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Abstract—The deduplication block-device (DBLK) is a 

deduplication and compression system with a block device 

interface. It is used as a primary storage and block-wise 

deduplication is done inline. Since deduplication for primary 

storage requires low latency and detecting block-wise 

deduplication creates a large amount of metadata, it is necessary 

to efficiently use the memory of the system. We solved this 

problem by developing a multilayer Bloom filter (MBF) to reduce 

the size of the data structuren in the memory for indexing 

duplicate data. 

Keywords-component; storage system, deduplication 

I. INTRODUCTION 

Data deduplication is a technique for reducing the size of 

data in storage systems by removing redundant data, which 

reduces storage-system costs. Deduplication systems split data 

into small chunks and compare them to the existing data sets 

in the system. If incoming data matches the existing data, they 

are duplicates and the system does not record the data, but 

instead, records the number of reference of the data.  

In a backup system, there are duplicated data because two 

copies of full-backups are almost identical. In a file server, i.e. 

a primary storage system, email and documents are sources of 

duplication. Operating system images of virtualization systems, 

such as VMware and Xen, also create redundant data. Both 

backups and VMs are attractive for applying deduplication 

technology because of their high rate of redundancy. 

Strategies for finding duplicates in backup and primary 

storage systems are different. A backup system obtains a large 

backup stream and uses content-defined chunking by Rabin 

fingerprinting [19] against it. Since daily backup streams are 

similar to each other, the access pattern is predictable. Zhu et 

al. [22] showed how to optimally access their metadata. On the 

other hand, the access size for primary storage systems may be 

as small as a file system block size and access patterns may be 

random. To obtain low latency for random access, systems 

must cache metadata in the memory, but the size of metadata 

is very large. For example, an 8-TB storage system with a 4-

KB deduplication unit creates 2 billion metadata sets (2 G = 8 

TB/4 KB), and when the size of single metadata set is around 

40 bytes, the total amount  of metadata for 8 TB will be 80 GB 

(= 2 G x 40 bytes), which will not fit in the memory of the 

server.  

Inline deduplication systems deduplicate data before 

storing them, while post-process deduplication systems first 

store data in their storages and deduplicate later. With post-

process deduplication, a storage system can hide deduplication 

overheads; however, this requires extra storage. Our challenge 

was to minimize the deduplication overhead to minimize its 

latency by using memory to store metadata in inline 

deduplication.   
Our goal was to develop an efficient data structure, the 

multiple layer Bloom filter (MBF), to efficiently store metadata 
in memory.  

II. RELATED WORK 

A. Duplication detection by hash 

Manber [13] developed a technique for finding similar 

documents in a filesystem using rolling checksum. Rabin 

fingerprinting [19] is a type of rolling checksum. Broder [3] 

developed shingling, which detects the similarity between sets 

of hash values to find near duplicate documents on the Internet.  

B. Deduplication unit 

Venti [18] and Foundation [20] are deduplication systems 

that detect redundancy with a fixed block size. Venti is an 

archival system. Foundation is a system for preserving 

snapshots of virtual machines (VMs) and uses a Bloom filter 

to detect duplicates. 

NetApp’s deduplication function [1] for file servers is 

integrated with WAFL and FlexVol [8]. It uses hashes for file-

system blocks and finds duplicates. Hash collisons are 

resolved by byte-for-byte comparison. It is a post-process 

deduplication, which processes in the background.  

The LBFS [16], Data Domain [22], HYDRAstor [7], REBL 

[11] and TAPER [10] find duplicates using content-defined 

chunks. 

The Ocarina ECOsystem [17] uses a content-aware method, 

which works with several types of file types such as zip and 

pdf. It extracts sub-file objects and removes redundancy. 

Meyer and Bolosky [15] conducted a large-scale study of 

file system contents on desktop machines, to evaluate the 

difference between whole-file and block-based deduplication. 

C. Performance of deduplication and resource consumption 

The Data Domain [22] uses the spatial locality of data in a 

backup stream to improve performance of searching for hash 

information.  

Sparse indexing [12] is a technique for reducing the size of a 

data index kept in RAM by sampling chunks’ hashes. 

These heuristics work fine with large data sets with locality; 

however, unlike in backup storage systems, we need to assume 
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that access patterns have small or no locality in primary 

storage systems.  

D. Better performance with SSDs 

It is also efficient to use fast devices for frequently used 

data. Chunkstash [6] and dedupv1 [14] use solid-state drives 

(SSDs) for metadata. Solid-state drives and metadata are a 

good combination because I/Os for  metadata are always small 

and random, which SSDs are good at. However, we did not 

take this approach because we wanted to avoid hardware 

limitations, thus we tried to effeciently use memory. 

