the limiting factors in modern scientific research. In fields

as diverse as climate research, genomics, and petroleum ex-

ploration, massive data sets are the rule rather than the ex-

ception. With multi-Terabyte and Petabyte data sets becoming

common, previously simple tasks, such as transferring data

between institutions becomes a challenging problem. The push

to Exascale computing promises to increase the difficulty level

in at least two ways. First, with projected system memory

sizes greater than 32 Petabytes, typical Exascale data sets

will be significantly larger than the total amount of storage

in existing file systems. Further, because of the staggering

operational costs of leadership-class Exascale machines, we

expect that only a small number of such machines will initially

exist, increasing the number of users interested in remote data

analysis.

In this project we examine the performance of three data

movement tools: BBcp, GridFTP, and XDD. Both BBcp and

GridFTP are popular data movement tools in the HPC com-

munity. However, both tools are intended for a wide audience

and are not optimized to provide maximum performance. In

constructing our test bed we have focused on technologies and

performance constraints that are applicable to Exascale per-

formance levels. In particular, we have focused on analyzing

the impacts of distance (i.e. network latency) in transferring

large data sets and the importance of achieving device-level

performance from each component participating in the data

transfer.

A. Related Work

The most popular tool for moving large data sets is likely

GridFTP [1], a component of the Globus toolkit [2]. The

Globus GridFTP client, globus-url-copy, provides support for

high performance networking with the UDT protocol and also

supports parallel file system aware copying via the use of

transfer striping parameters. Our tool, XDD, currently provides

less security than GridFTP, and focuses on disk-aware I/O

techniques to provide high levels of transfer performance.

Another popular high performance transfer tool is BBcp [3].

BBcp is designed to securely copy data between remote sites

and provides options for restarting failed transfers, using direct

I/O to bypass kernel buffering, and an ordered mode for

ensuring data is both read and written in strict serial order. Our

tool, XDD, attempts to copy many of the features available in

BBcp, while also providing a disk-aware implementation.

Efficient use of both dedicated and shared 10 Gigabit

Ethernet network links has been a popular area of study

for several research teams. Marian, et al., examined the

congestion algorithm performance of TCP flows over high

latency dedicated 10 Gigabit Ethernet network connections

and found that modern congestion control algorithms such as

HTCP and CUBIC provide high levels of performance even

with multiple competing flows [4]. Wu, et al., and Kumazoe,

et al., studied the impacts of congestion control on shared

10 Gigabit Ethernet links [5], [6]. Both efforts found that

congestion control algorithms strongly impacted performance

at long distances. XDD provides a configurable number of

threads and supports modified TCP window sizes to provide

performance in shared network scenarios; however, XDD is

primarily designed as an high-end computing (i.e. Exascale)
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Fig. 1. Hardware components participating in the impedance matching for
a long distance file transfer.

data movement tool where circuit switched dedicated network

links are more likely to be available.

II. HIGH PERFORMANCE DATA TRANSFERS

Fundamentally, a high performance file transfer is a matter

of tuning each component to provide high levels of individual

performance and matching the performance of each connected

hardware component. The five primary hardware components

required for a file transfer are:

1) Source storage devices,

2) Source transfer hosts,

3) Wide area network (WAN),

4) Destination transfer hosts, and

5) Destination storage devices.

This problem formulation can be thought of as special type

of an impedance matching problem; where each component

must provide data throughput compatible with the connected

components. Many of the difficulties of a high performance

file transfer are ensuring that each component is both executing

in its fastest performance mode and not interfering with the

performance of the adjacent components.

Figure 1 shows the direction of data flow for a long-distance

file transfer. In the simplest scenario, a system consisting of

two hosts with local hard drives and Internet connections may

use SCP or an FTP client to transfer a file. However, the size

of data sets employed for HPC use cases typically require

dedicated data transfer hosts with large amounts of memory,

high performance network interface cards (NICs) and access

to high speed storage arrays. Further, the interconnection

network is often a high-speed, circuit-switched network that

allows dedicated (or nearly so) connections between the HPC

connection sites. In terms of leadership computing facilities,

it is likely to be the case that a small number of leadership-

class machines will exist, with many scientists from multiple

institutions generating massive data sets requiring analysis.

A. XDD Architecture

XDD is designed to provide the software infrastructure re-

quired to move large data sets with high levels of performance

and reliability. One advantage of using the XDD software

package as a platform for developing our end-to-end data

mover is that XDD was designed specifically to drive disks

and disk arrays at their maximum bandwidth. Our enhanced

version of XDD provides several options to facilitate better

file transfer impedance matching: configurable device access

schemes, configurable numbers of threads, and configurable

I/O scheduling policies.

