
Addressing Scalability and Consistency Issues in Hybrid File System for
BPRAM and NAND Flash

Quan Taizhong Jinsoo Yoo Jaemin Jung Youjip Won
Dept. of Electrical and Computer Engineering

Hanyang University, Seoul, Korea
{coolquan| jedisty| jmjung | yjwon}@ece.hanyang.ac.kr

Abstract

Recently, a number of work suggested to use Byte-
Addressable NVRAM(BPRAM) to address the drawbacks of
NAND Flash based file system. These works use BPRAM to
reduce write latency of NAND Flash, or to reduce the mount
latency of log-structured file system for NAND Flash. Our
work is aligned with the preceding works in that we develop
a hybrid file system technique for NAND Flash and BPRAM.
In this work, we address the scalability issue of BPRAM in
a hybrid file system. Given the current state of art device
technology, e.g. NAND Flash and FRAM, we believe that
BPRAM size and NAND Flash size should be 1:1000 in hi-
erarchical storage system and file system structure should
be designed to satisfy this storage hierarchy. In our hybrid
file system, BPRAM is responsible for harboring metadata
in the file system. In the current widely used file system for
NAND Flash, there are 16 Byte metadata for 512 Bytes of
data (BPRAM to NAND size ratio is 3:100). To address
the discrepancy in scalability between BPRAM and NAND
Flash, we develop mount related compact metadata data
structure for BPRAM andhybrid compressiontechnique
which is specifically tailored for compressing file metadata
for log-structured file system. We develop a flexible yet effi-
cient data structure to represent a set of compressed meta-
data while effectively coping with size variability causedby
compression. As a result, we dramatically reduce the file
metadata size. We implement the file system in PXA320 core
with Linux 2.6. The file system mount time and file system
recovery time decrease by order of magnitude.

Keywords: NAND Flash, BPRAM, Hybrid File System,
Hierarchical Storage, LFS, Metadata Compression

1. Introduction

1.1. Motivation

NAND flash is read or written in page units, but erased
in block units that consists of many pages. This inconsis-
tency of operation unit makes it hard to implement effective
storage system. Compared to NAND flash memory, byte-
addressable Persistent RAM (BPRAM) has advantages in
durability, byte-addressability, and speed. Moreover, unlike
from flash memory, overwrite is allowed in BPRAM. Al-
though BPRAM has a great potential, BPRAM leaves much
to be desired to be used as data storage due to its scale and
price. Recently, a number of work suggest the usage of
BPRAM to address the drawbacks for NAND Flash stor-
age device: mount latency of log-structured file system for
NAND Flash[9, 4], recovery latency of log structured file
system [16, 3, 10], reliability of solid state drive [13] and
etc. While all these works seem to nicely resolve the draw-
backs of the NAND Flash file system, they overlook one
important fact thatBPRAM is orders of magnitude smaller
than NAND Flash. In particular, the size of state of art
FRAM and NAND Flash device is 64 Mbit and 8 Gbit, re-
spectively. In this work, we develop hierarchical file system
for hybrid storage where BPRAM harbors metadata for file
and file system to reduce mount latency and recovery over-
head. To make the storage cost-effective, we aim at making
the BPRAM size and NAND flash size ratio 1:1000.

1.2. Related Work

Since NAND flash memory does not support in-place
update, file systems for flash memory adopt log-structured
approach. The log-structured flash file systems build the
structures of a file system in the main memory at mount
time [14]. The in-memory structures include file metadata,
directory structure, etc. To construct the in-memory struc-
tures, a file system scans the NAND flash memory. Since

the scan operation covers most of the NAND flash devices’s
operations, it takes much more time to complete. Therefore,
flash file systems of early days suffer from the significantly
long mount latency.

A number of file systems have been proposed to reduce
the mount latency. Yim et al. [23] and Bityuckiy [3] pro-
posed a snapshot to improve the mount speed. In their pro-
posal, file systems locates the snapshot in a certain area of
NAND flash. Instead of scanning the flash memory, they
read snapshots to mount a file system. Alike the snapshot,
a checkpoint is used in the recent version of YAFFS. How-
ever, the snapshot and checkpoint require additional time
to be written in the NAND flash memory at unmount time.
Moreover, scanning the file system partition is required to
prepare the in-memory structures, when the checkpoint or
snapshot is incorrect.

RFFS [15] stores the page data and page metadata sepa-
rately. Even though it may reduce the mount latency, mount
latency is still proportional to the size of flash memory. Wu
et al. [22] proposed a method for efficient initialization and
crash recovery for flash-memory file system. MNFS [10]
uses NAND Flash block as basic unit to maintain metadata
to improve the file system mount latency.

