
A Forest-structured Bloom Filter with Flash
Memory

Guanlin Lu ‡, Biplob Debnath †,1 , David H.C. Du ‡

‡ University of Minnesota, Minneapolis, USA.
† EMC Corporation, Santa Clara, USA.

E-mail: lv@cs.umn.edu, biplob.debnath@emc.com, du@cs.umn.edu

Abstract—A Bloom Filter (BF) is a data structure based on
probability to compactly represent/record a set of elements (keys).
It has wide applications on efficiently identifying a key that
has been seen before with minimum amount of recording space
used. BF is heavily used in chunking based data de-duplication.
Traditionally, a BF is implemented as in-RAM data structure;
hence its size is limited by the available RAM space on the
machine. For certain applications like data de-duplication that
require a big BF beyond the size of available RAM space, it
becomes necessary to store a BF into a secondary storage device.
Since BF operations are inherently random in nature, magnetic
disk provides worse performance for the random read and write
operations. It will not be a good fit for storing the large BF. Flash
memory based Solid State Drive (SSD) has been considered as
an emerging storage device that has superior performance and
can potentially replace disks as the preferred secondary storage
devices. However, several special characteristics of flash memory
make designing a flash memory based BF very challenging. In
this paper, our goal is to design an efficient flash memory based
BF that is fully aware of these physical characteristics. To this
end, we propose a Forest-structured BF design (FBF). FBF uses
a combination of RAM and flash memory to design a BF. BF
is stored on the flash, while RAM helps to mitigate the impact
of slow write performance of flash memory. In addition, in-flash
BF is organized in a forest-like structure in order to improve
the lookup performance. Our experimental results show that
FBF design achieves 2 times faster processing speed with 50%
less number of flash write operations when compared with the
existing flash memory based BF designs.

I. INTRODUCTION

A Bloom Filter (BF) is a bit vector that compactly represents
a set of items (keys) and supports key query/insert operations.
It can definitely tell if a key is not present, but it may not tell
with guarantee that a key is indeed present. In other word, an
answer given by a BF bears certain false positive rate. To keep
this false positive rate low, traditional BF designs have to set
Bloom Filter size a priori to be a few times larger than the
maximum number of items represented.

Bloom Filters are heavily used in chunking based data
de-duplication. Chunking based de-duplication is an efficient
technique to eliminate data redundancy within both backup
data and data stored in primary storage. Traditionally, chunk-
ing based de-duplication requires a chunk index that consists
of each chunk’s identifier (i.e., a SHA1 hashed value computed
based on chunk’s content) and its resided location in disk. This

1Work done when the author was graduate student at the University of
Minnesota

Copyright: 978-1-4577-0428-4/11/ $26.00 @2011 IEEE

index is used to determine whether a chunk already exists and
to retrieve a data chunk from disk. However, in many practical
cases (e.g., hundreds TB of data to be de-duplicated), the
chunk index size is too big to fit in RAM and disk-based index
is too slow. To reduce the frequency of disk accesses, Zhu et al.
[15] adopts an in-RAM Bloom Filter to identify new chunks.
If a chunk is identified by BF as new, it is temporarily stored
in an in-RAM container without querying disk-based chunk
index. When in-RAM container becomes full, it is written to
disk at once and the disk-based chunk index is updated. It
has been demonstrated that by deploying an in-RAM Bloom
Filter, a considerable amount of disk accesses for chunk index
lookup could be avoided. On the other hand, this in-RAM BF
consumes a significant amount of RAM space (e.g. 1GB size
BF per billion unique chunks [15]). Furthermore, when the
dataset size could not be determined in advance, BF size must
be able to scale up to accommodate the growth of the data
set.