1) Device Access Schemes: An end-to-end data transfer

operation is accomplished by executing matched pairs of XDD

instances with one instance running on a destination host and

another instance running on a source host. The destination

instance acts as a server that binds to the network, receives data

from the source, and commits the data to storage. The source

XDD instance connects to the destination host, reads data from

the source file system, and transmits the read data over the

network. Data movement is always from the source host to the

destination host. In order to ensure that I/O device accesses are

efficient, XDD allows the use of direct I/O to access storage

devices, file pre-allocation support, easy configuration of I/O

buffer sizes, and TCP window size configuration.

Enabling file access with direct I/O is one of the most

important ways XDD achieves higher levels of performance

than existing file transfer packages. POSIX file I/O in the

Linux operating system requires the use of a buffer cache

that requires data to be copied at least once in kernel space

before being read into application memory or written to disk.

Although memory performance is typically much faster than

disk performance, the cost of copying a 10TB file into kernel

memory and then into application memory is far from free.

Another important component of direct I/O is file pre-

allocation. With buffered I/O, the kernel commits file data to

disk in serial order ensuring the file grows over time. With

direct I/O, it is possible for the file to be constructed out of

order, resulting in file fragmentation (at least for many file

systems). By pre-allocating the destination file, XDD ensures

that the file is mapped into logically contiguous disk regions,

avoiding file fragmentation and the resultant low performance

when the destination file is itself read.

To further ensure high performance disk access, XDD also

allows the configuration of the I/O request size. Large I/O

requests typically provide higher levels of file access perfor-

mance by ensuring that all disks in an array are simultaneously

active and reducing the number of context switches. However,

the I/O requests must also be small enough that both network

and disk accesses can be overlapped and pipe-lined to the

degrees necessary to achieve high performance levels.

2) Thread Count: A second critical factor in matching

network performance with storage system performance is

ensuring adequate degrees of parallelism. Our experiments

indicate that long distance TCP-based networking generally

supports large numbers of threads well, and at smaller TCP

window sizes requires large numbers of threads to achieve high

levels of throughput. XDD allows the user to control threading

behavior at a fairly fine-grained level.

For a file transfer, an XDD process will spawn a single

Target Thread that opens the file, and then spawns a user

specified number of QThreads. If the XDD instance is invoked

as a file transfer destination, the QThreads will each bind to

a network port and wait for a connection from the source-



side process. After opening the file in read-only mode, the

source-side XDD process will spawn the specified number of

QThreads, which will each connect to one of the listening

threads. XDD avoids the use of poll and select, which are

sometimes costly when a large number of threads are used.

3) I/O Scheduling Policies: Originally, XDD we provided a

single scheduling option called strict ordering. Strict ordering

simply assigned file offsets to each thread statically in a round-

robin ordering. So, in conjunction with a 1MB I/O request

size and four QThreads, thread zero would be responsible for

transferring a single Megabyte beginning at offsets 0, 4, 8,

12, and so on until reaching the file end. Similarly, thread one

would transfer a Megabyte from file offsets 1, 5, 9, 13, etc.

While this scheme proved very easy to reason about from a

software correctness point of view, the lack of effective thread

synchronization during large file transfers eventually caused

the disk arrays to waste time seeking between tracks due to

out of order I/O requests.

Our first attempt at optimizing the I/O access scheme was

serial ordering. Serial ordering ensures that all disk accesses

are performed in serial order by forcing threads to wait until

all preceding requests are completed. The manager thread, or

Target Thread, dispatches the I/O requests in serialized order

to the QThreads. The QThreads immediately enter a synchro-

nization point and are released from the synchronization point

in disk access order. The serial ordering policy ensures that

all file accesses are contiguous, and in the case of accessing

a single hard disk drive, often results in optimal performance.

However, the synchronization overhead of serial ordering is

not free, and a small delay exists between each I/O request

dispatched to the storage system.

The loose ordering scheduling policy is our attempt to

develop an I/O request scheduling policy that relaxes synchro-

nization costs in order to achieve higher levels of file access

performance. As I/O requests are dispatched to the QThreads,

the threads again enter a single synchronization point and exit

the synchronization in request order. The difference between

serial ordering and loose ordering is that in serial ordering,

the next QThread to run releases from the synchronization

point only after the preceding thread has completed its I/O

access, whereas in loose ordering, threads release from the

synchronization point immediately before issuing their I/O op-

eration. When the executing threads wait only on I/O (i.e. there

are enough cores to execute all of the running threads) loose

ordering can increase the issue rate to the disk array controller

and ensure that the I/O requests are issued in an order that is

mostly serial. The small number of out of order requests can

typically be re-ordered by the disk array controller, ensuring

that storage media access occurs in strictly serialized fashion

and achieves the highest possible performance levels.

Finally, XDD offers a no ordering policy that imposes no

synchronization overhead. This is useful on the destination

side of file transfers, where data is usually arriving in a

mostly serial order due to the source-side scheduling policy. In

this mostly-serialized case, the disk array controller can often

perform the re-ordering necessary to ensure that storage media

access occurs in the highest streaming performance modes.

