
Sampling-based Garbage Collection Metadata
Management Scheme for Flash-based Storage

Biplob Debnath ‡,1 , Srinivasan Krishnan ∗,1 , Weijun Xiao †, David J. Lilja †, David H.C. Du †

† University of Minnesota, Minneapolis, USA.
‡ EMC Corporation, Santa Clara, USA.

∗ Amazon, Seattle, USA.
E-mail: biplob.debnath@emc.com, krishn@amazon.com, wxiao@umn.edu, lilja@umn.edu, du@cs.umn.edu

Abstract—Existing garbage collection algorithms for the flash-
based storage use score-based heuristics to select victim blocks
for reclaiming free space and wear leveling. The score for a
block is estimated using metadata information such as age, block
utilization, and erase count. To quickly find a victim block, these
algorithms maintain a priority queue in the SRAM of the storage
controller. This priority queue takes O(K) space, where K stands
for flash storage capacity in total number of blocks. As the flash
capacity scales to larger size, K also scales to larger value.
However, due to higher price per byte, SRAM will not scale
proportionately. In this case, due to SRAM scarcity, it will be
challenging to implement a larger priority queue in the limited
SRAM of a large-capacity flash storage. In addition to space
issue, with any update in the metadata information, the priority
queue needs to be continuously updated, which takes O(lg(K))
operations. This computation overhead also increases with the
increase of flash capacity.

In this paper, we have taken a novel approach to solve the
garbage collection metadata management problem of a large-
capacity flash storage. We propose a sampling-based approach to
approximate existing garbage collection algorithms in the limited
SRAM space. Since these algorithms are heuristic-based, our
sampling-based algorithm will perform as good as unsampled
(original) algorithm, if we choose good samples to make garbage
collection decisions. We propose a very simple policy to choose
samples. Our experimental results show that small number of
samples are good enough to emulate existing garbage collection
algorithms.

I. INTRODUCTION

With the continually accelerating growth of data, the per-
formance of storage systems is increasingly becoming a
bottleneck to improve overall system performance. Many
applications, such as transaction processing systems, weather
forecasting, large-scale scientific simulations, and on-demand
services, are limited by the performance of the underlying
storage systems. The limited bandwidth, high power consump-
tion, and low reliability of widely used magnetic disk-based
storage systems impose a significant hurdle in scaling these
applications to satisfy the increasing growth of data. Flash
memory is an emerging storage technology that shows tremen-
dous promise to compensate for the limitations of current
magnetic disk-based storage devices. In fact, flash-based Solid

1 Work done when the author was a graduate student at the University of
Minnesota

Copyright: 978-1-4577-0428-4/11/ $26.00 @2011 IEEE

State Disks (SSDs) are predicted to be future replacement
for the magnetic disk drives. For example, market giants like
Dell, Apple, and Samsung have already launched laptops with
only SSDs. Microsoft has added features to support SSDs in
the new release of Windows 7 operating system. Recently,
MySpace.com has switched from using magnetic disk drives
in its servers to SSDs as primary storage for its data center
operations [1].

Flash memory exhibits different read and write performance
characteristics compared to magnetic media. In flash-memory,
random read operations are as fast as sequential operations
due to lack of mechanical head movement. Whereas, the write
operations are substantially slower than the read operations.
A distinguishing property of flash memory is that it does not
allow overwrite operations. Once data is written in a page,
to overwrite it, the page must be erased (which is a slow
operation) before writing again. This is known as in-place
update problem. This problem becomes further complicated
because read and write operations are performed in the page
granularity, while erase operations are performed in the block
granularity (typically a block spans 32-64 pages). Furthermore,
a flash memory block can only be erased for a limited number
of times [2]. This is known as wear out problem.