Querying a BF may randomly access any bit position in a
BF. It is well known that random disk accesses perform worse
than serial disk accesses. Flash-memory based Solid State
Drive (SSD) appears to be a good candidate for storing a large
BF since flash memory access time is faster than disk access
time. Moreover, unlike hard disk, random read operations are
as fast as sequential read operations for a SSD. Nevertheless,
flash memory exhibits several special characteristics: (1) Data
can be read/write by pages (a page size is typically 4KB).
However, data erase operation is based on blocks (a block size
is 128KB). (2) A page write is slower than a page read and
data cannot be updated unless it is erased first (in-place update
problem). Therefore, it is important to reduce the number
of writes. (3) Each cell allows a limited number of erase
operations in flash memory life cycle. To lengthen its life
cycle, a wear-leveling algorithm is performed. Our goal of
this paper is to propose an efficient dynamic BF design with
flash memory that has considered these unique characteristics.

The general idea of building a Bloom Filter with flash mem-
ory is to utilize a limited amount of RAM combined with a
much larger flash memory space to form a Bloom Filter so that
its capacity could go beyond the RAM size limitation. Since
the BF is stored in flash memory, key query/insert operations
may trigger flash read/write accesses respectively. Therefore,
it is important to design a BF structure that considers flash
memory characteristics and use RAM effectively to reduce
the flash memory access time. For example, a key query

may require couple of flash read operations while several
key insertions could be buffered temporarily in RAM and
committed to flash later through one write operation. In this
paper, we count the number of flash reads to response to a
key query. Similarly, we measure the time overhead of a key
insertion by the total number of flash writes. Our design goal
is to minimize the overhead for both key query and insert so
that the processing speed (i.e., the number of records processed
per second) could be maximized.

Canim et al. [5] proposed a BF design with flash memory
which pre-allocates a single large space on flash as BF. This
BF is further partitioned into k sub-BFs. A sub-BF is a Bloom
Filter of a fixed size. Correspondingly, the given RAM space is
partitioned into k small fixed-size buffers: one for each sub-
BF. To query a key e, it first decides which sub-BF to be
checked and then all bit positions in that sub-BF related to e
need to be read, which may scatter a few pages in flash. Each
key inserted to a given sub-BF will be temporarily buffered
at its corresponding buffer. The buffer will be written to flash
memory when it is full. This will trigger one or multiple block
erases and a few page writes. We denote this by single-layer
BF design in this paper. although this design is efficient for
key queries and the number of block erases and page writes
will be improved by buffering, the big size gap between the
RAM-based buffer and its corresponding sub-BF on flash may
still cause a large number of flash writes and block erases
for key insertions. On the other hand, in order to optimize
the performance of key insertions, a naive extension of the
dynamic expanding Bloom Filter design presented by Guo et
al. can be done [9]. In this scheme an initial BF as the size
of RAM is allocated in RAM first. When this BF reaches its
capacity (i.e., certain number of bits is set to 1), the whole BF
is written to flash memory and a new BF is restarted in RAM.
The same procedure repeats when this substitute reaches its
capacity again. Eventually it forms a chain of BFs with only
the latest one being in RAM. We denote this design by linear-
chaining design, which is optimal in terms of number of
write operations because each BF is written to flash only once
and never gets modified after that. However, the key querying
performance would deteriorate very soon since the number of
flash reads per query grows linearly with the number of BFs
chained. See Section II for more details of both designs.

In this paper, we propose a Forest-structured BF (FBF)
design that is efficient for both key queries and insertions
and can dynamically adapt to the growth of data set. Initially
when the dataset size is small and could be fit in RAM,
our design allocates the root-layer of the forest in RAM and
behaves identical to a traditional in-RAM BF; As the dataset
size grows and go beyond the root-layer’s capacity, our forest
naturally expands by allocating a new layer of BFs in flash,
as children of the BFs in the root-layer. The entire root-layer
is then written to flash and the spared RAM space is switched
into a buffer space for key insertions. The forest allocates a
new layer in flash whenever its current lowest layer reaches
its capacity.

