RAIDG6L: A Log-Assisted RAID6 Storage Architecture with Improved
Write Performance

Chao Jin*, Dan Feng™™, Hong Jiang', Lei Tian"'

*School of Computer, Huazhong University of Science and Technology
*Wuhan National Lab for Optoelectronics
'University of Nebraska-Lincoln
“Corresponding author: dfeng@hust.edu.cn
chjinhust@gmail.com, jiang@cse.unl.edu, ltian@hust.edu.cn

Abstract—The RAIDG6 architecture is playing an increasingly
important role in modern storage systems due to its provision of
very high reliability. However, its high write penalty, because of
the double-parity-update overheads upon each write operation,
has been a persistent performance bottleneck of the RAID6 sys-
tems. In this paper, we propose a log-assisted RAID6 architecture,
called RAID6L, to boost the write performance of the RAID6
systems. RAID6L integrates a log disk into the traditional RAID6
architecture, and alleviates its write penalty by simplifying the
processing steps to service a write request. On the other hand,
RAIDGL also guarantees that the accelerated RAID6 systems can
still recover from double disk failures. The Parity Logging
scheme was originally proposed to accelerate the XOR based
RAIDS, and we propose a method to make it also applicable to
the Reed-Solomon based RAID6. We present a detailed compari-
son between RAID6L and Parity Logging, and show that
RAIDG6L has several advantages over Parity Logging. Experi-
mental results show that RAID6L significantly increases the data
transfer rate and decreases the request response time when com-
pared with the traditional RAID6 and Parity Logging systems.

Keywords—RAIDG6; log; write performance; parity logging

I. INTRODUCTION

The RAID6 architecture outperforms the other RAID lev-
els in fault tolerance due to its ability to recover from arbitrary
two concurrent disk failures in the array. However, the reli-
ability benefit of RAID6 comes at the expense of its write per-
formance degradation. Take the typical Reed-Solomon coded
RAIDG [1] for example, there are two parity blocks (i.e., pari-
ties P and Q) in each parity stripe, and when one data block is
updated, the two parity blocks must be updated synchronously
to guarantee parity consistency. Thus, writing a RAID6 data
block entails the following three phases: pre-read the old val-
ues of the data and parity blocks, compute the new values of
the data and parity blocks, and write the new values to the
disks. This process incurs as many as six disk operations [2].
Obviously, the write penalty of the RAID6 architecture is
quite high, which is the main reason why its usage in practical
storage systems is still limited.

In this paper, we propose a log-assisted RAID6 architec-
ture, called RAID6L. RAID6L integrates a log disk into the
traditional RAID6 array, and greatly boosts the write perform-
ance of the RAID6 array with a minimal reliability loss. The
traditional RAID6 array updates the data blocks and parity
blocks simultaneously. On the contrary, RAID6L simply logs
the old or new values of the related data blocks when serving a
write request, and delays the parity updates until the system is

978-1-4577-0428-4/11/$26.00 ©2011 IEEE

idle or lightly loaded. The log records are first accumulated in
a log buffer, and flushed to the log disk when the buffer is full
or reaches a utilization threshold. The periodical large sequen-
tial flush operations incur very little overhead to the system,
allowing the write penalty of RAID6L to be greatly reduced
compared with the traditional RAID6 array. On the other hand,
the log disk guarantees that the RAID6 array can still recover
from arbitrary two concurrent disk failures even when its pari-
ties are no longer consistent with the data.

The Parity Logging scheme [3] is one of the most repre-
sentative schemes that are proposed to boost the write per-
formance of the XOR parity based RAID systems. However, it
cannot be applied to the Reed-Solomon coded RAID6 directly,
since the Q parity of the Reed-Solomon coded RAIDG6 is not
computed by XOR parity but the finite field arithmetic. In this
paper, we propose a general way to make Parity Logging also
applicable to the Reed-Solomon coded RAID6. Then, we pre-
sent a detailed comparison between RAID6L and Parity Log-
ging, and show that RAID6L has several advantages over Par-
ity Logging.