Some of the recent works proposed a file system for
BPRAM and hard disk drive. The conquest file system [21]
is a disk/persistent-RAM hybrid file system. It improves
performance by storing metadata and frequently accessed
small files in persistent RAM. MRAMFS [6] is a hybrid
system that stores small files and metadata in MRAM. It
proposes to compress the data and metadata when writing to
BPRAM. It compared several compression algorithms and
showed that LZO [2] is suitable for files of large size. HeR-
MES [12] realizes that more than 50% of the file system ac-
cesses are metadata accesses. They use NVRAM as meta-
data storage and write buffer. FRASH [9] uses BPRAM
as storage of metadata in flash file system. It uses ”Copy-
On-Mount” technique to speed up the mount procedure. It
stores in-memory data and on-disk data in BPRAM and
copies the in-memory data into the main memory during
mount phase. It regularly synchronizes in-memory data to
BPRAM. When the system crashes, FRASH has to read
the on-disk structure region of NVRAM and reconstructs
the in-memory data structure region in the NVRAM. MiN-
VFS [4] maintains all the metadata in NVRAM, while stor-
ing all file data in flash memory. PFFS [17] stores metadata
of file system in PRAM and constructs double indirect index
structure for data page management. FRASH, MiNVFS and
PFFS still require significant amount of BPRAM to main-
tain a file metadata. Our earlier work, CMFS(Compressed
Metadata File System)[18] proposes compressing file meta-
data to maintain it in BPRAM. In CMFS, however, the size
of the metadata reduces only by 10% - 15%. A set of all
metadata in the file system is compressed and decompressed

as a single unit. This makes the synchronization of metadata
between DRAM and BPRAM very slow.

2. Background

2.1. Byte-addressable Persistent RAM

Byte-addressable Persistent RAM (BPRAM) is a byte-
addressable and non-volatile memory. With these func-
tional characteristics, the read/write speed of BPRAM is ex-
pected to be close to that of DRAM. There are many kind
of BPRAMs: PRAM (Phase Change RAM) [11], MRAM
(Magnetostrictive RAM) [20], RRAM (Resistive RAM) [7],
and FRAM(Ferro-electric RAM) [5]. Table 1 summarizes
the characteristics of BPRAM technologies and conven-
tional memory technologies. Each BPRAM technologies
has its own pros and cons. MRAM has the best read/write
performance while it has its disadvantages in cost and ca-
pacity. The largest MRAM which current state of art tech-
nology can afford is 16MBit [8]. The size of PRAM [19]
is much bigger than MRAM and FRAM. However, the en-
durance is limited and the power consumption is higher than
other BPRAMs. Among the current non-volatile memory
technologies, FRAM is the most matured technology.

2.2. Log-structured File System for Flash
Memory

NAND flash memory cannot be written without a erase
operation. Moreover, the unit of the erase operation is much
larger than the unit of write operation. To erase safely, a file
system has to ensure that every data which will be deleted
is useless. To address these issues, there exist a FTL ap-
proach and a file system approach. A FTL (Flash Transla-
tion Layer) provides a conventional block device abstrac-
tion on the NAND flash memory. If the FTL is provided,
existing file systems for hard disks can use NAND flash
memory without any modification. However, FTL requires
an additional circuit or computation overhead. Our work
is based on the file system approach. In this approach, a
file system itself handles the characteristic of NAND flash
memory. Flash file systems use the log-structured approach
to treat NAND flash memory. A log-structured file sys-
tem writes everything on the append-only log, it never over-
writes existing data. Thus, every data is scattered over the
log without a strict rule. When a file access is requested, a
file system needs to find a metadata of the file. However, a
file system cannot directly find the location of the metadata
because it is just appended before. To read the metadata, it
is required to scan the whole log. To eliminate scanning the
log for every request, a log-structure file system maintains
metadata in the memory when it is operating. Nevertheless,
scanning the whole log is required to mount the file system

Item DRAM FRAM PRAM MRAM NOR NAND

centering Byte Addressable YES YES YES YES Read only NO
Non-volatile NO YES YES YES YES YES

Read 10ns 70ns 68ns 35ns 85ns 15us
Write 10ns 70ns 180ns 35ns 6.5us 200us
Erase none none none none 700ms 2ms

Power consumption High Low High Low High High
Capacity High Low High Low High Very High

Endurance 10
15

10
15 > 10

7
10

15 100K 100K
Prototype Size 64Mbit 512Mbit 16MBit

Table 1: Comparison of Non-volatile RAM Characteristics [9]

because there is no metadata for the file system in the mem-
ory. The mount time can be excessively high, because the
scanning time increases in proportion to the partition size.
This excessive time consumption is a significant problem in
the embedded system and mobile products. Whenever the
system reboots, large amount of time is used in mounting a
file system.

3. Structure of Compressed Metadata File Sys-
tem

In this work, we develop a hierarchical file system,
CMFS (Compressed Metadata File System) for BPRAM
and NAND Flash. CMFS at its inception stage has been
introduced in our earlier work [14], which is a minor mod-
ification to YAFFS [18]. CMFS proposed in this paper
is completely overhauled since then. We develop hybrid
coding algorithm which well exploits the characteristics of
file system metadata, checkpoint based file system recovery
scheme, and more elaborate data structure for hybrid stor-
age.