To hide the limitations of flash memory, a flash-based
storage device (for example, SSD) uses Flash Translation
Layer (FTL), which helps to acts it like a virtual hard disk
drive so that existing disk-based applications can use it without
any modifications in the code-base. However, internally FTL
needs to deal with the physical properties of flash memory.
To solve the in-place update problem, FTL writes the updated
pages in a log-manner and maintains a logical-to-physical page
address mapping table to keep track of the current location of
a logical page. FTL periodically invokes garbage collection
to perform cleaning operation and reclaim free space. To
solve the wear out problem, during garbage collection, FTL
employs various wear leveling algorithms, which spread out
the updates uniformly among all blocks so that individual
blocks are erased out evenly. For page address mapping and
garbage collection, FTL needs to maintain some metadata
information. Usually, for the faster access, these metadata are
stored on a SRAM-cache in the current flash-based storage
device controller [3], [4]. However, due to higher price per byte
of SRAM, it is unlikely that SRAM will scale proportionately
with the increase of flash capacity [4]. Thus, scaling out

Block Size 256KB
Metadata Size Per block 8B
Total Blocks Needed for 1GB 4096
Total Metadata Size for 1GB 4096*8B = 32KB
Total Metadata Size for 1TB 1024*32KB = 32MB

TABLE I
METADATA SIZE ESTIMATION

metadata that are stored and processed for a large-capacity
flash storage, in the limited amount of SRAM becomes very
challenging.

Since SRAM space is a scarce resource, recent research
works focus on reducing metadata stored in the SRAM. Most
of the research works provide solutions for reducing SRAM
space to store the logical-to-physical page address mapping
information [3], [4], [5], [6], [7], [8], [9], [10], [11]. For
example, recently DFTL [4] proposes a demand based page
mapping scheme, which significantly reduces the SRAM space
for page mapping [4]. However, very few research works [3],
[12] have been conducted to reduce the metadata stored and
processed in SRAM for the garbage collection. In this paper,
we address this issue by using a sampling-based algorithm.

All the current garbage collection algorithms use score-
based heuristics to select a victim block for reclaiming free
space and wear leveling. (An overview of these algorithms is
given in Section II-A). The block with the highest (or lowest)
score is selected as a victim. The score is estimated by using
the metadata information, i.e., block utilization, age (time since
a block has been lastly erased), or erase count. To implement
these algorithms, we need to maintain these metadata per block
level. To quickly find a victim block, these algorithms maintain
a priority queue and choose a block based on the priority score.
The SRAM space for the priority queue is O(K) [13], where
K is the flash based storage capacity in terms of total number
of blocks. As the flash capacity increases, K increases linearly.
For example, Table I shows that for 1GB of flash memory, we
need 32KB SRAM to store the metadata, while 32MB for 1TB
of flash memory. Clearly, with increase of the flash capacity,
scaling out SRAM space for metadata is a problem. Besides
the space problem, the priority queue needs to be continuously
updated and every update requires O(lg(K)) operations [13],
whenever any relevant metadata used to estimate the score
has been changed, which incurs lot of computation overhead.
Current approaches solely focus on solving the SRAM space
problem for wear leveling. To reduce the metadata space,
they either logically groups adjacent blocks and maintain
metadata per group level, or use coding technique to store per
block erase count. These approaches are explained in detail
in Section II-B. However, these approaches still require O(K)
space.

In this paper, we have taken a radically different approach.
We propose to use a sampling-based approach to approximate
existing garbage collection algorithms. The main idea is as
follows. Instead of storing metadata for all K blocks in the
SRAM, we store only metadata for N number of randomly
selected blocks, where N << K. As the time progresses,
these samples also change continuously. Whenever we need
to select a victim block for garbage collection, instead of

considering metadata of all K blocks, we consider only the
metadata of the current pool of N sampled blocks. Our
sampling-based approximation algorithm significantly reduces
the SRAM consumption. Experimental evaluations show that
maintaining only small number of samples is good enough
for emulating the current garbage collection algorithms. For
example, if 30 samples are good enough, then we need only
240 bytes of SRAM space, in contrast to 32MB needed for
1TB flash storage (as shown in Table I). On the other hand,
we calculate scores on demand (i.e., during victim selection),
thus our approach imposes very less computation overhead.