III. METHODOLOGY

A. Storage Infrastructure

Our storage testbed consisted of six Infortrend EonStor

S16F-R1430 disk arrays equipped with two controllers and

16 Hitachi DeskStar E7K500 disks. The controllers were

configured to provide RAID level 5 in a 7+1 configuration

with 64KiB stripe size. Each controller was connected into

a storage area network (SAN) with a single 4Gbps Fibre

Channel connection. The storage network fabric was a Brocade

Silkworm 4100 switch. For our configuration it was necessary

to split the 6 shelves (12 controllers) into 4 file systems.

B. Host Infrastructure

Our host configurations used standard commodity parts and

the Linux operating system. All four systems were identical

with the exception that the machines named pod7, pod9, and

pod10 had dual Quad-Core AMD Opteron 8382 processors,

whereas our fourth system, pod11, had dual Quad-Core AMD

Opteron 2358 SE processors. All four systems had 32GB of

main memory, a Myricom Myri-10G Dual-Protocol network

interface card (NIC), and two dual port QLogic ISP2432-

based 4Gb Fibre Channel host bus adapters. The 10G NICs

were connected to the long haul network described later, and

each host had three Fibre Channel connections into the Fibre

Channel switch as described in Section III-A.

The host systems ran Fedora 13 version of the Linux op-

erating system using kernel version 2.6.33.3-85. To aggregate

the three storage units into a single file system per host we

constructed a single volume group striped across each physical

volume with a 64KiB stripe size. We then constructed a local

XFS file system on each host using the default file system

parameters with the exception that we used 4KiB block sizes.

C. Network Infrastructure

The source and destination nodes were interconnected by

the Department of Energy’s UltraScience Net (USN), an ultra-

scale network testbed for large-scale science [7]. The USN

facility included a dedicated OC192 connection that con-

nected Oak Ridge National Laboratory (ORNL) to Fermilab

in Chicago, Pacific Northwest National Laboratory in Seattle,

and the Stanford Linear Accelerator Center in Sunnyvale,

California. The network was constructed with two lambdas;

however, since we configured the network to both begin and

end at Oak Ridge, we were only able to achieve single OC192

connection speeds (9.6Gbps). Table I shows the round-trip-

time (RTT) measured with the ping utility for each of the

wide area network configurations.

D. Data Movement Software

Several software packages have been built for high perfor-

mance data movement. In this section we focus on describing

two of the most popular tools, BBcp and GridFTP, and our

own data movement software package, XDD.



TABLE I
ULTRASCIENCE NET (USN) LATENCY MEASUREMENTS

Network Loop Details Distance (mi) RTT (ms)

ORNL 0.2 0.28

ORNL-Chicago 1400 26.8

ORNL-Chicago-Seattle 6600 128

ORNL-Chi.-Sea.-Sunnyvale 8600 163

1) BBCP: Originally built to transfer large data sets as

part of the BaBar Collaboration [8], BBCP was developed

by the the SLAC National Accelerator Laboratory (formerly

the Stanford Linear Accelerator Center). The major advantage

of BBCP versus traditional file transfer tools such as FTP

and SCP is increased performance for large data transfers,

particularly over large distances. BBCP supports a host of

data transfer options included multiple I/O threads, network

compression, and an append mode that allows a previously

cancelled transfer to be resumed. Additionally, BBcp provides

support for an ordered transfer mode that ensure file data is

read and written in serial order, and an un-buffered mode that

support direct I/O file access as long as the file size is a

multiple of 8KiB.

2) GridFTP: GridFTP is a core service within the Globus

Grid Toolkit, and provided by Globus’ GridFTP servers and

the globus-url-copy GridFTP client. GridFTP provides features

for cluster-to-cluster end-to-end file transfers including file

striping support, load balancing across independent numbers

of source and destination hosts, multiple network protocols,

and a data source plugin architecture that may be effective for

improving file I/O performance. GridFTP allows the use of the

Grid Security Infrastructure (GSI) to provide certificate based

authentication for all file transfers.

3) XDD: Although not designed to transfer file data over

the network, the efficient disk access routines in XDD made

it an excellent starting point for building a disk-aware file

transfer utility. We added a very simple networking implemen-

tation that transforms XDD into a point-to-point data mover.

In general, we have attempted to copy the user interface of

BBcp where possible.

IV. LONG DISTANCE DATA TRANSFER PERFORMANCE

As we described in Section II, sustained performance for a

long distance data transfer requires efficient performance from

each hardware component of the transfer and a mechanism

for coupling the highest performance modes for each device

into a high performance implementation. The remainder of

this section provides a detailed performance analysis of the

hardware components and the three file transfer software

packages.

