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Abstract 
 

Performance improvement and energy conservation 

are two conflicting objectives in large scale parallel 

storage systems. In this paper, we propose a novel 

solution to achieve the twin objectives of maximizing 

performance and minimizing energy consumption of 

parallel storage systems. Specifically, a buffer-disk 

based architecture (BUD for short) is designed to 

conserve energy. A heat-based dynamic data caching 

strategy is developed to improve performance. The 

BUD architecture strives to allocate as many requests 

as possible to buffer disks, thereby keeping a large 

number of idle data disks in low-power states. This can 

provide significant opportunities for energy 

conservation while making buffer disks a potential 

performance bottleneck. The heat-based data caching 

strategy aims to achieve good load balancing in buffer 

disks and alleviate overall performance degradation 

caused by unbalanced workload. Our experimental 

results have shown that the proposed BUD framework 

and dynamic data caching strategy are able to 

conserve energy by 84.4% for small reads and 78.8% 

for large reads with slightly degraded response time. 

 

1. Introduction 
 

We are now in an era of information explosion. 
Billions of data sets are generated from knowledge and 
information every day, which need to be stored in some 
form of digital media. Historically, tape libraries are 
preferred over disk arrays for massive data storage, in 
large part due to the capacity and cost differential 
between tapes and disks. Over the last decade the 
original tape systems have been gradually replaced by 
parallel disk systems because of the continuous 
expansion of disk capacity and continuous drop of disk 
price. 

Modern parallel storage systems are able to provide 
higher performance at the cost of enormous energy 
consumption. For example, a typical robotic tape 

system provided by StorageTek would have an 
aggregate bandwidth of 1200MB/s [1] while a modern 
disk array could easily provide a peak bandwidth of 
2,880,000MB/s. However, reading and storing 
1,000TB of information would cost $9,400 to power 
the tape library system vs. $91,500(almost ten times) to 
power the disk array [7]. The gap is likely to increase 
when faster disks with higher power consumption rates 
appear and are widely deployed. A recent industry 
report showed that storage devices account for almost 
27% of the total energy in a data center [3]. Even 
worse, this fraction tends to increase as storage 
requirements are rising by 60% annually [2]. As a 
result, new technologies for energy-efficient parallel 
storage systems are highly desirable.  

In this paper, we introduce a buffer disk based 
architecture (BUD for short) to build energy efficient 
parallel storage systems. The basic idea of BUD is to 
conserve energy by serving most of the requests using a 
small number of buffer disks and turning as many data 
disks as possible to the power-saving mode. 
Nevertheless, one potential problem of the BUD 
architecture is that the limited number of buffer disks 
may easily become the performance bottleneck. Worst 
case access patterns can direct all requests to a single 
buffer disk, resulting in arbitrarily large delays even for 
very small arrival rates. Therefore, effective load 
balancing is critical to improve the performance. 

The contributions of this study are two-fold. First, 
we designed the energy-efficient parallel storage 
system architecture (BUD) with buffer disks. Second, 
we developed a heat-based dynamic data-caching 
algorithm to achieve load balancing in BUD.  
 

2. Related Work 
 

Several techniques proposed to conserve energy in 
storage systems include dynamic power management 
[4], power-aware cache management [6], power-aware 
prefetching strategy [8], software-directed power 
management scheme [9], and multi-speed settings 
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strategy [13]. However, none of these techniques have 
addressed the energy conservation and performance 
issues of parallel storage systems with buffer disks.  

In 2002, Colarelli and Grunwald presented the 
“Massive Arrays of Idle Disks” or MAID architecture 
[7], which is similar to our BUD architecture. In 
MAID, it is challenging to deal with a mapping 
structure of active drives and passive drives, i.e. which 
buffer disk should be chosen as the candidate to cache 
the data whenever there is a data miss. Moreover, the 
load balancing issue, which very likely could lead to 
performance penalty, is not completely solved.  

Another framework similar to MAID and BUD, 
called Popular Data Concentration (PDC), was 
proposed by Pinheiro and Bianchini in 2004 [17]. The 
basic idea of PDC is to migrate data across disks 
according to frequency of accesses, or popularity. The 
goal is to store popular and unpopular data on different 
disks. The disks that store unpopular data are mostly 
idle, so that they can be transitioned to a low-power 
mode. PDC is an efficient static offline algorithm. 
However, it is impossible in some cases for the system 
to predict which data is popular and which is not. This 
is especially true for the evolving workload, in which 
some data is popular at a particular period but becomes 
unpopular later. 

In contrast to both MAID and PDC, our heat-based 
algorithm is implemented to control data caching in 
addition to data mapping between data disks and buffer 
disks in the BUD architecture. The heat-based 
algorithm was first proposed by Scheuermann et al. in 
1998 [16]. Our algorithm is fundamentally different 
from theirs in that the heat of disks is applied in the 
data partitioning stage in their algorithm, whereas ours 
quantifies the heat of buffer disks in the data caching 
stage. Their approach focused on how to partition data 
to improve throughput, while our focus is to judiciously 
cache data to achieve load balancing.  