FBF design sets the sub-BF size to be the underlying flash-
page size (say, 4KB) thus given any key, one flash page access
is guaranteed to fetch all its bit positions. This significantly

reduces the flash accesses for key query/insert operation.
The proposed forest-structure targets at minimizing the size

gap between the in-RAM buffer and the associated BF on
flash: FBF organizes a number of sub-BFs at each layer of
a forest and always inserts keys to the lowest layer. At any
time, only sub-BFs at one layer of the forest will be buffered
in RAM, giving each to-be-inserted sub-BF more buffering
space.

In addition, the proposed FBF design, compared with linear-
chaining one, achieves a much few flash reads for a given
key query. Given the same overall BF size m, the required
flash reads for a key query in a b-branching (each node has b
children except those at the lowest layers) FBF is O (logbm),
whereas the required flash reads for a linear-chaining one is
O (m).

We use several real-world de-duplication workloads to drive
and evaluate our design. Our experimental results show that
FBF design outperforms the single-layer BF on a broad range
of in-RAM buffer sizes. Particularly, our design achieves 2
times faster processing speed with 50% less number of flash-
write operations. We also evaluate our design with data backup
workloads but will not present the results in this paper due
to page limitation. The main contributions of this paper are
summarized as follows:
• A novel forest-structured BF design, which combines the

advantages of both linear-chaining and single-layer de-
signs and yields a significantly higher processing speed,
is proposed. Meanwhile, our BF design can handle dy-
namic workloads whose size could not be determined in
advance.

• A proposed novel buffer management scheme that is
particularly optimized for flash write overhead hence
block erases too. It could reduce the number of flash
write operations by 2−3 times compared with two current
schemes [5], [7] on various types of workloads.

• We conducted extensive experimental evaluations on a
typical de-duplication workload.

The rest of the paper is organized as follows. Section II
gives a brief overview of two existing Bloom Filter designs
with flash memory. Section III describes the proposed FBF
design. Section IV presents experimental results on a typical
data deduplication workload. Section V gives an overview of
related work and Section VI presents some conclusions.

II. OVERVIEW OF TWO BLOOM FILTER DESIGNS WITH
FLASH MEMORY

This section briefly describes two existing BF designs with
flash memory and points out potential improvements.

Single-layer BF design divides a single large BF on flash
into many individual BFs called sub-BFs (say k sub-BFs).The
available RAM space is partitioned into k smaller fixed-size
buffering blocks (buffer compartments). Each buffer compart-
ment is corresponding to a sub-BF. This buffer compartment
is used to delay writes triggered by bit position updates on
its corresponding sub-BF. To query a key e, it takes a two-
step hashing procedure: the first hashing function on e decides
which sub-BF should be checked. At second step to check the

key, multiple hash functions are applied to identify a set of
bit positions in this sub-BF. If all bit positions are set, the
key is considered to have been seen before. Note this requires
checking the corresponding buffer compartment in RAM first,
if not found there then the sub-BF needs to be accessed from
flash and checked. Otherwise, this key needs to be inserted
into this sub-BF for the future query. However, the update of
sub-BF will be delayed by buffering the offsets of these bit
positions into buffer compartment. The sub-BF will be updated
only if its corresponding buffer compartment is full.

Since a sub-BF consists of many flash pages (note a
mentioned sub-BF size is 2 MB [5] while a flash page size is
typically 4KB), the number of pages in flash to be read and
updated depends on the number of pages containing at least
one updated bit in the filled up buffer compartment.

The linear-chaining BF design, as presented in Section I,
is particularly optimized for key insertions. Each required key
insertion will be done with the current BF in RAM. Therefore,
no flash memory access is involved. The BF in RAM will be
written to flash memory when the number of bits being set
reaches to a limit that a given false positive rate can no longer
be guaranteed (i.e., a BF’s capacity is reached). However,
to response to a key query, a number of BFs in the order
of written to flash memory may need to be checked. If the
checking of a BF is a success, the response to the key query
is positive. Otherwise, all chained BFs have been checked
without any success. In this case, a key insertion is required.
Each in-flash BF checking accesses a number of flash pages
that contains at least one hashed bit position in the BF.