Here, we do not provide any new garbage collection al-
gorithms, rather we propose a space and computation effi-
cient mechanism to implement the existing garbage collection
algorithms in the limited SRAM of a large-capacity flash
storage controller. Our algorithm significantly reduces space
and computation overhead in the SRAM for the management
of garbage collection metadata. To the best of our knowledge,
we take the first attempt to reduce both space and computation
overhead.

The rest of the paper is organized as follows. Section II
describes the background and related works. Section III
presents a detailed description of our sampling-based algo-
rithm. Section IV provides an experimental evaluation. Finally,
we conclude the paper in Section V.

II. BACKGROUND AND RELATED WORKS

In this section, first we describe the various metadata needed
for garbage collection. Next, we describe the related works that
reduce metadata information stored in the SRAM for garbage
collection.

A. Metadata for Garbage Collection

A garbage collection scheme has two main goals: (1) reduce
the cleaning cost (i.e., minimize the number of live pages
movement from victim blocks) and (2) even out wear in
different blocks as much as possible. Typically, cleaning and
wear-leveling algorithms have conflicting goals. A cleaning-
centric policy prefers those blocks which contain small number
of valid pages, since they help to minimize the cleaning cost.
In contrast, a wear-leveling centric policy chooses the least
worn out blocks. These blocks usually store valid (live) pages
and contain mostly read-only data. Over the last decades
various garbage collection algorithms have been proposed in
the literature. All these algorithms require various metadata
to select a victim block. In the next subsection, we describe
some of these algorithms to give an overview of the different
metadata information required to implement them.

1) Cleaning Centric: This category of garbage collection
algorithms focus only on cleaning cost. The main goal is to
reduce the overhead of cleaning. The greedy strategy is to
select a block with the largest number of invalid pages [14].
This strategy works for the uniformly distributed access pat-
terns, while fails for the workloads which exhibit high degree
of localities. On the other hand, the cost-benefit (CB) strategy
selects a block with the highest 1−u

2u ∗ age value, where u
stands for the fraction of valid pages in a block (i.e, the ratio

of valid pages and total capacity in terms of pages of a block),
and age is the time since last invalidation [14].

2) Wear Leveling: This category of the garbage collection
algorithms focus on cleaning efficient policies most of the
time, however they conditionally switch back to wear-leveling
centric policies. The greedy strategy is to select one of the
least worn out blocks. Some algorithms focus on the switching
policy: Lofgren et al. proposed that when the difference in
erase count between the victim block and the least worn block
is more than a threshold (i.e., 15000) wear-leveling centric
policy is used [3]. Woodhouse proposed that after every 100-
th reclamation, one of the blocks containing only valid data
pages will be randomly selected for reclamation [15]. The aim
is to move static data to relatively more worn out blocks.
Ban proposed that a block will be randomly selected for
reclamation after every certain number of reclamations [3].
This interval can be either deterministic or can be randomly
determined.

3) Cleaning + Wear Leveling: This category of the garbage
collection algorithms consider both cleaning efficiency and
wear status during the reclamation decision. Wells proposed
a policy that uses a score, which is a weighted average of
cleaning cost and wear leveling state of a block [16]. The
block with the highest score is selected as a victim. The score
of a block j is defined as score(j) = �∗obsolete(j)+(1−�)∗
maxi{erasures(i)−erasures(j)}, where obsolete(j) stands
for the number of invalid pages in block j and erasure(j)
stands for the current erase count of block j. The first part
of this scoring formula captures the cleaning cost, while
the second part captures the impact on wear leveling. The
magnitude of the weight determines which part will be given
more priority during making the reclamation decision. Usually,
� = 0.8 is used to calculate this score. Thus, more importance
is given to the cleaning cost. However, if the difference
between the most and least worn out block becomes more
than a threshold (i.e., 500), then � = 0.2 is used to give more
priority to wear-leveling. On the other hand, Kim et al. defines
score(j) = �(obsolete(j)

valid(j)+obsolete(j))+(1−�) erasure(j)
1+maxi(erasure(i)