We implement a RAID6L prototype and a Parity Logging
prototype in the Linux software RAID framework, and evalu-
ate their practical performance through trace-driven experi-
ments. Experimental results show that RAID6L significantly
increases the data transfer rate and decreases the user request
response time when compared with the traditional RAID6 and
Parity Logging systems.

II. DESIGN AND IMPLEMENTATION OF RAID6L

A. RAIDG6L Architecture

RAIDG6L is composed of a traditional RAID6 array and a
log disk. Figure 1 provides an architectural overview of the
RAID6L system. Generally, RAID6L may operate in any of the
following three states: the accelerating state when RAID6L
delays parity updates to accelerate the write speed, the transi-
tional state when RAID6L re-synchronizes the parities between
the data disks and the parity disks, and the normal state when
the parity is consistent with the data. In the normal state,
RAIDGL acts in exactly the same way as a traditional RAID6
array. However, in the accelerating state or the transitional state,
RAIDGL handles the write requests differently from the tradi-
tional RAID6 array. We will illustrate the write-request process
flow of RAIDOL in details in the following sections. The key
in-memory metadata structure of RAID6L is a hash list. Each
entry in the hash list corresponds to a data block, and stores the
log addresses of the data block's original and latest values in
the log disk.

Workload

YVY
Hash List Request Handle »
Query 8
< > Parit; N
Y « Z
< Re-synchronize 2
Update =
S
Failure Recover

\ 4
‘ Request Dispatch ‘

/ \

00 S

Parity Disks || Log Disk

Data Disks

Figure 1 RAID6L Architecture

B. Hash List Structure

The structure of the Hash list is shown in Figure 2. The
hash list is composed of a table head array and several entry
lists. Each element of the table head array is called a hash slot,
and its content is an address that points to an entry list. Each
entry in the entry list corresponds to a data block in the RAID6
array. Each entry has the following items:

LBA: logical block address of the data block in the array.

Ori_Ad: address of the data block's original value in the
log disk.

Cur_Ad: address of the data block's current (i.e., latest)
value in the log disk.

Next: pointer to the next item in the entry list.

To search the corresponding hash entry of a data block, the
system first finds the corresponding hash slot by hashing the
logical block address of that data block, and then searches se-
quentially the entry list in the slot. If there is an entry in the
entry list satisfying the condition that its LBA item equals the
logical block address of the data block, this entry is just the
corresponding entry of the data block; otherwise, if no such
entry is found, the data block does not have a corresponding
entry in the hash list. Similarly, to insert a hash entry into the
hash list, the system first finds the corresponding hash slot by
hashing its LBA item, and then inserts the entry into the entry
list in this slot.

C. Process Flow of Write Requests

First we review how a traditional RAIDG6 array processes
the write requests. On receiving an upper-level write request
on the RAID device, the RAID6 controller first translates it
into the requests on the component disks. These requests are
grouped by the parity stripes. Before writing the new data to
the disks, RAID6 needs to compute the new parity blocks for
each parity stripe. There are usually two alternative methods to
do this, namely, reconstruction-write and read-modify-write
respectively. The main difference between the two methods

Table Head Array Entry List
Slot 1 » LBA <= LBA
Slot2 —pe-eet Ori Ad Ori Ad
Slot3 ——eeeee Cur_Ad Cur_Ad
next NULL
SIot N ——«eeee

Figure 2 Hash List Structure

lies in the data blocks that must be pre-read for the computa-
tion of the new parity blocks [4]. Generally, the RAID6 con-
troller dynamically chooses one of the two methods for each
parity stripe to minimize the number of pre-read operations.
After the new parity blocks are computed, the new values of
the data and parity blocks are written to the disks and the write
request completes.