The main advantage of single-layer design is that it is
very efficient for a key query. For a required key insertion,
it is first delayed by buffering in an equally partitioned
buffer compartment that corresponding to the targeted sub-BF.
Without buffering, each key insertion may trigger a few page
updates (i.e., all the pages containing at least one bit position
needed to be set). With page update delay through buffering,
the total number page updates will be reduced. However, due
to the randomness of hashing results and limited buffering
space, a buffer compartment can be filled up soon and the
required bit position updates are scattering over many flash
pages. Some of the pages may contain the bit position updates
from one or two insertions. Furthermore, single-layer design
requires a priori knowledge of the maximum number of keys
inserted, which is sometime impossible for some applications.

On the other hand, linear-chaining design supports dynamic
growing data set and is optimized for key insert operation. For
a key query, especially an unsuccessful one, all chained BFs
have to be checked and each checking may involve multiple
page reads from flash. In addition, its false positive rate is
accumulated from all chained BFs. Therefore, it is bigger than
that of a single layer BF design. Thus, we preclude it for
further discussion in this paper.

III. FOREST-STRUCTURED BF ON FLASH

In this section, we present our proposed FBF design along
with the new buffer space managing scheme.

Figure 1. A Two-layer 4-branching FBF

FUNCTION in_flash_key_query(e)
if RAM_BUF_lookup(e) == TRUE:

return FOUND;

else:

layer = 1
blkid = h0 (e) % λ;
pageid = h1 (e) % δ;
while layer < forest_height:

subBF = bfload[blkid,pageid];
if query(subBF,e) == TRUE:

return FOUND;

else:

cpos=h1 (e)�
(LENGTH − layerparent · blog2 bc) % b;
blkid = blkid ∗ b + ROOT_NBLK;
blkid = blkid − cpos;//to-be-checked blk
layer + = 1;

return NOT FOUND

Figure 2. Pseudocode for key query routing under top-down traverse order.

A. Overview of FBF Design

FBF design partitions flash space into a collection of sub-BFs
of flash-page sized and organizes them into a forest structure.
Each sub-BF is an independent BF providing key query/insert
operation. Within each layer, δ consecutive sub-BFs are packed
into physical blocks in flash. The highest layer contains λ
blocks. Each block has b children (b = 2) except for the ones
at the lowest layer. Correspondingly, in-RAM buffer space is
partitioned according to those physical blocks at the lowest
layer in flash space. Figure 1 presents a two-layer FBF, with
each block of 1st layer having 4 children at 2nd layer.

Initially when the dataset size is small and could be fit
in RAM, our design only allocates the highest layer (the
root-layer) of the forest in RAM and behaves identical to a
traditional in-RAM BF (in-RAM phase in Figure 1); As the
dataset size grows and goes beyond the root-layer’s capacity,
the forest structure adds b children blocks to each block
at the root-layer, forming a new layer of BFs in flash, to
accommodate the dataset growth. Once the root-layer has been
written into flash, the spared RAM space is switched into a
buffer for key insertions (in-flash phase in Figure 1). The forest
allocates a new layer in flash whenever the current lowest layer
reaches its capacity.

To query a key e, it takes a three-step hashing procedure:
(1) one hash function h0 on e decides which block (blkid)
to search for the key; (2) another independent hash function
h1 on e decides which sub-BF (pageid) to check for the key;
(3) to check key e, multiple hash functions are applied to

identify a set of bit positions within this selected sub-BF. If
all bit positions are set, the key is considered to have been seen
before. Note steps (1) and (3) and identical to what presented
in Section II, but step (2) guarantees all potentially checked
bit positions are within one flash page. If e is not found at that
block, FBF chooses one of the block’s children to be searched,
with the children offset determined by both blkid and pageid
calculated in step (1) and (2) (5th-to-last line, Figure 2). It is
worth noting that since at any layer at most one flash page
read is needed for the checking, the total number of flash
accesses will be no more than the forest height for any key
query. (Of course, if the key is found in the corresponding
in-RAM buffer space ahead, then no flash access is needed)
The key e is considered new if a sub-BF at the lowest layer is
searched but the key e is yet to find. Then, FBF needs to insert
e into the sub-BF for the future query. However, the update
of sub-BF will be delayed by buffering the offsets of these
bit positions into the RAM buffer space. The sub-BF will be
updated, together with all other sub-BFs in the same physical
block, only if the corresponding buffer space for its residing
physical block is full.