,
where � is monotonic function of the difference between
the erase count of the most and least worn out blocks and
0 < � < 1 [17]. CAT score is defined as score(j) =
obsolete(j)∗age(j)
valid(j)∗erasure(j) [18]. Here, age(j) is the time since the last

erasure of unit j, and obsolete(j)∗age(j)
valid(j) part works like the

cost-benefit (CB) scheme described in Section II-A1, while
1

erasure(j) part gives priority to the least worn out blocks.

B. Reducing Space for Garbage Collection Metadata

In this part, we describe the research works that have
focused on reducing the metadata space consumption in the
SRAM. These algorithms focus on the metadata needed for
only wear leveling (i.e., block erase count), while do not
consider to reduce computation overhead. In contrast, Our
sampling-based approximation algorithm focuses on reducing
space as well as computation overhead. In addition, sampling-
based algorithm can be used to approximate any existing
garbage collection algorithms.

Algorithm 1 Sampling-based Approximation Algorithm
1: if (First Iteration) then
2: Randomly fetch metadata for N fresh blocks from flash memory to SRAM
3: else
4: Randomly fetch metadata for N −M fresh blocks from flash memory to SRAM
5: end if
6: Calculate scores based on metadata for N sampled blocks
7: Sort the scores in descending (or ascending) order
8: Select the block with max (or min) score as a victim
9: Remove metadata for the victim block from the sample

10: Remove metadata for last N − M − 1 blocks in descending (or ascending) order

Group-based wear leveling algorithm [12] uses grouping to
save SRAM space. It groups logically adjacent blocks into a
single group and maintains an average erase count per group,
thus it reduces SRAM space by group size times. However,
this scheme is specially designed for the block-level FTL page
address mapping. In addition, it still requires O(K) space,
where K is the flash capacity in total number of blocks.
In contrast our sampling based approach requires O(N) of
SRAM space, where N << K.

K-Leveling [19] algorithm attempts to minimize the meta-
data consumption by using coding like technique. It keeps
track of the erase count of each block by storing only differ-
ence between current erase count and the least worn block’s
erase count. To store an erase count of 100K, we need at
least 20 bits of space. Now, if the difference between current
erase count and the least worn block’s erase count can be
restricted to at most 31, we need only 5 bits to store the erase
count information. Thus, by saving only the difference, K-
Leveling can reduce the metadata size by four times. However,
it requires O(K) space.

III. SAMPLING-BASED ALGORITHM

In this section, first we describe our sampling-based algo-
rithm to approximate existing score-based garbage collection
algorithms. Next, we illustrate our proposed algorithm with an
example. Finally, we discuss the impact of different sampling
parameters.

A. Algorithm

Our sampling-based algorithm maintains garbage collection
metadata for a fixed set of sample blocks in the limited SRAM.
These samples are selected randomly. We use this sample-pool
to select a victim block for garbage collection. Once victim
selection is done, we throw out some current samples which
are less likely to be selected as victims in the near future.
This strategy helps to improve the quality of the sample-pool
as the bad samples are thrown out and not considered by the
immediate victim selection procedure. In the next iteration, we
draw some fresh samples in the SRAM to maintain the fixed
size of the sample-pool. This strategy increases the probability
of bringing some good samples in the SRAM. Now, we select
a victim from the current sample-pool, and so on. The design
of our proposed sampling-based algorithm is motivated by
the randomized web-cache replacement scheme proposed by
Psounis and Prabhakar [20].