E. Bloom filter and its applications 

A Bloom filter [2] is a space-efficient data structure for 

managing the membership of a set. In deduplication 

technology, a Bloom filter is often used to check whether 

incoming data are already members of existing data.   

Broder [4] describes a Bloom filter and its applications. Like 

our multilayer Bloom filter (MBF), there are examples that use 

multiple filters. For example, the attenuated Bloom filter [21] 

uses Bloom filters to find the shortest path to the requested 

data in a P2P network. The Bloomier filter [5] also has 

multiple Bloom filters and multiple layers, similar to our MBF. 

The Bloomier filter implements an associative array. 

III. DBLK DESIGN 

The deduplication block-device (DBLK) is a block-level 

storage system working as a backing store of an iSCSI target 

(Figure 1). Figure 2 shows the major data structures in the 

DBLK.  

The DBLK splits data into a fixed size (4 KB), computes a 

collision-free hash value (we are currently using SHA-1) of the 

data, deduplicates and compresses the data, and writes them 

sequentially as a data log on disk drives. Metadata are also 

stored in the data log. Logs are kept in chunks, which is the 

fixed size unit in disks. 

The DBLK maintains the mapping between hash values to 

physical block addresses (PBAs). It appends this hash 

information, including a hash value, the PBA of the data, and 

the number of references to the data to the hash log. Hash 

information is written sequentially in the hash log. If a write 

is a duplicate, the DBLK only updates the reference count in 

the hash log.  

The DBLK maintains the mapping between a logical block 

number (LBA) and a SHA-1 hash value in a block map for 

each volume. It uses a Bloom filter to check if incoming data 

are duplicates of existing data.  
Since the size of an entire hash log, which contains the 

mapping of hash values and PBAs, will be bigger than the 
physical memory of a server, the DBLK requires a hash index 
to find locations of hash information in the hash log from hash 
values. 

Since data and metadata are over-written, garbage 
collection is necessary to discard unnecessary data in the log. 
There are two types of garbage collections. One is garbage 
collection for the data log. To find unnecessary data logs in a 
chunk, the DBLK detects a chunk that contains more garbage 
than the configured limit and checks the hash log whether the 

data in the chunk are referenced. If the data log is not 
referenced, it will be discarded in the garbage collection. The 
second type is that for the hash log. We call this compaction of 
the hash log. To find unnecessary hash log elements, the 
DBLK chooses a hash-log block and checks the number of 
references in the hash information. If the number of references 
is zero, an element in the hash log is removed during a 
compaction.  

The DBLK periodically creates checkpoints in the data log. 
After it determines that all the metadata are written to the data 
log, it creates a checkpoint in a chunk. If a system failure 
occurs, the DBLK checks each chunk and finds an incomplete 
chunk in which there are data logs after the last checkpoint. 
The DBLK replays the data logs and makes sure that the 
metadata and data are consistent then restarts the service.  

If the DBLK maps SHA-1 values to the hash-log blocks 
using a hash function, such as mod of #hash-log-blocks, we do 
not need to have a hash index. However, in a sequence of 
writes, every 4-KB data set will have one SHA-1 value, and 
hash-log I/Os will be distributed in hash logs because SHA-1 
values have no locality. In this case, the system ends up with 
one hash-log I/O for each write I/O. In our design, we chose to 
append hash information to one hash-log block to minimize 
hash-log I/Os for better performance, and we need a hash index 
to search hash information. 

The size of the hash index was the problem. Figure 3 
shows the size of metadata of our DBLK implementation with 

8-TB physical capacities. The size of the hash log was 80 GB. 

It would not fit in the memory, thus we needed the hash index 

in the memory. If a hash index, which maps a 160-bit SHA-1 

value to the address of the hash log, is implemented using a 

regular hash table or B-tree, its size will be more than 56 GB 

(=2 billion x (160-bit+PBA)), which will not fit in the memory 

of the DBLK server either. What is worse, if a hash index is 

stored in a hard drive, a hash index will be accessed randomly 

and the cache will not work well since SHA-1 values do not 

have locality. We solved this metadata problem by using our 

MBF.  
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Figure 1: DBLK  architecture 
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Figure 2: DBLK data structure  

Physical capacity of Storage:   8 TB

Dedup&Compress block:  4 KB

Number of blocks:             8 TB/4 KB = 2 G

SHA-1:                              160 bits

Hash log:                          40 byte x 2 G = 80 GB
 

Figure 3: DBLK metadata size  

 

IV. MULTILAYER BLOOM FILTER 

 

A. Bloom filter 

Before we explain our MBF, let us take a look at a 

conventional Bloom filter. A Bloom filter [2] is a space-

efficient data structure used to determine if an element is 

already a member of the current set. It is possible to have false 

positives; however, it is not possible to have false negatives. 