Figure 2 sketches the key query procedure through the
forest, with a top-down traverse order assumed. % stands for
mod operation; LENGTH stands for hash value length (e.g.,
64); forest_height specifies the current height of the forest
in terms of layers; ROOT_NBLK is the number of blocks
initially allocated in root-layer; b is the branching factor. In
the code, the 4th-to-last line specifies the last child of the
current blkid and the 3rd-to-last line specifies the the blkid of
the correct child it should go to in the while-loop.

Several characteristics of our FBF design worth some dis-
cussion: (1) aligning sub-BF to flash page size makes all
to-be checked bit positions within the sub-BF to be read
with just one flash access; (2) packing consecutive sub-BFs
into physical blocks and partition the buffer space according
to physical blocks eliminates random flash page writes and
reduces associated block erase operations significantly. (3)
Larger branching factor b will slow down the forest height
growth rate, which is good for key query performance because
as described above, the number of flash reads per key query
is upper bounded by the forest height. However, as b becomes
larger, more blocks needs to be buffered, which reduces the
buffer space per block, resulting in more flash write operations;
(4) FBF inserts new keys into the sub-BFs at lowest layer
only, thus at anytime the in-RAM buffer space merely needs
to serve sub-BFs at one layer of the forest instead of all
layers. Therefore, our design manages to minimize the size
gap between the in-RAM buffer and the associated BF on
flash.
B. Buffer Space Managing Scheme

FBF minimizes flash write operations through the following
Buffer space management design: (1) Instead of distributing
insertions among all of blocks of the forest, FBF inserts new
keys only into the lowest-layer blocks. This buffering strategy
on average increases the caching space per buffered block by
1 + (bα − 1) /[bα · (b − 1)] times. (2) FBF proposes a set-
list structure that stores updated bit positions within with a

set and inserts all sets into a linked-list for fast insert/delete
operation. Under this scheme the buffer space of each BF
could grow to hold new updated bit positions until the entire
buffer space is filled up. After that it selects a block with most
bits buffered (the dirtiest block) to update. After all updated
pages within the dirtiest block are written to flash the buffer
space is reclaimed immediately for the use for other buffered
blocks.

Even with the same single-layer BF design, it could be
shown that this buffer space managing scheme could further
reduce the total flush write operations by 50% on the same
workload, comparing with its original scheme.

IV. EXPERIMENTAL EVALUATION

In this section we evaluate our FBF design with a moderate-
end SSD from OCZ Technology, using a real data dedu-
plication workload. Among the evaluation, we measure the
processing speed in terms of ops/sec (equivalent to the term
number of records processed per second used in previous
sections) which measures the number of key query/insertion
operations accomplished per second. Accomplishing a key
query/insert operation means for the key query either the
BF answers found and returns or the BF answers not-found
and a key insertion is done consequently. We also realize
that some high-end SSD device like Fusion IO available on
market. Nevertheless, Fusion IO itself takes up hundreds to
thousands of megabyte of RAM space as device cache [2]. For
example, As shown in the user-guide for 80GB ioXtreme, for
4KB recommended filesystem block size, the drive consumes
800 MB of RAM, which somehow invalidates our purpose of
using Bloom Filter with flash memory to save RAM space.
Also, such a large device cache sitting in the middle between
the flash memory and the RAM-based buffering cache would
buffer tons of data blocks, making it very difficult to justify
the benefit of our own buffering cache design.