The write-request process flow of RAID6L in the acceler-
ating state is shown in Figure 3. RAID6L differs from the tra-
ditional RAID6 array in several important ways. First, before
pre-reading a data block, RAID6L queries the hash list to see
if the block has a corresponding entry in the hash list, and only
executes the pre-read operation if it does not have a corre-
sponding hash entry. Second, when a data block is pre-read or
updated, RAID6L logs the pre-read or new value of the data
block into the log disk, and updates the corresponding hash
entry of the data block. Third, for either the reconstruction-
write or read-modify-write method, RAID6L does not need to
pre-read or update the parity blocks.

As mentioned before, the transitional state of RAID6L de-
scribes the parity re-synchronizing process. In the transitional
state, some of the parity stripes have returned to the consistent
state through re-synchronization, while the others still remain
in the inconsistent state. Before writing a parity stripe,
RAIDG6L checks if the data blocks of this parity stripe have
corresponding entries in the hash list. If none of the data
blocks has a corresponding hash entry, the parity stripe must
be in the consistent state; otherwise, it must be in the inconsis-
tent state. Writing a consistent parity stripe follows the exact
process flow of a traditional RAID6 array, and either the re-
construction-write or read-modify-write method can be chosen
to compute the new parity blocks. On the other hand, writing
an inconsistent parity stripe also follows the process flow of a
traditional RAID6 array, with the exception that the recon-
struction-write method must be selected to compute the new
parity blocks. After the writing process completes, the parity
blocks of the inconsistent parity stripe are updated, thus the re-
synchronization of this parity stripe is completed at the same
time. Then, all the corresponding hash entries of the data
blocks in this parity stripe are deleted from the hash list, since
the parity stripe has already returned to the consistent state.

D. Parity Re-synchornization

In a RAID6L system, the parity re-synchronization opera-
tions may be triggered in the following four situations.

1. Translate the up-level update request into parity stripes
according to the structure of the RAID6 array.
2. FOR EACH (parity stripe)
3. IF (reconstruction - write style is used)
4. FOR EACH (data block net to be updated)
5 IF (it has no corresponding entry in the hash list)
6 Pre-read the original value of the block, and
store it in the log disk;
7. Create an entry in the hash list for the block;
8. Record the log address of the original value
in the hash entry.
9. ENDIF
10. END FOR
11. | ELSE
12. FOR EACH (data block to be updated)
13. IF (it has no corresponding entry in the hash list)
14. Pre-read the original value of the block, and
store it in the log disk;
15. Create an entry in the hash list for the block;
16. Record the log address of the original value
in the hash entry.
17. ENDIF
18. END FOR
19. | ENDIF
20. | FOR EACH (data block to be updated)
21. IF (it has no corresponding entry in the hash list)
22. Create an entry in the hash list for the block.
23. ENDIF
24, Store the new value of the data block in the log disk;
25. Record the log address of the new value in the hash
entry of the data block.
26. Write the new value of the data block to the RAID disk.
27. | ENDFOR
28. END FOR

Figure 3 Write-Request Process Flow of RAID6L in the
Accelerating State

First, the system enters the transitional state. In the transi-
tional state, RAID6L traverses through the hash list sequen-
tially, and for each hash entry, RAID6L finds its correspond-
ing data block in the RAID6 array, reads out all the data
blocks in the same parity stripe, and then re-computes the par-
ity blocks in the parity stripe. After that, RAID6L deletes all
the corresponding hash entries of the data blocks in the parity
stripe, and the re-synchronization of this parity stripe com-
pletes. When there is no hash entry left in the hash list, the re-
synchronization of the entire system completes. Then,
RAIDGL frees all the space in the log disk, and switches to the
normal state.