 

3. Buffer-Disk Architecture  
 

The buffer disk architecture [19] (see Fig.1) 
consists of four major components: a RAM buffer, m 
buffer disks, n data disks, and a buffer-disk controller. 
The buffer disks temporarily cache the requests for the 
data disks. Data disks remain in the low power state 
unless a read request misses in the buffer disk or the 
write log for a specific data disk grows too large. The 
buffer-disk controller is at the heart of BUD. The 
controller contains the energy related algorithms, data 
partitioning algorithms, data movement/placement 
strategies, and prefetching strategies. Our ultimate 
objective in this research is to conserve more energy 
without adversely affecting the performance of disk 

systems. More specifically, the controller strives to 
move the frequently accessed data from data disks into 
buffer disks. This allows as many data disks as possible 
to switch to low-power modes. The rationale behind 
this strategy relies on the fact that only a small 
percentage of the data is frequently accessed in a wide 
variety of data-intensive applications [14]. To achieve 
this goal, we proposed the heat-based data caching 
algorithm to dynamically balance the workload among 
buffer disks. This algorithm aids in avoiding the 
potential “traffic jam” caused by overloaded buffer 
disks. Please note that all our solutions and 
experimental results illustrated in the following 
sections are primarily based on read requests. 

 

 
 

 

4. Heat-Based Load Balancing Algorithm 
 

To conserve energy, BUD makes an effort to run 
most data disks in the low power state, thereby 
directing most traffic to a limited number of buffer 
disks. This can potentially make the buffer disks 
overloaded and become the performance bottleneck. 
Load balancing is one of the solutions for the inherent 
shortcoming of the BUD architecture. Basically, there 
are three types of load balancing strategies called non-
random load balancing, random load balancing, and 
redundancy load balancing. Sequential mapping 
belongs to non-random load balancing, because the 
buffer disks have fixed mapping relationships with 
specific data disks (e.g. buffer disk 1 can only cache 
the data from data disk 1, 2 and 3).  The round-robin 
mapping is a typical random load balancing strategy by 
allocating data to each buffer disk with equal portions 
and in the round robin order. Redundancy load 
balancing strategies for storage systems include 
EERAID [10], eRAID [11], and RIMAC [12]. In this 
section, we present a heat-based load balancing 
strategy, which is also a random load balancing 
strategy. The primary objective of our strategy is to 
minimize the overall response time of disk requests by 

Fig. 1 The buffer disk architecture 



keeping all buffer disks equally loaded.  
The basic idea of heat-based mapping is that blocks 

in data disks are mapped to buffer disks based on their 
heat, i.e. frequencies of accesses. Our goal is to make 
the accumulated heat of data blocks allocated to each 
buffer disk the same or close to this ideal situation.  

To clearly describe the heat-based load balancing 
algorithm, we define the key parameters as follows. 

Access Frequency:  how many times a data block 
is repeatedly accessed within a specific time unit. 

Heat weight: the ratio of requested data size and 
standard data size (e.g., 1MB). 

Heat: the product of access frequency and heat 
weight. 

Temperature: the accumulated heat of all data 
blocks residing in a buffer disk.   

The heat is used to measure the popularity of a data 
block. The temperature indicates how busy a buffer 
disk is. To calculate the heat more accurately, we also 
consider the impact of block size. A large block size 
should have higher heat compared to a small block with 
the same access frequency. This is due to the fact that 
the system will spend more time to process I/O for the 

larger block. In other words, the larger blocks should 
have higher heat weight.  

Since our algorithm is executed online, dynamic 
tracking of the heat of blocks is crucial. We 
implemented two strategies to dynamically track heat 
values. In the first strategy, the controller will take the 
first k requests of the request queue and run the heat 
calculation function. Once the k requests are captured, 
they will be removed from the main request queue in 
the memory. We call these k requests a snapshot 
request window, which will be the input of the heat-
based load balancing algorithm. However, the snapshot 
window strategy is only suitable for bursty request 
patterns but not for sparse request patterns. When a 
sparse request pattern is encountered, it may take too 
long to collect a snapshot window of k requests. 
Therefore, we designed the second strategy called the 
observation time window strategy. In this strategy, the 
controller will serve the requests that arrive within a 
specific observation time (e.g. t seconds), no matter 
how many requests arrive.  

