
Scalable Distributed Directory Implementation on Orange File System

Shuangyang Yang, Walter B. Ligon III
Parallel Architecture Research Laboratory

Clemson University, Clemson, SC 29634, USA
{shuangy, walt}@clemson.edu

Elaine C. Quarles
Clemson Computing and Information Technology

Clemson University, Clemson, SC 29634, USA
elaine@clemson.edu

Abstract

In Orange File System, large data files are striped across
multiple servers to provide highly concurrent access, how-
ever, contents of large directories are only stored in a single
server, which is becoming a bottleneck in handling a large
number of requests accessing the same directory concur-
rently. In this paper, a scalable distributed directory for Or-
ange File System is implemented and evaluated in a large-
scale system. The throughput performance is measured by a
modified version of UCAR metarates benchmark. The result
shows great scalability in concurrently creating and remov-
ing large numbers of files under one directory by multiple
clients. On a 64-servers setup and 128 clients accessing the
same directory concurrently, the scalable distributed direc-
tory can achieve more than 8,000 file creations per second
and over 11,000 file removals per second on average.

1. Introduction

The high-performance computing (HPC) community is
walking into an new era where top clusters and systems are
able to achieve a performance of petaFLOPs (1015) scale
easily. According to the TOP500 supercomputer list [5] of
November, 2010, the top 7 systems all break the petaFLOPs
barrier in their performances. And they are all composed of
tens of thousands of cores and nodes running in parallel.
The rapid growth in computing power and high demand for
parallelism imposes significant challenges for the storage
system, which is expected to handle the input/output (I/O)
requests from parallel applications with good performance
and great scalability.

Many parallel file systems are developed to answer that
challenge[15, 1, 2, 11, 7]. File data are distributed across

multiple processing nodes in parallel file systems, each with
its own storage resources. In that case, concurrent I/O re-
quests can be spread across several servers to process rather
than focusing I/O on a single server [6]. Recently there’s
growing concern with making directories scalable on par-
allel file systems. It is a typical scenario for applications
which do data mining and real-time application monitoring
to create numerous small files under the same directory ev-
ery second. As a result, it is important to build scalable di-
rectory services for parallel file systems to support efficient
concurrent access to even larger directories in the future.

Parallel Virtual File System (PVFS) [7] is a production-
quality parallel file system designed for use on high end
computing (HEC) systems that provides very high per-
formance access to disk storage for parallel applications.
PVFS is being used at a number of sites, such as Argonne
National Laboratory, NASA Goddard Space Flight Center,
and Oak Ridge National Laboratory. It is also widely used
for research purposes [17]. Orange File System (OrangeFS)
is a branch of PVFS driven by input from a large base of
user feedback [2]. Although it distributes large files across
multiple servers, a directory object and its data object are
still stored on a single server. This design of a directory is
inadequate to scale large directories when multiple clients
are accessing the same directory concurrently.

A scalable directory service [16] designed for PVFS was
demonstrated based on GIGA+ [10]. A prototype was built
on a parallel file system simulator, where it achieved high
throughput and scalability while minimizing bottlenecks
and synchronization overheads. It is necessary to incorpo-
rate the scalable directory service into a production-quality
high-performance parallel file system to get benefits. In this
paper, a scalable distributed directory is designed based on
previous work and implemented into OrangeFS seamlessly.

The main contributions of this paper include:



• Implemented a complete scalable distributed directory
service which distributes directory entries across mul-
tiple servers, and incorporated the service into Orange
File System seamlessly. The number of directory entry
partitions is configurable during directory creation and
can be dynamically incremented with usage.

• Evaluated throughput performance in large scale un-
der a production-level environment and compared the
outcomes with that of vanilla OrangeFS. The result
shows great scalability when the number of servers and
clients are varied.

In the rest of the paper, Section 2 lists some related works
by other researchers. Section 3 describes the design and im-
plementation of the scalable distributed directory. Section 4
gives results of performance evaluation and Section 5 draws
the conclusion and a plan of future work.

2 Background

GPFS [11] supports efficient file name lookup in large
directories through extensible hashing [8]. Directory entries
of a large directory are stored in multiple disk blocks. To
map an entry to a disk block, a hash function is applied to
the entry name and the n low-order bits of the hash value
is used as the block number, where n depends on the size
of the directory. As a directory grows, a disk block can be
split in two. The logical block number of the new directory
block is derived from the old block number by adding a ‘1’
in the n + 1st bit position, and directory entries with a ‘1’
in the n + 1st bit of their hash value are moved to the new
block.

Lustre File System [1] is a massively parallel distributed
file system for cluster computing. Lustre is working on dis-
tributed metadata service which seems to support one level
of splitting, and some results of a pre release [13] shows
over 10,000 files creates per second.

Ceph [15] is a research distributed file system which of-
fers dynamic distributed metadata management based on
current access patterns. Ceph writes a directory’s content to
the object storage devices using the same striping and dis-
tribution strategy as file data. Each metadata server keeps
a record of the popularity of metadata within the directory
and adaptively distributes metadata hierarchically with dy-
namic subtree partitioning strategy [14].