This means that if the Bloom filter determines that an entry is 

new, it is 100% correct; however, if it detects that the entry is 

an existing member of the set, it could be wrong. The 

probability of false positives, false positive rate (FPR), is 

controlled by the number of elments (n), bits (m), and 

positions (k) in the filter, as expressed in the following 

formula. 
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The k and m can be chosen for a given n, and the FPR can be 

decreased as desired.  

The initial state of a Bloom filter is a cleared m-bit array.  

The k is used for an element to indicate k  in m-bits. To add an 

element, compute the k and set the bits to 1 in the Bloom filter 

at those positions. To query an element, calculate k of the data 

and check k in the filter. If any of the positions return 0, the 

element is new to the filter. Otherwise, i.e., if all the positions 

are 1, the element might be an existing member in the Bloom 

filter. An element cannot be removed from a Bloom filter 

because several elements can share the same bits.  

The DBLK uses a Bloom filter in the following way. For 

writes, the Bloom filter checks incoming data. If the filter is 

negative, the data is new, thus the system writes it. If the filter 

is positive, the system searches the hash log using the hash 

index and increments the reference count. If false positive, the 

system fails to find the hash log and writes the data. For reads, 

the system does not use a Bloom filter. 

To solve the problem of the hash-index size, we extend the 

Bloom filter from detecting duplicates to finding the hash-log 

block. Under the main Bloom filter, we add two more Bloom 

filters, each half the size of the first. One corresponds to the 

left half of the hash log and the other filter corresponds to the 

other half. If the first Bloom filter is positive, then we check 

the two child filters. The area of the hash log can be narrowed 

to a single block by repeating this. When the DBLK reads the 

block of the hash log, it is highly expected, in the sense of the 

FPR, that the block contains the information. 

We call this technique the MBF (Figure 4). The lowest 

layer of the Bloom filter is associated with the hash-log blocks. 

If the Bloom filter is positive at the lowest layer, The DBLK  

reads the corresponding hash-log block and finds hash 

information in the block.  

B. Details of MBF 

To add an entry to the MBF, the DBLK first stores hash 

information in the hash log, computes k for the element, and 

sets the bit to 1 in the lowest Bloom filter that belongs to the 

hash log block. Then going up to the upper layer, set bits to 1 

for the Bloom filters above.  

The k of an element for the Bloom filters are computed 

once. The set of their values {v1,v2,…,vk} can be used in each 

layer by just calculating the moduli by filter size, from top to 

bottom, rather than computing positions for each layer. The set 

of position values in each layer are computed in the following 

way by using the C-language style modulo sign (%):  

 

First layer: {v1%m, v2%m,…, vk%m}, 

Second layer: {v1%(m/2), v2%(m/2),…,vk%(m/2) }, 

..... 

The i-th layer: {v1%(m/ i2  ), v2%(m/ i2  ),…,vk%(m/ i2  ) }. 

 

The false positive rate of the i-th layer does not depend on 

the number of layers i, because the FPR of the i-th layer is 

calculated using the following formula. The number of bits in 

each Bloom filter in the i-th layer is im 2/ , and the number of 

elements is in 2/ .  
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To query an entry in our MBF, the system computes k for 

the element and checks the MBF from top to bottom, as shown 

in Figure 4, and after the MBF returns the block number of the 

hash log, it reads the block and obtains the hash information.  



 

Figure 4 shows an example of a binary MBF. Our MBF 

could be an N-ary tree of the Bloom filters rather than the 

binary trees explained above, and it could be implemented 

with fewer layers (i.e., less memory). If the number of hash-

log blocks is b, with N-ary Bloom filters and the number of 

layers (i.e., the height of the MBF) is h, then bN h  ; 

therefore, 

 

)log(/)log( Nbh  .               (3) 

 

Since the total amount of memory used by the MBF is mh  

bits, it is possible to choose the right N to adjust the MBF to fit 

in the memory of the system which the DBLK runs. 

For an 80-GB hash log, for example, there are 20 million 4 

-KB blocks. If N = 64, h = 8, and if N = 256, h = 3. If a layer 

of the Bloom filter is 5.5 GB, the size of the MBF is 44 GB for 

h = 8 and 16.5 GB for h = 3. 

C. MBF-BT: an  MBF optimization 

In the i-th layer of a binary MBF, there are  
i2 Bloom 

filters. When the DBLK queries an element, it must check k in 

the
i2 filters. This requires  ik 2   checks. 

The MBF-bitwise transposition (MBF-BT) optimizes the 

MBF in the following way. Figure 5 shows an example with i 

= 8. There are 64 filters in this layer. If there are R bits in each 

of the 64 filters, the entire layer can be mapped upon R-64 bit 

integers due to transposition. In this layout, the number of 

checks is reduced from 64 to 1 in the following way. 