3.1. Design of CMFS file system

bridge/memory

controller

processor

PCI bus

NAND

flash

cache

NAND

flash

memory BPRAM

Figure 1: Hierarchical Storage Organization

With conventional I/O interface, the byte-addressability
and fast access latency are limited to the slower I/O bus. To
fully exploit the characteristics of BPRAM, we assume that
BPRAM is exposed to the system bus in our work. NAND
flash memory is connected to the I/O bus and CMFS ac-
cesses NAND flash memory with a MTD driver. A MTD
driver directly reads or writes NAND flash memory without
FTL. Overall organization is illustrated in figure 1.

Table 2 shows the characteristics of various hybrid file
systems including CMFS. Existing file systems require
huge size of BPRAM which is very expensive. There are
32MB spare area for a 1GB NAND flash. If the size of
NAND flash memory is increased to 1,000GB, 32GB of
spare area is required. Because flash file systems uses spare
area to store metadata of file system, storing metadata of
file system in BPRAM is not practical. MiNVFS [4] re-
quires 18MB of BPRAM for 32MB flash memory in case
that the file system has 65,536 files which are 512bytes in
size. Although MRAMFS compresses the metadata, it re-
quires huge size of BPRAM. To reduce the required amount
of BPRAM, CMFS eliminates needless portion from the
original metadata of the flash file system. Unfortunately, it
can not sufficiently reduce the amount of metadata. To min-
imize the required amount of BPRAM, CMFS compresses
the metadata. We carefully select compression algorithm
against various kinds of data and develop hybrid coding al-
gorithm to efficiently compress metadata in BPRAM. Com-
pared with the other file systems, CMFS requires the small-
est size of BPRAM. The details of compression method are
explained in next section.

Existing hybrid file systems do not provide a recovery
method against the system crash. When a system shuts
down abnormally, file systems cannot ensure that the meta-
data in BPRAM is correct. If the corruption of metadata in
BPRAM is detected, file systems cannot use them without
recovery. Even though BPRAM is used, a file system has to
scan the whole area of NAND flash to reorganize the meta-
data into the BPRAM. CMFS provides a recovery method
that doesn’t require scanning the whole NAND flash. When

File system In-memorydata Compress metadatasynchronization Crash recovery
MiNVFS [4]

FRASH [9]

MRAMFS [6]

CMFS

Table 2: Characteristics of file systems

the corruption of metadata in BPRAM is detected, CMFS
recovers it and uses it in mounting the file system partition.
Because this eliminates the need of scanning the NAND
flash memory, CMFS provides a fast mount speed in case
that the system shuts down incorrectly. To support the re-
covery method efficiently, we develop synchronization and
update methods for CMFS.

3.2. File system objects

CMFS defines three kind of compressed meta-
data in the BPRAM, called BPRAM metadata:
CMFS validitymarker, CMFS device, and
CMFS object. CMFS validitymarker is used
to identify whether the BPRAMmetadata is valid.
CMFS device stores the statistical information about
the file system partition. Statistical information is divided
into partition statistical information and block statistical
information. The partition statistical information contains
the overall statistic information on the file system partition:
number of free pages, number of allocated pages, etc. The
block statistical information is maintained for each blocks
in NAND flash memory. It contains the number of free
pages and the number of allocated pages for each block.
Each physical block has a corresponding block information
in the BPRAM. Every block has a sequence number. We
can find it in the block statistical information. Block has
three states: empty, full, and allocated. When the block is
empty, the sequence number of it is 0. A unique sequence
number is given to every block before it is used. If the block
is not empty, its sequence number is larger than 8. The
block which is being allocated has the biggest sequence
number.

The size ofCMFS device is determined by the file sys-
tem partition and not changed. There is oneCMFS object

per file or directory in BPRAM. It is used to construct a file
and directory structures in CMFS. It contains the file in-
formation including id of its own and the parent directory.
In addition,CMFS object has PAT information (Physical
Address Translation), which is used to translate the file off-
set to the physical page number. The size ofCMFS object

depends on the file size which determines the number of
PAT structures. PAT structures are loaded into the memory
and rebuilt at a tree at mount time. The PAT structure in the
CMFS object has an additional four bytes to represent a

file

2

5

4

leaf node A

. . .

. . .

. . .

In memory

2 5 4 leaf node A

Logical position

4byte

Page numbers

32byte

BPRAM

Logical page number : 2762

Physical page

address

10

level 0

level 1

level 2

level 3

2 5 4 10

Figure 2: PAT structure in memory and BPRAM

location in the PAT tree. As shown in figure 2, the first
four bytes represent the position in the PAT tree and next 32
bytes direct to leaf node of the PAT tree. Therefore, the size
of PAT information in the BPRAM is 36 bytes.

Figure 2 illustrates the structure of the PAT tree. The
leaf node of PAT stores 16-bit physical page numbers while
the other nodes consists of eight node pointers with size of
32 byte. Assume that CMFS accesses the data with logical
page number of 2762. The lowest four bits indicates the po-
sition of physical page number in leaf node. Starting from
the fifth LSB, every three bits are the index for the node.
PAT tree is traversed from the root node to get a physical
page number associated with the logical address 2762. File
system knows levels of PAT from the metadata and deter-
mines which node is leaf node.