Algorithm 1 gives the pseudo-code of our sampling-based
victim selection algorithm. At the very beginning (i.e., for the

first time a victim block needs to be selected), we randomly
read the metadata of the N blocks from the flash memory
(Line 1 in Algorithm 1) to SRAM. Then, we calculate scores
(the scores are described in Section II-A) and sort these sam-
pled metadata based on these scores (Line 6-7 in Algorithm 1).
Finally, we select a block which has max (or min) score as
a victim based on the garbage collection policy used (Line 8
in Algorithm 1). The performance of our proposed sampling-
based algorithm depends on the quality of the randomly chosen
samples. If the samples are good (i.e., samples that are more
likely to be selected as victims), the overall performance is
also good. That is why at the end of each iteration, we keep
M good samples from the current N samples, and throw out
N −M bad samples. We throw out the samples which are
less likely to be selected as victim in the next iteration. Out
of N−M bad samples, one sample is the current victim block,
and rest of the N −M − 1 samples are chosen based on the
score. We throw out the last N −M − 1 samples in sorted
order as their scores indicate they have very low (or zero)
probability of being selected as victim in the next iteration
(Line 9-10 in Algorithm 1). When we need to perform the
next victim selection, we again randomly read N −M fresh
samples from the flash to SRAM (Line 4 in Algorithm 1), and
make eviction decision based on the metadata of these N−M
fresh samples and previously retained M good samples. This
procedure is repeated whenever we need to select a victim
block.

B. An Illustration

To illustrate our sampling-based approach, we assume our
victim selection criteria prefers a block with the minimum
erase count as a candidate for garbage collection. We name
this as Greedy Wear scheme. Now, we will approximate
Greedy Wear scheme by keeping only metadata for N = 5
blocks in the SRAM. At end of each iteration, we retain two
good samples and throw out three samples, i.e., M = 2. At
first, we randomly select metadata for five fresh sample blocks
from the flash memory and bring them to SRAM. The block
erase count of the samples are shown in Figure 1(a). Next,
we sort the samples based on the erase count as shown in
Figure 1(b). We select the block having the minimum erase
count (i.e., 10) as victim and remove it metadata from SRAM.
Now, we need to remove N −M − 1 = 5− 2− 1 = 2 more
samples from SRAM. Since, our victim selection criteria is the
block having minimum erase count, we remove last two blocks
in the ascending order of erase counts. The victim block is
marked in the dashed rectangle and all the removed blocks are
marked in gray color, as shown in Figure 1(c). After removing
these three samples, currently we have only two metadata
sampled blocks in SRAM, as shown in Figure 1(d). During
the next victim selection process, again we randomly select
metadata for three fresh sample blocks from flash memory and
bring them to SRAM. These fresh samples (marked in light
gray color) and two previously retained samples are shown in
Figure 1(e). Now, from these five samples, we select the block
having erase count of seven as a victim, and so on.

Fig. 1. Illustration of sampling-based approximation algorithm for
N = 5 and M = 2. Here, the block with minimum erase count is
selected as a victim.

C. Parameter Selection

Usually, smaller values of M help to choose better victim
candidates. The main reason behind this behavior is that for
a fixed value of N , as the value of M increases, fewer
number (i.e., N −M) of fresh samples are drawn from the
flash memory, while larger number of old samples (i.e., M)
are retained in the SRAM in order to make the eviction
decision. As a result, performance degradation occurs due to
the relatively large number of bad samples. On the the other
hand, the value of N −M contributes to the number of times
that we need to perform metadata read operations from the
flash memory. Since, flash read operations are much slower
than the SRAM access operations, we need to keep N−M as
small as possible in order to quickly perform victim selection
operation. However, it may have an adverse effect on the
performance of the sampling-based algorithm.

IV. EXPERIMENTAL EVALUATION

In this section, we study the performance of our sampling-
based approximation algorithms by using real-world trace
driven simulation. We emulate existing garbage collection
schemes by using our sampling-based algorithms, and compare
their performance according to various garbage collection
evaluation metrics.