Fig. 2 outlines the pseudo code of the heat-based 
load balancing algorithm. Note that the input parameter 

1. Input:  the request window ;            /*  request window  will be updated periodically */ 
2. for each unique target block in the queue   /* each request has a target block to be accessed */ 
3.      AF = Access_Frequency_Calculation() ;  /* calculate the block access frequency*/ 
4.      HW = accessed block size/ standard block size;    /*calculate the heat weight*/ 
5.      heat = AF * HW;      /*calculate the heat */ 
6. sort the data blocks based on heat and save them in Linklist_Block; /* first block has the highest heat */ 
7. sort the buffer disk based on current temperature to a Linklist_Buffer ;/* first disk has lowest temperature*/  
8. pointer p_buffer = the first buffer disk in the Linklist_Buffer; 
9. pointer p_block = the first block in the Linklist_Block; 
10. pointer t_buffer ;  /* t_buffer points to the buffer disk which have the copy of target block*/ 
11. for each block in the Linklist_Block  
12.     if (p_block.found = = false)    /* the target block cannot be found in buffer disks*/ 
13.         if (p_buffer. free = = true)          /* the candidate buffer disk has enough space*/ 
14.             wake up the corresponding data disk  and cache the data; 

          /* The data blocks within the batch prefetching window will be copied to the buffer disk p_buffer; 
15.            dispatch all requests accessing p_block to p_buffer; 
16.            recalculate and update the information of block heat and buffer disk temperature ; 
17.         else /* the first candidate buffer disk has no space*/ 
18.             if (p_buffer.next != empty) 

  p_buffer ++;  /* seek another candidate buffer disk*/          
19.                 go to setp 12; 
20.             else /* all buffer disks are already full*/ 
21.                 reset p_buffer to the first buffer disk in the Linklist_Buffer; 
22.                 data_replace_function(p_buffer);  /* replace existing data blocks using LRU algorithm */  
23.                 dispatch all requests accessing p_block to p_buffer; 
24.                 recalculate and update the information of block heat and buffer disk temperature ; 
25.     else /* p_block is found in one buffer disk t_buffer */   
26.            dispatch all requests accessing p_block to t_buffer ; 
27.            recalculate and update the information of block heat and buffer disk temperature ; 

Fig. 2 Heat-based load balancing algorithm 



can be either a snapshot window or an observation time 
window. This algorithm will periodically collect the 
requests waiting in the queue, analyze the target block 
of each read request, and calculate the heat of each 
unique block. If the target block cannot be found in the 
buffer disk, the controller initiates a data miss 
command. This in turn will wake up the corresponding 
data disk in order to copy the block to the buffer disk 
that has the lowest temperature. In a special case, the 
selected buffer disk may not have free space to store a 
new data block. The controller will seek the next buffer 
disk with a temperature that is higher than the initial 
buffer disk selected, but still lower than any other 
buffer disks. In the worst case, no candidate buffer disk 
will be found because all buffer disks are full. A data 
replacement function using the Least Recently Used 
(LRU) algorithm will be executed to evict some 
existing data blocks. If the target block has already 
been cached in one of the buffer disks, then that buffer 
disk will serve the corresponding request. Once the 
algorithm has made the decision how to dispatch these 
requests, the block heat and buffer disk temperature 
need to be recalculated and updated accordingly.  

 

5. Performance Evaluation 
 

To simulate the BUD architecture, we implemented 
a simulator, called BUD_Sim, using the Java language. 
In BUD_Sim, we calculate the seek time as a non-
linear function (Table 1) of the seek distance using the 
seek-time-versus-distance curve presented in [15]. In 
addition, we implemented a load generator, which can 
generate synthetic workloads according to specified 
parameter distributions, analyze and filter real traces 
and feed manipulated traces as the input to BUD_Sim. 

Table 1: Seek time calculation 

 
In BUD_Sim, we simulate the buffer disks using 

IBM 36Z15 Ultrastar, and data disks using IBM 
73LZX Ultrastar. Table 2 illustrates the detailed 
parameters of these two types of disks, which are from 
IBM manuals and power measurements published in 
[18]. In Table 3, we summarize the important 
parameters that have been used in our simulation. 

5.1 Evaluation of energy consumption 

This set of experimental results aims at evaluating 
the energy efficiency of the buffer disk based parallel 
storage systems. To fairly compare the results, we 
generated and executed a large number of requests and 

simulated both large reads (average data size is 64MB) 
and small reads (average data size is 64KB).  Fig. 3 
and Fig. 4 plot the total energy consumption of NO-
buffer and Heat-BUD when running 2000, 5000, 
10000, and 20000 large read requests and small read 
requests, respectively.  