Second, the system crashes when RAIDGL is in the accel-
erating or transitional state. After the system reboots, the hash
list in the memory has been lost. At this time, RAID6L must
re-synchronize the parity stripes as soon as possible, for oth-
erwise a disk failure may cause permanent data loss. However,
without the hash list, RAID6L is not aware of which parity
stripes have been updated. Thus, RAID6L needs to re-
synchronize all the parity stripes sequentially in the RAID6
array. This process is similar to the initial synchronization
process when the RAID6 array is created. To protect the hash
list from power failures, Non-Volatile RAM may be used to
store the hash list.

1. FOREACH (parity stripe)

2. FOR EACH (failed data block)

3. IF (it has a corresponding entry in the hash list)

4 IF (the Cur_Ad item of the entry is not NULL)

5 Read out the log record addressed by Cur_Ad

from the log disk as the recovery value
of this data block.

6. ELSE

7. Read out the log record addressed by Ori_Ad

from the log disk as the recovery value
of this data block.

8. ENDIF

9. ELSE

10. FOR EACH (surviving data block)

11. IF(it has a corresponding entry in the hash list)

12. Read out the log record addressed by

Ori_Ad from the log disk as the
original value of this block.

13. ELSE

14. Read out the original values of this data block

from the RAID disk.

15. END IF

16. END FOR

17. Read out the original values of the parity blocks
from the RAID disks.

18. Compute the original value of the failed data block
using the RAIDG6 recovery algorithm, and set the
original value as the recovery value of this block.

19. ENDIF

20. | ENDFOR

21. END FOR

Figure 4 Process Flow of RAID6L to Recover From Two
Data Disk Failures

Third, if the log disk fails when RAID6L is in the acceler-
ating or transitional state, the unsynchronized parity stripes
lose the protection of the log disk, thus RAID6L must also
start to re-synchronize the parity stripes immediately. Since
the hash list is not affected, RAID6L is aware of which parity
stripes have been updated and only needs to re-synchronize
these parity stripes.

Fourth, the log disk is filled up when RAID6L is in the ac-
celerating state. At this time, RAID6L is still able to tolerate
double disk failures, since the hash list and the log records in
the log disk are complete. Thus, RAID6L can choose not to
start the parity re-synchronization operations so as not to com-
pete with the application I/O operations. However, the process
flow in the transitional state rather than the accelerating state
must be used to handle the write requests, since RAID6L can
not add new log record into the log disk. When the application
workload becomes idle, RAID6L enters the transitional state
and start to re-synchronize the unsynchronized parity stripes.

E. Data Recovery

If RAIDG6L is in the normal state when disk failures occur,
the recovery strategy is the same as a traditional RAID6 array.
Otherwise, no matter whether RAID6L is in the accelerating
or transitional state, it needs to process the data recovery with
the help of the log disk, and the recovery strategy is divided
into three cases as follows.

Case 1: Two parity disks fail.

In this case, the parity disks can be directly reconstructed
by the data disks, since all the data disks are complete. When
the parity disks are reconstructed, the parity re-
synchronization is done at the same time.

Case 2: Two data disks fail.

In this case, each parity stripe in the RAID6 array loses
two data blocks. The data recovery process flow is shown in
Figure 4. For each failed data block, if it has a corresponding
hash entry in the hash list, its current value can be directly
copied from the log disk. In particular, if the failed data block
has been updated in the accelerating state, the Cur_Ad item of
its hash entry must not be NULL, and its current value is ad-
dressed by the Cur_Ad item in the log disk; otherwise, if the
failed data block has not been updated in the accelerating state,
the Ori_Ad item of its hash entry must not be NULL, and its
original value addressed by the Ori_Ad item in the log disk is
just its current value.

On the other hand, if the failed data block does not have a
corresponding hash entry in the hash list, it must not have been
updated in the accelerating state. For each of the surviving
data block in the parity stripe, its original value can be read
out either from the log disk (addressed by the Ori_Ad item) if
it has a corresponding hash entry in the hash list, or from the
RAID disk if it does not have a corresponding hash entry.
Since the parity stripe is originally in the consistent state, the
original value of the failed data block can be re-computed by
the original value of all the surviving data blocks and the par-
ity blocks through the RAID6 parity algorithm. Since the
failed data block has not been updated, its original value is just
its current value.