A. Experimental Setup

To evaluate the performance of our sampling-based
schemes, we have used Solid State Drive (SSD) simulator
developed by The Pennsylvania State University [21]. In
our evaluation, DFTL [4] is used as underlying FTL page
address mapping scheme. We have used three enterprise class
real-world traces to study the impact of the sampling-based
algorithms. For the lack of space, here we only include the
results of write-intensive Financial-1 trace from the UMass
Storage Repository [22]. We have used the following three
sampling settings: (a) N = 3,M = 1, (b) N = 8,M = 2, and
(c) N = 30,M = 5. We refers these three settings as N3M1,
N8M2, and N30M5, respectively. The setting N3M1 refers
that we maintain only N = 3 samples in SRAM to select
a victim block for garbage collection, and once a victim is

(a) Variance of Erase Counts (b) Max Erase Count (c) GC Overhead (d) Victim Selection Overhead

Fig. 2. Greedy Clean Scheme for Financial-1 (2GB)

(a) Variance of Erase Counts (b) Max Erase Count (c) GC Overhead (d) Victim Selection Overhead

Fig. 3. Greedy Wear Scheme for Financial-1 (2GB)

(a) Variance of Erase Counts (b) Max Erase Count (c) GC Overhead (d) Victim Selection Overhead

Fig. 4. CB Scheme for Financial-1 (2GB)

selected, we retain only M = 1 current sample for the next
iteration. During next iteration, we draw N −M = 3− 1 = 2
fresh samples from the flash memory. For the detail experi-
mental setup and result analysis, the readers are referred to
the technical report of this paper [23].

B. Result Analysis

In this section, for the lack of space, first we discuss the
results for the Financial-1 workload [22]. Next, we summarize
the results for two other real-world traces.

1) Financial-1 (2GB): Greedy Clean Policy. This policy
selects a block with the largest number of invalid pages as a
garbage collection victim. In terms of erase counts variance
and max erase count, sampling-based algorithm works better
than the unsampled (original) algorithm. Figure 2(a) shows
that variance is almost same for all three sampling settings,
while Figure 2(b) shows that max erase count becomes higher
with the increase of sample size. At a first glance, these results
seem counter-intuitive, as it is expected that unsampled version
will always outperform sampling-based version, after all it is
an approximation of the unsampled one. However, these results
are correct. The main reason is as follows. Greedy Clean
scheme is a cleaning efficient policy and it does not consider
wear leveling factor at all. Erase count variance and max erase
count metrics are biased to wear leveling. Sampling-based
algorithm does not consider enough information (i.e., does not
consider all blocks metadata) to make 100% cleaning effcient
decision as it is an approximation (i.e, makes decisions from
the metadata of a small number of sampled blocks), which

makes it inherently biased to the wear leveling metrics. That is
why unsampled version performs worse for these two metrics.
With more samples, the sampling-based algorithm becomes
closer approximation of the unsampled one, and that is why
with an increase in sample size, max erase count becomes
larger and difference between max erase count values of the
unsampled and sampling-based algorithm decreases.

Figure 2(c) shows that in terms of garbage collection over-
head, unsampled version performs better. As expected, with
an increase in sample size, sampling-based algorithm exhibits
performance similar to the unsampled one. These results are
intuitive, since Greedy Clean scheme is specially optimized
for garbage collection overhead, quite naturally it will per-
form better. The bigger is the sample size, the better is the
approximation, and the closer is the performance. Figure 2(c)
shows that for N30M5 i.e., N = 30 and M = 5, sampling-
based algorithm performs almost as good as unsampled one.

Figure 2(d) shows that when metadata is not stored in the
SRAM, to select a victim, the overhead in terms of the total
number of flash read operations. This overhead is several
magnitude lesser for the sampling-based algorithm compared
to unsampled one. This is expected, as sampling case, we
need to read only fewer number of sampled blocks, while
unsampled algorithm scans all blocks to select a victim. As
expected, in the sampling-based algorithm, as the N − M
(i.e., number of fresh blocks that needs to be read) increases,
the overhead also increases proportionately. Overall, N = 30
and M = 5 shows better performance compared to the other
sampling settings.