Table 2: Hardware characteristics of disks 

 

Table 3: Important parameters 

Parameters Range/Value 

# of requests:  {2000,5000,10000,20000} 

# of buffer disks 3 

# of data disks 30 

data block size {64KB, 1MB, 4MB, 64MB} 

average interval  

(light load trace) 
2.5s 

average interval  

(heavy load trace) 
0.5s 

There are three important observations here. First, 
the BUD can significantly conserve energy compared 
with No-Buffer parallel storage systems. Second, the 
more requests BUD serves, the more potential power 
savings is revealed. For example, BUD outperforms 
No-Buffer in terms of energy conservation by 75.83%, 
77.89%, 80.18% and 81.16% for 2000, 5000, 10000, 
and 20000 large reads, respectively. This is expected 
because more requests lead to more opportunities for 
BUD to keep the data disks in the low power state. 
Third, BUD performs better for small reads (average 
84.4% improvement) than large reads (average 78.77% 
improvement). The reason is that BUD consumes more 
energy when moving large data blocks to buffer disks. 

5.2 Evaluation of load balancing 

In this section, we evaluate the load balancing 
ability of the heat-based algorithm. Recall that the 
temperature of a buffer disk clearly indicates how busy 
it is. In order to demonstrate how the dynamic load 
balancing works, we plot the temperature tracking trace 
of the initial stage and intermediate stage in Fig. 5 and 

Seek distance Seek time (ms) 

< 616 cylinders 
3.45 + 0.597 d  

≥ 616 cylinders 10.8 + 0.012 d 

Parameters 
IBM 36Z15 

Ultrastar 

(high perf.) 

IBM 73LZX 
Ultrastar 

(low perf.) 

Standard interface SCSI SCSI 
Number of platters 4 2 

Rotations per minute 15000 10000 
Average seek time 3.4 ms 4.9 ms 

Average rotation time 2 ms 3 ms 
Transfer rate 55 MB/sec 53 MB/sec 

Power (active) 13.5 W 9.5 W 
Power (idle) 10.2 W 6.0 W 

Power (sleep) 2.5W 1.4W 
Energy (spin down) 13.0 J 10.0 J 
Time (spin down) 1.5 s 1.7 s 
Energy (spin up) 135.0 J 97.9 J 
Time (spin up) 10.9 s 10.1 s 



Fig. 6. At the initial stage, the three buffer disks are not 
load balanced. Buffer disk 2 is the busiest disk and 
buffer disk 1 is lightly loaded. As a result, the heat-
based algorithm will keep allocating requests to buffer 
disk 1. We observe that the temperature of buffer disk 
1 keeps growing and it catches buffer disk 3 first. After 
that, the temperatures of buffer disk 1 and 3 cross-rise 
for a while and then they catch buffer disk 2. At this 
point, the system is load balanced for the first time.  
Fig. 6 shows that the entire system is perfectly load 
balanced in the intermediate stage because the 
temperatures of three buffer disks rise in turns.  

 
Fig. 3 Energy consumption for large reads 

 

 
Fig. 4 Energy consumption for small reads 

 

 
Fig. 5 Temperatures in initial stage 

 

 
Fig. 6 Temperatures in intermediate stage 

To compare the load balancing efficiency of 
sequential mapping, round robin mapping, and heat-
based mapping, we tested 2500 requests with average 
data size of 4MB using these three mapping strategies. 
The simulation results depicted in Fig.7 prove that our 
heat-based algorithm outperforms the other two 
algorithms in terms of achieving load balancing. 

 

 
Fig. 7 Load balancing comparison 

5.3 Evaluation of response time 

To evaluate the average response time of the BUD 
architecture, we simulated 25000 disk requests for 
large reads (64MB) and small reads (64KB), which are 
illustrated in Figs. 8-11 respectively. For each 
experiment, BUD first processes 20000 requests to 
complete the caching stage. Next, we let BUD handle 
5000 more disk requests to see whether or not the 
system can leverage the response time delay. We plot 
the trend line in each figure (the black line inside) to 
better analyze the response time changes. The trend 
line is plotted by calculating the average response time 
of every 100 disk requests.  

Figs. 8 and 10 verify our prediction of the response 
time delay in the early caching stage. For example, Fig. 
8 reveals that the response time delay rises up to 140s. 
However, we are very delighted to witness the 
performance improvement when more and more 
popular data blocks are cached in the buffer disks (Fig. 
9 and Fig. 11). After the initial caching stage, the 
average response time is very close to the performance 
of an optimized No-Buffer parallel storage system. For 
example, the average response time of BUD is 1.219s 
for large reads and 0.01s for small reads (as shown in 
Table 4).  

 
Fig. 8 Response time trace before caching (64MB) 



 
Fig. 9 Response time trace after caching (64MB) 

 
Fig.10 Response time trace before caching (64KB) 

 
Fig. 11 Response time trace after caching (64KB) 

 

Table 4: Average response time comparison 

 Average Response Time 

before caching (64MB): 5.614s 

after caching (64MB): 1.219s 

before caching (64KB): 0.767s 

after caching (64KB): 0.01s 

NO-Buffer(64MB) 1.216s 

NO-Buffer(64KB) 0.01s 
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