A. Network Performance

Table I shows the distance and roundtrip latency measure-

ments for each of the USN network loop configurations. To

measure network bandwidth over each loop configuration we

ran Iperf for 60 seconds while varying both the number of
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TCP flows. Figure 2 shows the network bandwidth in Megabits

per second (Mbps) using a 16MiB TCP window size. We can

see that with low latencies, network bandwidth can be maxed

out by a single flow; however, as the latency is increased it

becomes necessary to increase the number of flows to achieve

maximum throughput.

B. Disk Array Read Performance

XDD was originally designed as a tool for measuring

I/O system throughput. We have used the performance mea-

surement features within XDD to profile reading 200GiB

of random data from pod10 with a 32MiB request size to

measure the impacts of I/O thread count and thread scheduling

strategies on disk array read bandwidth. Figure 3 shows the

performance of reading data for each the thread scheduling

strategies. Although small numbers of reading threads provides

high levels of file read bandwidth, without thread ordering

large numbers of I/O threads cause the disk read performance

to decrease dramatically. For the source side of our file

transfers, we have elected to use the loose-ordering algorithm.
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C. Disk Array Write Performance

We used the same configuration to measure the file read per-

formance from disk, reading the 200GiB data file with varying

request sizes and thread counts. Again we measured only direct

I/O, as buffered I/O file system bandwidths were much lower.

Figure 4 shows that the loose-ordering produces the highest

possible performance, while serial ordering generates the most

stable disk performance. However, because we are planning to

use loose ordering on the source side of the file transfer, it is

not necessary to impose any ordering on the destination side

because data should arrive at the destination mostly in order.

D. End-to-End File Transfer Performance

Having examined the performance of each of the individual

components in the end-to-end file transfer, we note that we

expect to be disk limited when using a single source host

and single destination host. Our 9.6Gbps USN network can

theoretically provide 1200MB/s of data throughput; however,

our disk arrays are only barely capable of 1000MB/s. Further,

we know that long distance network loops will require multiple

flows, and the disk arrays perform best with multiple flows as

well. However, the implementation of data movement from

disk to network is critical to achieving performance.

1) Low Latency Networks: Figure 5 shows the end-to-

end file transfer performance of a 200GiB file copied from

pod7 to pod9 over the USN looped through the ORNL

cross connection for XDD, BBCP, and GridFTP. For each

tool we used a 32MiB request size. Although we tried to

further improve BBCP performance by using ordered and

un-buffered configuration options, we achieved the highest

observed performance by setting only the buffer size to 32MiB.

The Globus GridFTP client provides far fewer optimization

options, and so we were only able to set the request sizes.

More interestingly, even though XDD is the only transfer

tool capable of effectively leveraging the file system’s direct

I/O capabilities, the performance difference between proper

impedance matched settings (4 threads achieving 829MB/s)

and improperly matched transfer settings (e.g. 16 threads
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Fig. 6. Comparison of transfer performance over the Chicago loop.

achieving 596MB/s) are nearly 30% different. Clearly proper

impedance matching is important.

2) Increasing Latency: Figures 6, 7, and 8 show the end-

to-end transfer performance over the Chicago, Seattle, and

Sunnyvale network loops respectively. Again we see that the

request scheduling approach and explicit buffer management

used in XDD provides better transfer performance than BBCP

and GridFTP. We also again note that choosing the best param-

eters is critical to maximizing the file transfer performance.

3) Multiple Hosts: Finally, while an efficient implementa-

tion will be critical in moving data at extreme performance

levels, scalability beyond single endpoint transfers will be

necessary as networking technology moves to 40Gb Ethernet

and 100Gb Ethernet. We have implemented both multi-host

and multi-NIC capabilities within XDD. Figure 9 shows the

performance using two source endpoints and two destination

endpoints to transfer a 200GiB file over each of the USN

network loops. XDD is able to saturate the network by adding

flows at each endpoint. For this experiment we did not use

a parallel file system, instead we replicated files on the local

source file systems, and transferred half of the file to each
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destination endpoint. Although BBCP does not offer multi-

host capabilities, GridFTP offers extremely flexible multi-host

support. However, due to the network bottleneck limiting the

performance of this test, we did not perform testing with

GridFTP.

V. DISCUSSION

Our experience developing file transfer capabilities for XDD

has demonstrated that an impedance matching model is an

effective scheme for high performance end-to-end file trans-

fers. Leveraging the highest performance modes of each of the

constituent devices is critical in achieving high performance

file transfers. Earlier tools, such as BBcp and GridFTP, pro-

vide adequate performance for many types of data transfers;

however, with XDD we have focused on pushing file transfer

performance as far toward device speeds as possible. We

believe that the types of techniques described in this paper

are critical to achieve the I/O performance goals set forth for

Exascale computing initiatives.
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