CMFS device andCMFS object are much smaller
than in-memory data structures. For example, in-memory
device information is 3648bytes while device information
in CMFS device is 40bytes. In-memory object size is
128bytes whileCMFS object is 28bytes. Considering
that the size of BPRAM is tiny, we also compress the
BPRAM metadata. The structures of BPRAM metadata are
shown in figure 3.

CMFS_validitymaker 8bytes

CMFS_object 24bytes + 36bytes * n

CMFS_device 40bytes + 8bytes * nblock

field type field name field size

unsigned int SCM_valid 4bytes

unsigned int data_valid 4bytes

field type field name size

int structType 4bytes

unsigned int objectId 4bytes

unsigned int parentId 4bytes

int hdrChunk 4bytes

enum variantType:3 2bytes

char deleted:1

1byte

char softDeleted:1

char unlinked:1

char fake:1

char renameAllowed:1

char unlinkAllowed:1

char serial 4bytes

int nDataChunks 4bytes

array PAT (36bytes*n)

field type field name field size

partition information 40bytes

int sturctType 4bytes

int nErasedBlocks 4bytes

int allocationBlock 4bytes

unsigned int allocationPage 4bytes

int nFreeChunks 4bytes

int nDeletdFiles 4bytes

int nUnlinkedFiles 4bytes

int nBackgroundDeletions 4bytes

unsigned int sequenceNumber 4bytes

unsigned int oldestDirtySequence 4bytes

block information 8bytes * nblock

int softDeletions:10

4bytes

int pageInUse:10

unsigned int blockState:4

int needsRetiring:1

int skipErasedCheck:1

int gcPrioritise:1

int chunkErrorStrikes:3

int hasShrinkHeader:1

int sequenceNumber 4bytes

Figure 3: BPRAM data structure

00000000 01000010

00000000 01000011

00000000 10000000

64 page pointers to a

single block

page number

16bit low bithigh bit

.

.

.

.

.

.

high 8bit Is

the same
in a block

16bit

high 8bit Is

compressed
together

low 8bit keeps the

original size

huffman compress

5bit 9bit

Figure 4: Hybrid coding algorithm

4. Hybrid Coding

CMFS compresses the data structures in BPRAM,
e.g. CMFS validitymarker, CMFS device and
CMFS object, to reduce the required size of BPRAM.
To efficiently compress, we carefully select compression al-
gorithm for each data structures. We considered five com-
pression algorithms: huffman [1], rice [1], shannonfano [1],
run length encoding [1], and LZO [2]. Because the size of
CMFS validitymarker is only 8-byte and fixed, CMFS
does not compress it. Most portion of BPRAM is used
to storeCMFS device and CMFS object rather than
CMFS validitymarker. We focus our effort in find-
ing optimal compression algorithm forCMFS device and
CMFS object. The size ofCMFS device is determined
by the partition size. In our inspection, all compression

algorithms have good compression ratios in compressing
CMFS device. Among the five compression algorithms,
the LZO [2] algorithm provides the best performance. It
means that the LZO algorithm faces the least performance
overhead. Thus, CMFS uses the LZO compression algo-
rithm to compressCMFS device.

From the compression ratio’s perspective, it is very
important to effectively compress the PAT structure in
CMFS object. We examine the compression ratio of five
compression algorithms in compressingCMFS object.
None of these show satisfying result. In this work, we
carefully examine the characteristics of PAT structure and
developed hybrid coding which is specifically tailored for
the compression ofCMFS object. PAT structure contains
physical page numbers (16 bits). Within a file, we find
that higher 8-bits of the page numbers are identical in most
cases. This is because the pages in the same NAND flash
block have the same higher 8-bits value. Further, in YAFFS,
which is of baseline file system for CMFS, a file system al-
locates free pages from the allocation blocks.Pages in the
allocation block are sequentially allocated to the write re-
quests. So, in hybrid coding, we apply huffman compres-
sion algorithm to compress the higher 8-bits. Because lower
8-bits of each page in PAT are unique, it cannot be com-
pressed further. Therefore, we do not apply compression
for lower 8-bits value. Figure 4 illustrates the example of
hybrid coding.

5. Mounting File System

Is BPRAM

metadata

available?

Metadata

Valid?

Crash

recovery
NAND flash scan

BPRAM

metadata

Read

finish

mount

mount

Yes

Yes

No

No

Figure 5: Procedure of mount

CMFS stores compressed metadata of the file system
in BPRAM. To construct the in-memory data structures,
CMFS reads and decompresses BPRAM metadata at mount
time. Since BPRAM is much faster than NAND flash mem-

ory and the CMFS compresses the metadata which is stored
in the BPRAM, time to read the file system metadata from
the memory device diminishes. Although the decompres-
sion overhead exists at mount time, the overall mount la-
tency is dramatically reduced.