Greedy Wear Policy. This policy selects the least worn out
block as a victim. In terms of erase counts variance and max
erase count, sampling-based algorithm performs worse than
the unsampled case. However, Figure 3(a) and Figure 3(b)
show that as the sample size increases, variance and max
erase count become closer to the unsampled one. This results
are quite expected as Greedy wear is a wear leveling centric
policy, and these two metrics biased to wear leveling. That is
why unsampled version outperforms sampled version. With
more samples (i.e., N = 30), sampling-based algorithm
becomes closer approximation of the unsampled case, and
exhibits closer performance. Figure 3(c) shows that in terms
of garbage collection overhead unsampled version performs
better. As expected, again with the more number of samples,
sampling-based algorithm approximates better, and exhibits
better performance. Figure 3(d) shows that with the increase of
N−M , the victim selection overhead becomes larger. Overall,
N = 30 and M = 5 setting shows better performance.
CB Policy. The Cost-benefit (CB) scheme selects a block
with the highest utility value of 1−u

2u ∗ age (as described in
Section II-A) as a garbage collection victim [14]. Similar to the
Greedy Clean algorithm, the CB algorithm is also a cleaning
centric scheme, while it considers more metadata information
to select victims. In terms of erase count variance and max
erase count, sampling-based algorithm performs better than
the unsampled one. The reasons are same as the case of
Greedy Clean scheme explained earlier. In terms of garbage
collection overhead and victim selection overhead, Figure 4(c)
and Figure 4(d), respectively, show that CB scheme exhibits
similar trends as the Greedy Clean scheme. Note that, N = 30
and M = 5 setting exhibits overall better performance.

2) Result Summary for Other Traces: In addition, to
Financial-1 (2GB) trace, we evaluate sampling-based algo-
rithms for the Financial-1 (4GB), Financial-2 (2GB), and
Microsoft Cambridge Labs (8GB) block I/O traces (more
detail could be found in [23]). These traces also show similar
trends as Financial-1 (2GB) workload. Overall, we find that
N = 30 and M = 5 setting can better approximate existing
garbage collection algorithms.

V. CONCLUSION

This paper proposes a sampling-based (i.e., randomized) ap-
proach to approximate existing garbage collection algorithms.
Our approach is very easy to implement and it takes very less
space in SRAM as well as incurs less computation overhead.
Our preliminary experimental results show that sampling-
based approximation algorithms are wear leveling friendly
and they scale very well for the large-capacity flash-based
storage. For the three real-world traces, we find that small
number of samples (i.e., N = 30 and M = 5) can emulate
existing garbage collection algorithms. Moreover, the number
of samples needed for approximation do not increase with the
increase in flash capacity (i.e., 2GB, 4GB, and 8GB). Thus,
our sampling-based approach looks very promising. However,
we need to perform more analysis and experiments in order
to verify and validate that small number of samples can work
for any size of flash capacity. We will address this issue in the
future.

ACKNOWLEDGMENT

We would like to thank Ludmila Cherkasova for pointing
out the randomized approach to implement a priority queue.
This work was supported in part by the Center for Research
in Intelligent Storage (CRIS), which is supported by National
Science Foundation grant no. IIP-0934396 and member com-
panies, and the National Science Foundation under grant no.
ITR-0937060 to the Computing Research Association for the
CIFellows project.

REFERENCES

[1] White Paper: MySpace Uses Fusion Powered I/O to Drive
Greener and Better Data Centers. http://www.fusionio.com/PDFs/
myspace-case-study.pdf.

[2] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis, M. Manasse, and
R. Panigrahy, “Design Tradeoffs for SSD Performance,” in USENIX,
2008.