Case 3: A data disk and a parity disk fail.

In this case, each parity stripe loses one data block and one
parity block. The data recovery process is similar to the sec-
ond case. If the failed data block has a corresponding hash
entry, it can be directly recovered from the log disk; otherwise,
it can be recovered through the RAID6 recovery algorithm.
After the failed data blocks are recovered, RAID6L starts the
parity re-synchronization operations, and the RAID6 array
returns to the consistent state.

III. COMPARSION WITH PARITY LOGGING

A. Applying Parity Logging to the Reed-Solomon Coded
RAID6

Parity Logging was originally applied to the RAIDS array.
When a data block in the RAIDS parity stripe is updated, Par-
ity Logging creates a log record that contains the XOR result
of the data block's old and new values in the log disk. The log
record is actually the update image of the parity block in that
parity stripe. In the parity re-synchronization process, each
parity block is updated to its latest value by XORing with all
its corresponding update images. When one-disk failure occurs
in the RAIDS array, the system first updates all the parity
blocks to their latest values using the log records in the log
disk, and then recovers the lost data through the RAIDS5 re-
covery algorithm.

Different from RAIDS, there are two parity blocks in each
Reed-Solomon coded RAID6 parity stripe, namely, P parity
block and Q parity block respectively. The P parity block is
generated by simple XOR operations like RAIDS, however, the

Q parity block is generated by the more complicated finite field
arithmetic, and it can not be updated to its latest value by
XORing its original value with its corresponding update im-
ages. Thus, the Parity Logging scheme can not be applied to
the RAIDG6 array directly. Inspired by [5], we think of a method
to solve this problem. In fact, if the log records are regarded as
the update images of the data blocks rather than the parity
blocks, Parity Logging can also be applied to the RAIDG6 array.
It must be noted that, for each data block, its latest value can be
computed by XORing its original value with its corresponding
update image, and conversely, its original value can also be
computed by XORing its current value with its corresponding
update image. Suppose that two data disks fail in the RAID6
array. First, the original value of the surviving data blocks can
be computed through their latest values and corresponding up-
date images. Then, the original value of the failed data blocks
can be computed by the RAID6 parity algorithm, since the
RAIDG6 array is originally in the consistent state. Given the
original values of the failed data blocks recovered, their latest
values can be computed through their corresponding update
images.

B. Comparsion between Parity Logging and RAID6L

Compared with Parity Logging, RAID6L has the following
advantages.

First, RAIDOL takes advantage of spatial locality that
commonly seen in enterprise workloads [6] to reduce the pre-
read operations when serving the write requests. Parity Log-
ging must pre-read the old value of a data block every time it
is updated. On the other hand, RAID6L only needs to pre-read
the old value of a data block when it is updated for the very
first time. RAID6L creates a hash entry in the hash list for
each updated data block. When updating a data block,
RAIDG6L skips the pre-read operation if the data block has a
corresponding hash entry in the hash list. Compared with Par-
ity Logging, RAID6L saves the disk I/O operations when serv-
ing the write requests. The stronger the workload locality is,
the more disk operations RAID6L saves.

Second, RAID6L can choose cither the read-modify-write
or the reconstruction-write method to serve write requests,
while Parity Logging can only choose the read-modify-write
method. For the RAID6L scheme, if the read-modify-write
method is used, the system pre-reads the data blocks that must
be updated in the parity stripe; on the other hand, if the recon-
struction-write method is used, the system pre-reads the data
blocks that should not be updated in the parity stripe. RAID6L
dynamically chooses one method for each parity stripe to
minimize the pre-read operations. However, for the Parity
Logging scheme, the system always needs to pre-read the data
blocks that must be updated.