Figure 5 illustrates the possible mount scenarios of
CMFS. BPRAM metadata is available if and only if it can be
decompressed without any errors. The BPRAM metadata
can be unavailable when the CMFS cannot decompress the
BPRAM metadata, for example if the system crashes while
updating the compressed BPRAM metadata. In this case,
decompression of the BPRAM metadata is impossible. To
reconstruct the BPRAM metadata, it is required to scan the
NAND flash memory. When the BPRAM metadata is avail-
able, the CMFS checks theCMFS validitymarker to
verify that BPRAM metadata is valid. If BPRAM meta-
data is valid, the CMFS reads the compressed metadata
from the BPRAM and decompresses it. The mount of
CMFS completes without additional accesses to the NAND
flash memory. In case the BPRAM metadata is available
out invalid, CMFS performs crash recovery to restore the
BPRAM metadata. CMFS decompresses BPRAM meta-
data and restore it according to the metadata in the NAND
flash. To reduce accesses to the NAND flash memory in
crash recovery, CMFS reads only the essential portion from
the NAND flash memory. Detailed description about crash
recovery is discussed in section 7.

CMFS reads and decompresses BPRAM metadata only
at the mount time. Since every file metadata exists in the
main memory after the mount, every file I/Os are handled
with the in-memory metadata structure. However, the com-
pression of metadata is performed if any modifications to
the file system are triggered. We discuss the BPRAM meta-
data update and compression in the next section.

6. Metadata Update Method

Hash

table

CMFS_objectCMFS_verify CMFS_device

…
…

new metadata

BPRAM

compression

262

300

hd

Modify_objectID

PAT

ObjectID

300
file B’s

object

ObjectID

262

directory

A’s object

Invalid 262

Invalid 300

262

file 300

ObjectID

NAND flash

directory

In memory

262 300

262 300

old metadata

Figure 6: Update method

When any changes are induced on the CMFS, the

changes are applied into the NAND flash memory. How-
ever, CMFS does not update the BPRAM metadata at the
same time. Since BPRAM metadata update includes com-
pression overhead, frequent updates would result in the sig-
nificant performance drop. CMFS employs a lazy update
policy to compress and update the metadata in the BPRAM.

Figure 6 illustrates the case when pages of direc-
tory A and file B are modified. When requests occur,
CMFS marksCMFS validitymarker as invalid. The
CMFS validitymarker is used to represent any updates
that are not adopted in BPRAM metadata yet. Then,
a new page is written into the NAND flash and the
old pages are marked invalid. After NAND flash mem-
ory is updated, the objectID of the modified object is
stored in Modify objectID and requests are finished.
Modify objectID is the in-memory data structure that
maintains the objectID of modified objects. To update
the BPRAM metadata, the system periodically checks if
Modify objectID exists. In our implementation, it is per-
formed every five seconds. If it exists, theCMFS objects

which corresponds to the objectid ofModify objectID

is reconstructed and compressed in the memory. The
previousCMFS objects is deleted and the area is re-
claimed. The in-memory object contains the pointer to
a previousCMFS objects. The system allocates recon-
structedCMFS objects in BPRAM. Then, the pointer
in the in-memory object is updated to point to the new
CMFS objects. At last, theCMFS device is rebuilt and
theCMFS validitymarker is set to valid.

7. Crash Recovery

When the system crashes unexpectedly, it is required to
verify the compressed metadata in BPRAM at mount time.
As described in section 5, we need to scan all metadata
from the NAND flash device when compressed metadata
is unavailable. If the BPRAM metadata is available, CMFS
check if it is vaild. The BPRAM metadata update of CMFS
ensures that the BPRAM metadata is valid only when all
updates are performed on the NAND flash memory and the
BPRAM. Consequently, the CMFS does not need to access
NAND flash device to build in-memory structures unless
BPRAM metadata is invalid. However, in case that BPRAM
metadata is invalid, it is required to restore the BPRAM
metadata to a valid status. Because of unavailability of in-
place updates, the old pages are always maintained in the
NAND flash memory. In addition, the NAND flash is up-
dated before the BPRAM. Therefore, the CMFS recovers
the BPRAM metadata according to the metadata in NAND
flash memory.

It is very time consuming to read every metadata from
the NAND flash device. To avoid unnecessary accesses
to the NAND flash memory, the CMFS uses a sequence

number in the BPRAM, described in section 3.2. The se-
quence number is also maintained in the NAND flash mem-
ory. When any block is written or erased, the sequence
number of the block is updated in the NAND flash mem-
ory and the number is increased. However, the sequence
number in the BPRAM is modified when BPRAM metadata
updated. Thus, the CMFS can find which block has been
changed after the last BPRAM metadata update by com-
paring the sequence numbers of the NAND flash memory
and the BPRAM. To obtain the sequence numbers from the
NAND flash memory, the CMFS scans the sequence num-
bers of every blocks from the NAND flash memory. Be-
cause there is one sequence number per block, the CMFS
accesses the NAND flush memory once per block.