A. Description of Hardware Platform and Software Implemen-
tation

We implement the naive linear-chaining design, single-
layer BF design as well as our proposed FBF design, sitting
between application traces and storage device, with Python.
The experiments are carried out on Linux build 2.6.32 SMP
x86_64 machine. The machine has two 2.0 GHz cores, with 1
GB RAM. The SSD model is OCZ Agility SATA II [1], with
the capacity of 120 GB.

B. Description of the Data De-duplication Workloads

A real workload (vx-full) is generated by content-defined
chunking algorithm [13] which is commonly used in data de-
duplication to produce data chunks. Within the workload, each
record is a chunk-id, represented by a SHA1 [8] hash value of
160-bit length. A chunk-id is used to globally identify a data
chunk in the storage system.

The vx-full (containing 164, 766, 619 numbers of records,
out of which 54.7% records are unique) consisting of chunk-
ids derived from a networked primary file system shared by a

0 5 10 15
6500

7000

7500

8000

8500

9000

buffer size (MB)

o
p
s
 p

e
r

s
e
c
o
n
d

fixed size

set−list

Figure 3. Processing speed vs. buffer size on vx-9m under single-layer design

group of software engineers, is a typical deduplication work-
load for primary file systems. It is considered an insertion-
intensive workload because the percentage of unique chunk-
ids determines the key insertion ratio through the process.

We plan to investigate our design and single-layer BF
design with this workload. We also obtain some subsets
from the vx-full workloads and present their notations as
follows: vx-9m, vx-20m, and vx-25m contain the first 9, 20,
and 25 million records of vx-full respectively. The number
of unique records contained in vx-9m, vx-20m and vx-25m
are 5, 628, 873, 11, 328, 914, and 14, 163, 022 correspondingly.
Also, the ratios of unique chunk-ids are 62.5%, 56.6% and
56.7%, which does not deviate much from 54.7%, the ratio
of vx-full. In addition, we also have verified the recency-
querying pattern does exist in vx workload, but again we omit
verification detail in this paper due to page limitation. Both of
these features indicate the reprentativeness of a subset of vx-
full. In fact, further experimental results show that the results
obtained from a smaller workload such as vx-9m are indeed
consistent with the results obtained from vx-full, validating the
representativeness.

C. Evaluation of Buffer Space managing Schemes

Table I
COMPARTMENT VS. SET-LIST SCHEMES ON vx-20m

buffer schemes fixed-size
compartment

set-list

number of flash
writes

2, 024 1, 053

ops/sec 8, 405 8, 657

Table I compares the original buffer managing scheme [5]
with our set-list structured one on vx-20m. For fairness, both
buffer managing schemes are tested with the single-layer
structure [5]. The in-flash layer contains 22 blocks of 1MB
length, with 4MB in-RAM buffer space. As shown in the
Table I, with higher processing speed (8, 657 vs. 8, 405), our
scheme requires roughly 50% number of flash write operations
taken by the original buffer space managing scheme.

To figure out the impact of buffer size on processing speed
for both cache space managing schemes, we increasingly
double the buffer size from 1MB up to 16MB in 5 runs on vx-
9m for both schemes and present the results in Figure 3. Each
run is configured with 20 1MB blocks. Two results could be
seen from this figure. First, both processing speeds increase as

0 5 10 15
0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

4

buffer size (MB)

o
p

s
/s

e
c
o

n
d

singleLayer+fixed

singleLayer+setList

forest+setList

Figure 4. Processing rate vs. buffer size on vx-9m under two BF designs

more buffer space is used. Second, set-list scheme uniformly
outperforms fixed-size compartment scheme for all sizes, by
up to 11% higher processing speed in terms of ops/sec at
buffer size 1MB. Further examining the number of flash write
operations shows a uniformly 50% reduction for our set-list
buffer managing scheme.