Third, in case of disk failures, the data recovery process of
RAIDGOL is faster than Parity Logging. To recover the failed
blocks in a parity stripe, Parity Logging must first compute the
original values of the surviving data blocks in the parity stripe,
and then compute the original values of the failed blocks, and
finally compute the latest values of the failed blocks. In the
data recovery process, all the log records in the log disk will
be used. On the other hand, under the RAID6L scheme, a
failed data block can be directly recovered from the log disk if
it has a corresponding entry in the hash list. Otherwise, if the
failed data block does not have a corresponding entry (indicat-

ing that it has not been updated), RAID6L can quickly locate
the original values of the other blocks in the same parity stripe
by querying the hash list, and recover the failed data block
through the RAID6 recovery algorithm. In this process, only a
small part of the log records will be used. Compared with Par-
ity Logging, RAID6L effectively reduces data recovery time,
thus decreases the risk of data loss, and increases the reliabil-
ity of the RAID6 array.

Additionally, Parity Logging must perform the XOR op-
erations every time it creates a log record, while RAID6L di-
rectly logs the data value in the log disk. Thus, RAID6L saves
the CPU resource and time overhead of the XOR computation.
RAID6L may need more log space than Parity Logging. This,
however, is not a major problem, since modern disk capacity
is growing steadily and the space of the log disk is periodically
freed and reused.

IV. PERFORMANCE EVALUATION

A. Prototype Implementation

In order to evaluate the practical performance of RAID6L,
we have implemented a RAID6L prototype in the Linux soft-
ware RAID framework. We have also implemented a Parity
Logging prototype for comparison. We conduct the experi-
ments on a server-class hardware platform with an Intel Xeon
3.0GHz processor and 1GB DDR memory. A Marvel SATA
controller card is used to carry 8 SATA disks. A separate IDE
disk is used to house the operating system (Linux Kernel
2.6.21.1) and other software (MD and mdadm).

We implement the RAID6L module by modifying the
original RAID6 module in the Linux Kernel. We mainly mod-
ify the handle_stripe6 function and add the hash list structure
in raid5.c. Some other changes are also made to md.c, md_k.h,
and raid5.h. The total amount of modification is about 500
lines of C code.

The implementation of Parity Logging is a little different
from that of RAIDGL.. It also sets up a hash list in the memory.
Each updated data block has a corresponding hash entry in the
hash list, and the hash entry stores the address of the latest log
record for that data block. Each log record has a log head that
contains the LBA of the data block and the address of the pre-
vious log record of the data block. Thus, the log records of the
same data block are chained together, and we can traverse
them one by one starting from the one addressed by the hash
entry. It must be noted that, we cannot store the addresses of
all the log records in the hash list, for otherwise the memory
usage could be extremely high.

In our evaluation, we conduct the experiments on the tradi-

tional RAID6 array, RAID6L, and Parity Logging respectively.

The traditional RAID6 array is configured with 7 disks. Each
of RAID6L and Parity Logging is configured with 8 disks,
including a 7-disk RAIDG6 array and a log disk. The log buffer
for RAID6L or Parity Logging is set up as a two-dimensional
byte array in the memory. The capacity of the log buffer is set
to be 10MB, and its content is flushed to the log disk when its
utilization rate reaches 80%.

B. Trace-Driven Performance Evaluation

We conduct the performance experiment on the three
RAID architectures by replaying traces collected from the
real-world environment. The characteristics of the traces [9]

are shown in Table 1. We observe that workload locality
widely exists in these traces, and 13-40% of the requested ad-
dresses are updated more than once. The trace replay tool is
RAIDmeter [10] that can replay block-level traces and evalu-
ate the practical performance of storage systems.