Suppose we have R integers {
1x ,…,

Rx } and we have to 

check {p1,…,pk}, the check is done in the following way: 

 

Y=0xffffffffffffffff  //initialize 

for p in {p1, p2, …, pk} 

Y &= px    // bitwise AND 

 

If the result of Y is zero, the filter layers are all negative, 

and if Y is not zero, one of the filters is positive, and we just 

need to find out which bit is 1 in Y. If the j-th bit is in Y, this 

means that the j-th Bloom filter is positive. Then the DBLK 

reads the j-th block of the hash log. In this example, the 

increase in speed is roughly 64x.  

The MBF-BT lowers the cost of looking up multiple 

Bloom filters by using an integer-wise check rather than a bit-

wise check; it is possible to reduce the height by increasing N. 

In our implementation, we chose N = 1664 and the height of 

the MBF as two, including the top Bloom filter. The top 

Bloom filter is a collection of 1664 sub-Bloom filters. 

Therefore, the MBF manages 21664  hash-log blocks. The size 

of the MBF is 11 GB. Compared to the hash index with a hash 

table implementation we have discussed previously, which 

requires 48 GB plus 5.5 GB (i.e. 53.5 GB) for the Bloom filter, 

11 GB is clearly an improvement. Figure 6 shows examples 

of the different MBF configurations, the left one is the same as 

that shown in Figure 4, the middle one is with fewer layers, 

and the right one is the implemented MBF with two layers. 

yes

no yes

yes no

Hash value of incoming data

Address of hash table block

read this blockHash log
 

Figure 4: Binary multilayer Bloom filter (MBF) 

1 2 3 4 5 6 … 64

Compute  

(b1&b2&…&b10)

for each 64 filter

Bitwise transpose to

R-64-bit integers

1
2
3
4
5
6
…
64

6
4
-b

it in
teg

er

6
4
-b

it in
teg

er

6
4
-b

it in
teg

er

64-R-bit Bloom Filters

Compute just once

(x1&x2&…&x10)

R-bit

R integers

 

Figure 5: MBF-BT: Physical Layout of MBF. MBF layer, which contains 64 
Bloom filters, is mapped on several 64-bit integers. Five short arrows indicate 

where to check in bitmap 
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Figure 6: MBF implementation. Left MBF is binary implementation and 

middle MBF is 4-ary implementation. Right MBF is implemented in DBLK. It 
has 1664 filters at first layer and 1664 x 1664 filters at second layer. Each 

filter at bottom corresponds to hash –log block. 

D. Refreshing and regenerating MBF  

Since a Bloom filter does not allow removal of an element, 

the DBLK must periodically regenerate the filters because 

garbage bits of removed items remain in the MBF. This is 

done by reading the hash log and creating new filters. 

Refreshing is associated with compaction. The DBLK 

removes garbage in a hash-log block and refreshes the 

corresponding filter in the MBF.   



Since the information in the MBF is generated from the 

hash-log information, storing the MBF on a disk drive is not 

necessary; however, it is possible to shorten initialization by 

reading the MBF from the disk rather than regenerating it. 

E. Implementation 

We used Linux iSCSI target framework software [9], and 

Zlib version 1.2.3 was used for compression in the DBLK. 

The DBLK uses SHA-1 (160 bits) for its hash value.  

The chunk size, the unit of data stored on a disk, and the 

unit of garbage collection is 1 GB. The block size for 

deduplication and compression is 4 KB.  

Instead of using a 64-bit integer for the MBF-BT, we used 

the MMX/SSE instruction set, which allows access to 128-bit 

registers. This means we obtain 128x performance. 

The MBF is configured to manage our 8-TB RAID (Figure 

3). As previously mentioned, there are only two layers of the 

MBF. The total amount of memory for the hash index and the 

Bloom filter is 11 GB (5.5 GB + 5.5 GB), and the number of 

sub-filters is N = 1664. The average query time for the MBF is 

less than 20 us.  

The number of bits for each element in the Bloom filter is 

set to 23 (m/n by the notation in the previous section), and the 

k for a Bloom filter is 16. The estimated false positive rate is 

about 51059.1  .  

Our experiments showed that the DBLK latency is 

comparable or even less than its base RAID system for 

random writes, mostly because of the data log. It achieves 

more than 1500 IOs per seconds (IOPS) with random write 

and 700 IOPS for random read for 4-KB I/O sizes. 

V. CONCLUSION 

We developed a technique for reducing the latency of a 

deduplication system by storing metadata in memory using our 

MBF. Our MBF can be setup with a small amount of memory, 

compared to a regular hash table or a B+tree. In addition, the 

size of our MBF is adjustable to the size of the RAM by 

changing the number of layers, and the MBF-BT optimizes its 

access time based on its bitwise transposition. 

We implemented the DBLK, a deduplication  

system for primary storage with a block device interface, using 

our MBF. 
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