D. Evaluation on Processing Speed over BF Designs

This section compares processing speeds of single-layer BF
design and FBF design with vx workload. We run two sets
of experiments with buffer sizes ranging from 1MB to 16MB
on vx-9m. Figure 4 plots the processing speed vs. buffering
cache size for forest-structure and single-layer BF designs
on vx-9m. The 3 curves with downward-pointing triangle
markers, with diamond markers, and with upward-pointing
triangle markers represent the results of the single-layer BF
design with fixed-size compartment buffer space managing
scheme, results of single-layer BF design with set-list scheme
and the results of our forest-structured BF design with set-
list scheme respectively. Because the single-layer design does
not support dynamic growth, for fairness, we fix block size to
1MB through all runs and configure each run with the same
BF size of 20MB.

Several important conclusions could be drawn from Fig-
ure 4: (1) FBF design outperforms original single-layer design
uniformly for all buffer sizes presented; (2) although the
processing speed increases as larger buffer size becomes
available for all designs, the slope of processing speed of the
FBF design is much steeper than that of the single-layer one,
showing that a much larger processing speed gain could be
attained by FBF design when both designs are given larger
RAM space; (3) if the allowed buffer size is less than 2MB,
then the modified single-layer design (the one with set-list
buffer space managing scheme) is better; otherwise, we should
choose FBF design; (3) the slope for the FBF design curve
flattens after the used RAM space bigger than 10MB. This
phenomenon can be explained by the fact that the total amount
of records could be processed entirely in RAM when the buffer
size goes beyond 10MB. Hence further increasing buffer size
would not improve the processing speed.

It is very interesting to point out that, by the boosting effect
of the in-RAM phase, a FBF design which allows expansion
could even outperform the single-layer design that could
only handle static workloads (workloads have the maximum
number of unique keys pre-determined) significantly (e.g. up

to 2 times faster) with the same amount of RAM space
consumed!

We also compare the results of both single-layer design and
FBF design on vx-full. With 40MB buffer size and 1MB block
size used for both designs, the FBF design achieves 12105
ops/sec while single-layer design achieves 9390 ops/sec. This
30% higher speed attained by FBF design is consistent with
the results we obtained from vx− 9m, provided that the total
amount of records in vx-full would take up 160MB RAM space
to memorize if traditional in-RAM BF was used, which is 4
times larger than in-RAM buffer size used in our design.

V. RELATED WORKS

The Bloom Filter structure was firstly proposed by B. H.
Bloom as a compact representation of a static set with certain
probability of false positives to serve set membership queries
[4]. Since then, Bloom Filters are widely used in database
applications [14] and are drawing increasing attractions from
networking community recently [6], [11]. Data De-duplication
has become another popular application area for Bloom Filters.
Zhu et al. [15] utilizes a Bloom Filter to minimize chunk look-
up latency; Navendu et al. [10] adopts Bloom Filters as a
feature set of a data chunk; Lu et al. [12] takes a group of
Bloom Filters to select out data chunks with more redundancy
by filtering out low redundant ones.

Our FBF Bloom Filters design is inspired by [3], [9],
each of which demonstrates the importance of representing
dynamic growing set, and proposes a solution with RAM-
based dynamic Bloom Filters. Nevertheless, two issues are
not addressed with their design: (1) the linear look-up on
each allocated BF causes the number of false positive errors
significant higher than the calculated result; (2) how to design
a Bloom Filter when its size exceeds the capacity of RAM as
the dynamic set size grows.

Canim et al. [5] and Debnath et al. [7] propose similar
designs to build a Bloom Filter with flash memory and uses a
moderate amount of main memory space to buffer bit updates.
In order to increase flash access locality, Canim et al. limits the
size of each sub-BF on flash to 2MB and accesses the flash per
sub-BF. Also, in order to amortize the cost of fetching 2MB
from flash each time, it buffers queries into a request queue.
Radically different from traditional Bloom Filters, this design
does not guarantee that queries will be processed within a
certain amount of time. In contrast to their work, our BF design
does not buffer requests so as to immediately answer each
query request in the order the request was received, in order
to be useful for a data deduplication application. Furthermore,
both designs presented in [5], [7] is only able to tackle static
workloads, while our design targets at dynamic cases when
the data set size could not be determined in advance.