[3] E. Gal and S. Toledo, “Algorithms and Data Structures for Flash
Memories,” ACM Computing Survey, vol. 37, no. 2, 2005.

[4] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: a Flash Translation Layer
Employing Demand-based Selective Caching of Page-level Address
Mappings,” in ASPLOS, 2009.

[5] S. Lee, D. Park, T. Chung, D. Lee, S. Park, and H. Song, “A Log
Buffer-Based Flash Translation Layer Using Fully-Associative Sector
Translation,” ACM Trans. Embed. Comput. Syst., vol. 6, no. 3, 2007.

[6] S. Lee, D. Shin, Y. Kim, and J. Kim, “LAST: Locality-Aware Sector
Translation for NAND Flash Memory-Based Storage Systems,” in
SIGOPS Oper. Syst. Rev., vol. 42, no. 6, 2008.

[7] J. Kim, J. Kim, S. Noh, S. L. Min, and Y. Cho, “A Space-Efficient Flash
Translation Layer for Compact Flash Systems,” in IEEE Transactions
on Consumer Electronics, vol. 48, no. 2, 2002.

[8] J. Kang, H. Jo, J.-S. Kim, and J. Lee, “A Superblock-based Flash
Translation Layer for NAND Flash Memory,” in EMSOFT, 2006.

[9] C. Wu and T. Kuo, “An Adaptive Two-Level Management for the Flash
Translation Layer in Embedded Systems,” in ICCAD, 2006.

[10] C. Park, W. Cheon, J. Kang, K. Roh, W. Cho, and J. Kim, “A
Reconfigurable FTL (Flash Translation Layer) Architecture for NAND
Flash-Based Applications,” ACM Trans. Embed. Comput. Syst., vol. 7,
no. 4, 2008.

[11] D. Park, B. Debnath, and D. Du, “CFTL: A Convertible Flash Trans-
lation Layer with Consideration of Data Access Patterns,” UMN CS
Technical Report, no. TR 09-023, 2009.

[12] D. Jung, Y. Chae, H. Jo, J. Kim, and J. Lee, “A Group-based Wear-
Leveling Algorithm for Large-Capacity Flash Memory Storage Sys-
tems,” CASES, 2007.

[13] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms, Second Edition. McGraw-Hill Higher Education, 2002.

[14] A. Kawaguchi, S. Nishioka, and H. Motoda, “A Flash-Memory Based
File System,” in USENIX, 1995.

[15] D. Woodhouse, “JFFS: The Journalling Flash File System,” Proceedings
of Ottawa Linux Symposium, 2001.

[16] S. Wells, “Method for Wear Leveling in a Flash EEPROM Memory,”
United States Patent, no. 5341339, 1994.

[17] H. Kim and S. Lee, “An Effective Flash Memory Manager for Reliable
Flash Memory Space Management,” IEICE Transactions on Information
and Systems, vol. E85-D, no. 6, 2002.

[18] M. Chiang, P. Lee, and R. Chang, “Cleaning Policies in Mobile Com-
puters Using Flash Memory,” Journal Systems and Software, vol. 48,
no. 3, 1999.

[19] S. Park, “K-Leveling: An Efficient Wear-Leveling Scheme for Flash
Memory,” in UKC, 2005.

[20] K. Psounis and B. Prabhakar, “Efficient Randomized Web-Cache
Replacement Schemes Using Samples From Past Eviction Times,”
IEEE/ACM Transaction on Networking, vol. 10, no. 4, 2002.

[21] “A Simulator for Various FTL Schemes,” http://csl.cse.psu.edu/?q=node/
322.

[22] “University of Massachusetts Amhesrst Storage Traces,” http://traces.cs.
umass.edu/index.php/Storage/Storage.

[23] B. Debnath, S. Krishnan, W. Xiao, D. Lilja, and D. Du, “Sampling-
based Metadata Management for Flash Storage,” UMN ECE Technical
Report, no. ARCTiC 10-01, 2010.