Empty Being allocated Full

Block information in

CMFS_device

102103

100

101 0 0 0100 0

1050104 103 0 0101

Block information in

NAND flash

Compare

scan & rebuild

Figure 7: Compare sequence number

Figure 7 shows the procedure for comparing the block
information in the CMFS and the NAND flash. The num-
ber below each block is the sequence number of each block.
There are three block states: empty, full or being allocated.
The sequence number in the BPRAM is inconsistent with
the NAND flash. There are three kinds of inconsistencies in
this figure. First, when a new block is allocated after the last
update, the sequence number is zero in the BPRAM, while
the sequence number in the NAND flash is not. The blocks
whose sequence number in the NAND flash is 104 and 105
are belong to this case. Second, blocks can be erased by
the garbage collection after BPRAM metadata update. In
BPRAM, the sequence number is not zero, but it is zero in
NAND flash (block sequence number is 102 in BPRAM).
We should modify the statistical information but we do not
need to scan the block because it is empty. Third, there can
be an inconsistency even though the sequence number is the
same in the BPRAM and the NAND flash. If the sequence
number is the same in the BPRAM and the NAND flash,
the block has not changed since the last successful update.
However, there can be a special inconsistency case if the
system crashes while the status of the block information in
the BPRAM is being allocated(the block whose sequence
number is 103 in the NAND flash). To figure out this incon-
sistency, the CMFS compares the status of a block as well
as its sequence number. At last, we can find that there are

four blocks which have been changed after the last update
in figure 7. We call the four blocks the recovery area and
we define the size of this area as recovery size in this paper.

compare the

sequence

number in

BPRAM and

NAND flash

create in

memory data

structure with

the BPRAM

metadata

scan the crash

recovery area

Modify the in-

memory

data structure

Finish the mount

& modify the

BPRAM

metadata

Figure 8: Crash recovery

After comparing the sequence numbers, the CMFS cre-
ates the in-memory data structure with the invalid BPRAM
metadata. Then, the CMFS modifies it by scanning the
NAND flash memory in the recovery area. When the par-
tition is successfully mounted, the BPRAM metadata is fi-
nally updated. The overall procedure of crash recovery is
shown in figure 8. The crash recovery of the CMFS requires
only a few accesses to the NAND flash memory since the
CMFS scans only pages in the recovery area.

YAFFS, one of the state-of-the-art flash file system,
stores the checkpoint in the NAND flash memory. If the
checksum of the checkpoint is correct, the mount can be
performed rapidly. However, if crash occurs unexpectedly,
the checksum will be incorrect since the checkpoint is writ-
ten at unmount or explicit sync(). The failed checkpoint is
ignored and YAFFS starts scanning NAND flash memory to
mount a file system. Consequently, the mount time of the
YAFFS is proportional to the partition size even though it
supports checkpoint.

8. Experiment

8.1. Experimental Environment

We developed the CMFS on an embedded system with
Marvell PXA320 (806MHz), 128MB SDRAM, and 128
MB large block NAND flash memory. We modified the
YAFFS to implemented the CMFS on the linux kernel
2.6.24. A portion of DRAM is used as the BPRAM area,
since BPRAM is not available in our embedded system en-
vironment.

8.2. Compression Rate

We compared our hybrid coding with existing compres-
sion algorithms, e.g. huffman [1], rice [1], shannonfano [1],
run length encoding [1] and LZO [2]. We tested 10 different
files and calculated the average compression rates. Figure 9
illustrate the compression rates of various compression al-
gorithms. the X-axis and the Y-axis represent file sizes and
the compression ratio, respectively. When the file size is
bigger than 16KB, the performance of our hybrid coding is

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 hybrid coding

LZO

rel

hu!man

rice8

shannon-fano

4
k

8
k

1
6

k

3
2

k

6
4

k

1
2

8
k

2
5

6
k

5
1

2
k

1
M

2
M

3
M

4
M

5
M

6
M

7
M

8
M

9
M

1
0

M

 file size(Byte)

c
o

m
p

re
s
s
io

n
 r

a
ti
o

Figure 9: Compress rate

0

1

2

3

4

5

6

7

10 20 30 40 50 60

m
o

u
n

t
ti
m

e
 (

s
)

Partition Size(MBytes)

YAFFS

CMFS

Figure 10: Mount Latency

better than others (figure 9). Although the efficiency of our
hybrid coding decreases as the file size increases, the com-
pression rate of our hybrid coding is still better than others.

8.3. Mount Latency

We measured the mount latency of the CMFS and
YAFFS [14] when the BPRAM metadata is valid vary-
ing percentages of NAND flash utilization (figure 10). In
YAFFS, as the usage space of the NAND flash increases,
the mount latency linearly increases. This is because the
spare area we need to scan increases with the usage space
of the NAND flash. In the CMFS, we only need to scan the
super block and the BPRAM area to mount the file system
partition. CMFS significantly reduces the mount latency.

Figure 11 illustrates the LZO compression time of
CMFS device during mount time. We measured the
compression times for different partition sizes. Since
CMFS device contains block information, its size is pro-
portional to the partition size. Hence, the LZO compression
time increases as the partition size increases.