VI. CONCLUSIONS

In this paper, we have proposed a forest-structured Bloom
Filter design. It combines limited RAM space with a much
larger flash memory space to form a compound BF. Our design
splits a single large BF into multiple layers within a forest.
Our design supports dynamic growing set and the querying

overhead grows logarithmically as the BF size grows. Our
experimental results show that the FBF design achieves 2 times
faster processing speed with uniformly 50% less number of
flash write operations compared with the state-of-the-art in-
flash BF designs.

ACKNOWLEDGMENT

The authors would like to thank the anonymous review-
ers for their valuable comments. This work was partially
supported by grants from NSF (NSF Awards: 0960833 and
0934396)

REFERENCES

[1] Ocz agility sata 2.5 ssd: http://www.ocztechnology.com.
[2] ioxtreme user guide for linux, version 3 for driver release 1.2.7. page 8,

12 2009.
[3] Paulo Sergio Almeida, Carlos Baquero, Nuno Preguica, and David

Hutchison. Scalable bloom filters. Information Processing Letters,
101(6), 2007.

[4] Burton H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM, 13:422–426, July 1970.

[5] Mustafa Canim, George A. Mihalia, Bishwaranjan Bhattacharjee, Chris-
tian A. Lang, and Kenneth A. Ross. Buffered bloom filters on solid
state storage. 2010.

[6] Francisco M. Cuenca-Acuna, Christopher Peery, Richard P. Martin, and
Thu D. Nguyen. PlanetP: Using Gossiping to Build Content Addressable
Peer-to-Peer Information Sharing Communities. In IEEE International
Symposium on High Performance Distributed Computing (HPDC), 2003.

[7] Biplob Debnath, Sudipta Sengupta, Jin Li, David J. Lilja, and David H.C.
Du. Bloomflash: Bloom filter on flash-based storage. In Proceedings of
the 31th International Conference on Distributed Computing Systems,
ICDCS 2011, 2011.

[8] D. Eastlake, 3rd and P. Jones. Us secure hash algorithm 1 (sha1), 2001.
[9] Deke Guo, Honghui Chen, and Xueshan Luo. Theory and network

applications of dynamic bloom filters. In In Proceedings of the 25th
Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM), 2006.

[10] Navendu Jain, Mike Dahlin, and Renu Tewari. Taper: tiered approach
for eliminating redundancy in replica synchronization. In Proceedings
of the 4th conference on USENIX Conference on File and Storage
Technologies - Volume 4, pages 21–21, Berkeley, CA, USA, 2005.
USENIX Association.

[11] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick
Eaton, Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weath-
erspoon, Chris Wells, and Ben Zhao. Oceanstore: an architecture for
global-scale persistent storage. SIGOPS Oper. Syst. Rev., 34:190–201,
November 2000.

[12] Guanlin Lu, Yu Jin, and David H. C. Du. Frequency based chunking
for data de-duplication. In Proceedings of the 2010 IEEE International
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, MASCOTS ’10, pages 287–296, Washing-
ton, DC, USA, 2010. IEEE Computer Society.

[13] Athicha Muthitacharoen, Benjie Chen, and David Mazières. A low-
bandwidth network file system. In Proceedings of the eighteenth ACM
symposium on Operating systems principles, SOSP ’01, pages 174–187,
New York, NY, USA, 2001. ACM.

[14] Wei Wang, Haifeng Jiang, Hongjun Lu, and Jeffrey Xu Yu. Bloom
histogram: path selectivity estimation for xml data with updates. In
Proceedings of the Thirtieth international conference on Very large data
bases - Volume 30, VLDB ’04, pages 240–251. VLDB Endowment,
2004.

[15] Benjamin Zhu, Kai Li, and Patterson Hugo. Avoiding the disk bottleneck
in the data domain deduplication file system. In In Proceedings of the
6th USENIX Conference on File and Storage Technologies, Berkeley,
CA, USA, 2008. USENIX Association.