We run each of the traces on the RAID architectures for an
hour, and the evaluation result is shown in Table 2. For the
Finaciall trace, RAID6L reduces the average response time
and the average number of pre-read data blocks of the tradi-
tional RAIDG6 array by up to 45% and 48% respectively, and
those of Parity Logging by 27% and 17% respectively. The
Finacial2 trace has a more pronounced frequent update pattern,
thus exposing more workload locality to be exploited. As a
result, RAID6OL improves on the average number of pre-read
data blocks per write request over the traditional RAID6 array
by 66%. However, the write ratio of the financial2 trace is not
high, thus the improvements of the average response time
achieved by RAIDG6L over the traditional RAIDG6 array is also
limited, by about 21%. Meanwhile, Parity Logging does not
have the ability to exploit the workload locality, thus RAID6L
also outperforms Parity Logging in the average response time
and the average number of pre-read data blocks per write re-
quest by 12% and 31% respectively. The Exchange trace also
has strong repeated update pattern, moreover, it has bigger
request sizes and relatively more sequential I/O requests, in-
creasing the possibility for RAID6L to use the reconstruction-
write method to further reduce the number of pre-read data
blocks for each write request. RAID6L decreases the average
response time and the average number of pre-read data blocks
per write request by 30% and 44% when compared with the
traditional RAID6 array, and by 17% and 22% when com-
pared with Parity Logging. The Build trace is typically com-
posed of small random write requests. It exhibits much less of
a frequent-update pattern than the Finacial2 and Exchange
traces, lowering RAID6L’s advantage over Parity Logging in
these two measures to just up to 7% and 12% respectively.
However, RAID6L performs much better than the traditional
RAIDG6 array, and achieves the improvements in these two
measures by 63% and 65% over the traditional RAID6 array.

C. Evaluation of Data Recovery Efficiency

We conduct another experiment on the three RAID archi-
tectures to evaluate their data recovery efficiency in case of
double disk failures. Since the data recovery times of RAID6L
and Parity Logging are affected by factors such as the number
of log records in the log disk, thus, before evaluating the data
recovery times of RAID6L and Parity Logging, we first replay
the Financiall trace on each of them for half an hour to warm
them up and stabilize their recovery times.

Figure 5 plots the measured data recovery time for the
three RAID architectures. The Replay Once case refers to the
experiment where the trace is replayed for only once, and the
Replay Twice case refers to the experiment where the trace is
replayed for a second time before evaluating the data recovery
times of the RAID architectures. In our experiments, individ-
ual disk capacity is set to be 10GB, and in both cases, the tra-
ditional RAIDG6 takes about five minutes to recover from dou-
ble disk failures. Although RAID6L may have a simpler data
recovery process than the traditional RAID6 (e.g., the data
block that has a corresponding hash entry can be directly

Table | Characteristics of the Traces

Trace avg. req. size write/read Ratio 10PS addresses updated more than once
Finaciall [7] 6.2KB 3.32 69 30%
Finacial2 [7] 2.2KB 0.22 125 40%
Exchange [8] 12.5KB 1.53 611 35%
Build [8] 4.1KB 41 1980 13%
Table Il Evaluation Results of Replaying the Traces to the RAID Architectures
average response time (ms) average pre-read data blocks per write request
. . RAID6L . . RAID6L
RAID6 Parity Logging RAID6L RAID6 Parity Logging | RAID6L
Improved by Improved by
Finaciall 231 1.76 1.28 45% /1 27% 3.29 2.05 1.71 48% / 17%
Finacial2 1.16 1.05 0.92 21%/ 12% 2.26 1.10 0.76 66% /31%
Exchange 4.05 3.40 2.83 30%/17% 4.17 3.01 2.35 44% /22%
Build 15.98 6.55 6.06 63% /7% 2.96 1.17 1.03 65% /12%
20 formance of the Reed-Solomon coded RAIDG6 array, and we
HHHH RAID6 propose a method to generalize the Parity Logging scheme,
EaAr'iEﬁ'_-oggmg making it applicable to the Reed-Solomon coded RAID6 array.