When the partition size is fixed, the size of
CMFS object is a significant factor in the mount
time. The size ofCMFS object influences the reading

 3

 6

 9

 12

 15

10 20 30 40 50

C
om

pr
es

si
on

 ti
m

e
(m

s)

Partition size (MB)

Figure 11: LZO compression time

 20

 40

 60

 80

 100

 120

 140

100 200 300 400 500
M

ou
nt

 ti
m

e
(m

s)

The number of 1KB files

CMFS device decompression
BPRAM read

CMFS object decompression
Others

Figure 12: Mount time varying the number of 1-KB files

time of compressed metadata from the BPRAM as well as
the decompression time ofCMFS object We measured
the mount time varying the number of 100 KB files in 50
MB partition. Figure 12 illustrates the result. As the size
of CMFS object increases, the compression overhead
increases linearly.

8.4. Recovery

 20
 40
 60
 80

 100
 120
 140

2 4 6 8 10

T
im

e
(m

s)

Recovery size (MB)

BPRAM read
BPRAM write

Decompression
Compression

Inconsistency check
Nand read

Modify

Figure 13: Detailed recovery time

We measured the recovery time of a 50 MB NAND
flash partition varying the recovery size. The re-
covery is triggered in the mount procedure when

CMFS validitymarker is set as invalid. Figure 13 il-
lustrates the detailed time of the recovery time. The
recovery time consists of followings:BPRAMread

(read BPRAM metadata from BPRAM),BPRAMwrite

(write BPRAM metadata to BPRAM),decompression

(decompress BPRAM metadata),compression (compress
BPRAM metadata),inconsistencycheck (compare se-
quence numbers between BPRAM and NAND flash mem-
ory),NANDread (read block information and scan incon-
sistent blocks from NAND flash memory), andmodify

(modify BPRAM metadata as up-to-date). The recovery
time increases as the recovery size increases. In figure 13,
the BPRAM read/write time is tiny (<1%). 83% to 89% of
the recovery time is consumed by NAND read and modify
time. The compression/decompression and inconsistency
check takes up 10%–15%.

In figure 12, the mount latency of the CMFS is about
126ms when 500 1KB files exist. In this case, recovery
time requires 131ms when recovery size is 10 MB. A total
of 257ms is required when the recovery size is 10 MB and
500 1KB files exit. It is still much less than the mount time
of YAFFS. Thus, CMFS significantly improves the mount
speed, even when BPRAM metadata is invalid.

8.5. Update Time Measurement

 0

 5

 10

 15

 1 2 3 4 5 6 7 8 9 10 11 12

u
p

d
a

te
 t
im

e
(m

s
)

update size(MB)

Figure 14: Update time

We measured the latency of the update procedure which
is invoked every five seconds. Figure 14 shows the up-
date time varying with the size of modified file data. In
this experiment, there are already 10 MB files in the CMFS
partition. In our environment, 12 MB of data can be mod-
ified within five seconds at most. Consequently, the up-
date procedure takes 13 ms in the worst case. This means
that CMFS sacrifices 2.6% of the performance to keep the
BPRAM metadata valid.

0

500

1000

1500

2000

0KByte 1KByte 4KByte 10KByte

fil
es

/s
ec

File size

CMFS

YAFFS

(a) File Creation

0

200

400

600

800

0KByte 1KByte 4KByte 10KByte

fil
es

/s
ec

File size

CMFS

YAFFS

(b) File Deletion

Figure 15: Metadata update performance (LMBENCH)

8.6. I/O Performance

In CMFS, the metadata of a file system is periodically
compressed and stored into the BPRAM. In order to ex-
amine the performance impact of the periodic compression
and store, we measured file creation/deletion performance
and write performance. We used LMBENCH to measure
the file creation/deletion performance. Figure 15a and fig-
ure 15b illustrate the file creation performance and the file
deletion performance. We performed the experiment by
creating and deleting 0 KByte, 1 KByte, 4 KByte, and 10
KByte files. Figure 16 illustrates the write performance ex-
amined by IOZONE benchmark. Throughout I/O perfor-
mances of CMFS, the performance impact of the metadata
compression was insignificant.

 0

 1

 2

 3

 4

 5

sequential write Random write

M
b

y
te

s
/s

e
c

CMFS
YAFFS

Figure 16: Sequential/Random write

9. Conclusion

In this work, we develop a hierarchical file system,
CMFS for BPRAM and NAND Flash. The contribution
of the CMFS file system is as follows. First, we develop
a hybrid coding to rapidly compress the metadata reduc-
ing the size effectively. Second, CMFS provides crash re-
covery methods to reduce the mount time after the crash.
Third, the overhead of compression and decompression is
insignificant in CMFS. In summary, we successfully devel-
oped a state of art hierarchical file system. With a slight per-
formance loss, CMFS provides fast mount speed and high
CPM. In addition, the recovery method of CMFS makes it
possible to provide fast mount speed even after a crash.

Acknowledgements

This research was supported by the Korea Science and
Engineering Foundation (KOSEF) grant funded by the Ko-
rea government (MEST) through National Research Lab
(R0A-2010-0018893).

References

[1] Basic Compression Library http://bcl.comli.eu/.
[2] Markus F.X.J Oberhumer. LZO data compression library

http://www.oberhumer.com/opensource/lzo/.
[3] A. Bityutskiy. JFFS3 design issues.
[4] I. Doh, J. Choi, D. Lee, and S. Noh. Exploiting non-volatile

RAM to enhance flash file system performance. InProceed-
ings of the 7th ACM & IEEE international conference on
Embedded software, page 173. ACM, 2007.

[5] S. Eaton, D. Butler, M. Parris, D. Wilson, and H. McNeillie.
A ferroelectric nonvolatile memory. InSolid-State Circuits
Conference, 1988. Digest of Technical Papers. ISSCC. 1988
IEEE International, page 130. IEEE, 2009.

[6] N. Edel, D. Tuteja, E. Miller, and S. Brandt. MRAMFS:
a compressing file system for non-volatile RAM. InThe
IEEE Computer Society’s 12th Annual International Sym-
posium on Modeling, Analysis, and Simulation of Computer
and Telecommunications Systems, 2004.(MASCOTS 2004).
Proceedings, pages 596–603, 2004.

[7] R. Freitas, W. Wilcke, and B. Kurdi. Storage class memory,
technology and use. InTutorial, 6th USENIX Conference on
File and Storage Technologies, San Jose, CA, USA, 2008.

[8] W. Gallagher, D. Abraham, S. Assefa, S. Brown, J. De-
Brosse, M. Gaidis, E. Galligan, E. Gow, B. Hughes, J. Hum-
mel, et al. Recent advances in MRAM technology. InVLSI
Technology, 2005.(VLSI-TSA-Tech). 2005 IEEE VLSI-TSA
International Symposium on, pages 72–73. IEEE, 2005.

[9] J. Jung, Y. Won, E. Kim, H. Shin, and B. Jeon. FRASH:
Exploiting storage class memory in hybrid file system for
hierarchical storage.ACM Transactions on Storage (TOS),
6(1):1–25, 2010.

[10] H. Kim and Y. Won. MNFS: mobile multimedia file sys-
tem for NAND flash based storage device.Korea, 442:600,
2009.

[11] S. Lai. Current status of the phase change memory and its
future. InElectron Devices Meeting, 2003. IEDM’03 Tech-
nical Digest. IEEE International, pages 10–1. IEEE, 2004.

[12] E. Miller, S. Brandt, and D. Long. HeRMES: High-
performance reliable MRAM-enabled storage. InProceed-
ings of the 8th IEEE Workshop on Hot Topics in Operating
Systems (HotOS-VIII), pages 83–87. Citeseer, 2001.

[13] A. Olson and D. Langlois. Solid State Drives (SSD) Data
Reliability and Lifetime. 2008.

[14] A. One. YAFFS: Yet another flash filing system.Elec-
tronic document available online at http://www. aleph1. co.
uk/yaffs/index. html. Cambridge, UK, 2002.

[15] S. Park, T. Lee, and K. Chung. A Flash file system to sup-
port fast mounting for NAND Flash memory based embed-
ded systems.Embedded Computer Systems: Architectures,
Modeling, and Simulation, pages 415–424, 2006.

[16] S. Park, J. Yu, and S. Ohm. Atomic write FTL for ro-
bust flash file system. InConsumer Electronics, 2005.(ISCE
2005). Proceedings of the Ninth International Symposium
on, pages 155–160. IEEE, 2005.

[17] Y. Park, S. Lim, C. Lee, and K. Park. PFFS: a scalable flash
memory file system for the hybrid architecture of phase-
change RAM and NAND flash. InProceedings of the 2008
ACM symposium on Applied computing, pages 1498–1503.
ACM, 2008.

[18] T. Quan, D. Yeo, and Y. Won. Cmfs: Compressed metadata
file system for hybrid storage. InProceeding of 2010 IEEE
International Conference on Network Infrastructure and
Digital Content (IC-NIDC2010), Beijing, China, September
2010.

[19] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C.
Chen, R. M. Shelby, M. Salinga, D. Krebs, S. H. Chen,
H. L. Lung, and C. H. Lam”. Phase-change random access
memory-a scalable technology.IBM Journal of Research
and Development, 2008.

[20] S. Tehrani, J. Slaughter, E. Chen, M. Durlam, J. Shi, and
M. DeHerren. Progress and outlook for MRAM technology.
Magnetics, IEEE Transactions on, 35(5):2814–2819, 2002.

[21] A. Wang, P. Reiher, G. Popek, and G. Kuenning. Conquest:
Better performance through a disk/persistent-RAM hybrid
file system. InProceedings of the 2002 USENIX Annual
technical Conference, pages 15–28, 2002.

[22] C. Wu, T. Kuo, and L. Chang. The Design of efficient
initialization and crash recovery for log-based file systems
over flash memory.ACM Transactions on Storage (TOS),
2(4):467, 2006.

[23] K. Yim, J. Kim, and K. Koh. A fast start-up technique for
flash memory based computing systems. InProceedings of
the 2005 ACM symposium on Applied computing, page 849.
ACM, 2005.