Data Recovery Time (minute)

0

Replay Once
Figure 5 Data Recovery Efficiency Comparison

Replay Twice

recovered by copying its latest value from the log disk), the
measured data recovery time of RAID6L is somewhat longer
than the traditional RAID6. This is because the traditional
RAID6 can handle the parity stripes sequentially and effi-

ciently, while RAID6L needs to access the log disk frequently.

Replaying the trace for a second time creates few new hash
entries for RAID6L, thus the data recovery time of RAID6L
for the Replay Twice case does not change much. As for Par-
ity Logging, its measured data recovery time is longer than
RAIDGL. This is partly due to our implementation of Parity
Logging in which only the address of the latest log record of a
data block is stored in the memory, and the address of a pre-
vious log record of the same data block must be read from the
head of the current log record. It must be noted that, even
though the memory is big enough to hold the addresses of all
the log records for Parity Logging, its data recovery time
should still be longer than RAID6L, since it must use all the
log records in the recovery process. On the other hand, replay-
ing the trace for a second time incurs a longer data recovery
time for Parity Logging, since the number of log records in-
creases.

V. CONCLUSION

We have addressed the write performance problem of the
RAIDG6 architecture in this paper. Our main contribution is
twofold. First, we observe that the representative Parity Log-
ging scheme can not be used directly to boost the write per-

Second, we propose a log-assisted RAID6 architecture,
RAID6L. RAID6L greatly improves the write performance of
the RAID6 array, at the expense of minimal reliability losses.
Moreover, through detailed comparisons, we show that
RAIDG6L is more advantageous over Parity Logging.

ACKNOWLEDGMENT

This work is supported by the National Basic Research 973
Program of China under Grant No. 2011CB302301; 863 Pro-
ject 2009AA01A401 and 2009AA01A402; NSFC No.
61025008, 60933002, 60873028, 60703046, Changjiang inno-
vative group of Education of China No. IRT0725; the Funda-
mental Research Funds for the Central Universities, HUST,
under Grant 2010MS043; and the US NSF Grant 1IS-0916859,
CCF-0937993, CNS-1016609.

REFERENCES

[1] Plank J S. A Tutorial on Reed-Solomon Coding for Fault-Tolerance in
RAID-like Systems. Software Practice and Experience, 1997,
27(9):995-1012.

[2] Jin C, Jiang H, Feng D, Tian L. P-Code: A New RAID6 Code with
Optimal Properties. In Proc. of ICS’09, 2009.

[3] Stodolsky D, Gibson G, Holland M. Parity Logging: Overcoming the
Small Write Problem in Redundant Disk Arrays. In Proc. of ISCA’93,
1993.

[4] Jin C, Feng D, Jiang H, Tian L, Liu J, Ge X. TRIP: Tempormal
Redundancy Integrated Performance Booster for Parity Based RAID
Systems. In Proc. of ICPADS’10. 2010.

[5] Yang Q, Xiao W, Jin R. TRAP-Array: A Disk Array Architecture
Providing Timely Recovery to Any Point-in time. In Proc. of ISCA’06,
2006.

[6] Narayanan D, Donnelly A, Rowstron A. Write Off-Loading: Practical
Power Management for Enterprise Storage. In Proc. of FAST’08, 2008.

[7] UMass Trace Repository. http://traces.cs.umass.edu/index.php.
[8] S. 1. Repository. http://iotta.snia.org/traces/.

[9] Hu J, Jiang H, Tian L, Xu L. PUD-LRU: An Erase-Efficient Write
Buffer Management Algorithm for Flash Memory SSD. In Proc. of
MASCOTS’10, 2010.

Tian L, Feng D, Jiang H, Zhou K, et al. PRO: A Popularity-based Multi-
threaded Reconstruction Optimization for RAID-Structured Storage
Systems. In Proc. of FAST 07, 2007.

—
—
=

=