GIGA+ [10] is a scalable directory design for shared file
systems which divides each directory into a scalable num-
ber of fixed-size partitions that are distributed across mul-
tiple servers in the cluster. A bitmap is used to represent
a tree of partitions of the corresponding servers where ‘1’
indicates presence and ’0’ for absence. At first, only the
zero-th bit position in the bitmap is set to ‘1’. As a direc-
tory is filled, an overflowing partition with index i and depth

r will move half of its hash space to a partition i + 2r, and
both partitions will be at depth r + 1. Each server manages
its partitions independently. An illustration of the splitting
process in GIGA+ is shown in Figure 1.

Figure 1. Illustration of a three-level splitting
process in GIGA+. The hash space is divided
evenly for each split.

The design of scalable distributed directory on OrangeFS
employs the extensible hashing technique and the splitting
strategy of GIGA+, however, it differs in other aspects in
order to be incorporated into OrangeFS seamlessly.

3 Design and Implementation

3.1 OrangeFS Structure

OrangeFS organizes files and directories in the form of
several storage objects. Some important objects are

• Metadata objects store data about files or directories.
Besides usual file attributes like owner, group, permis-
sions, etc. OrangeFS metadata object keeps file distri-
bution information of the actual data. Metadata objects
do not contain contents of files or directories.

• Datafile objects are blocks of actual file contents. Or-
angeFS stripes a file across multiple datafiles on mul-
tiple servers to facilitate parallel access.

• Dirdata objects contain contents of directories, or di-
rectory entries. Each directory entry is a pair of entry
name and the identifier to its metadata object, either a
file metadata object or a directory metadata object.

OrangeFS objects are uniquely identified by handles,
which are unique, opaque, integer-like identifiers. This pro-
vides a concise, non path dependent mechanism for spec-
ifying what object to operate on when clients and servers
communicate.

The metadata object of a file keeps a list of datafile han-
dles identifying the actual data blocks, while the metadata
object of a directory keeps only one dirdata handle repre-
senting the dirdata object at this time. The structures of
these objects are visualized in Figure 2.

2



Figure 2. Diagram of structures of OrangeFS
objects. A directory metadata object only
has one dirdata object, which resides on the
same metadata server. Usual file attributes
fields are omitted in this diagram.

3.2 Scalable Distributed Directory Design

3.2.1 Data Structure

An array of dirdata handles and a dirdata bitmap are added
to a directory metadata object and dirdata objects to enable
distribution of directory entries across multiple servers. The
structures are shown in Figure 3.

When a directory is created, an array of dirdata objects
is allocated with one dirdata object on each metadata server.
Within each dirdata object, directory entries are indexed by
Berkeley DB [9], which uses B+ tree to provide low-cost
lookup, insert and delete operations plus efficient sequential
access. Consequently there is no need to keep multiple dir-
data objects of the same directory on one metadata server.

The dirdata bitmap keeps a one-to-one mapping between
the bit position and the index of the dirdata handle array. A
bit value of ‘1’ indicates an active dirdata object while a bit
value of ‘0’ indicates an inactive dirdata object. The bitmap
is initialized during directory creation to set the initial num-
ber of active dirdata objects to use. Unlike GIGA+ which
always starts from one partition and increases the number
of partitions gradually, the initial number of active dirdata
objects is configurable. The splitting process is found to be
expensive [16] and for a directory which is expected to be
large, it is better to utilize all the dirdata objects to enjoy
better scalability from the start.

The metada object of a directory keeps a most up-to-date
copy of dirdata bitmap, which is done by accepting bitmap
updates from dirdata objects. Each dirdata object also keeps

Figure 3. Diagram of object structures in scal-
able distributed directory OrangeFS design.
A directory metadata object holds a num-
ber of dirdata objects across all metadata
servers. Dirdata handles array and dirdata
bitmap are added on the directory metadata
object and the dirdata object.

a copy of dirdata bitmap and array of dirdata handles. One
purpose is to verify the incoming directory entry request
belongs to its hash space and another is to find the new dir-
data object when issuing a split operation. Thus the dirdata
bitmap on a dirdata object only needs to be locally updated
and accurately reflects its own status.

3.2.2 Directory Entry Lookup

When initiating a directory request, the OrangeFS client li-
brary is responsible for fetching the scalable distributed di-
rectory attributes, including the dirdata array and dirdata
bitmap, and deciding which dirdata object to contact to
complete directory operations. We made this decision to
simplify the design on the server side and reduce metadata
server waiting time for each client request, since metadata
and dirdata are probably not sitting on the same server.

Another reason is that OrangeFS uses client-side caching
of object metadata to optimize the performance of file sys-
tem access patterns [12]. There is an acache module, which
stands for attribute cache, in OrangeFS system. It is used
to cache metadata of storage objects including ownership,
timestamp and distributed file information. By keeping a
copy of distributed directory attributes on the client side,
we can take advantage of the acache module.

3



The extensible hashing technique mentioned in Section 2
is used to map a directory entry to a dirdata object using the
algorithm as detailed in Figure 4. A directory entry is as-
signed to an active dirdata handle based on its name. To
achieve a random distribution, the directory entry name is
encoded by a strong hash algorithm (MD5 in our case) first.
The hashed value then serves as the key to dirdata object
selection. The lower R bits (R = dlog2(N)e, where N is
the size of dirdata array) are taken as an initial matching
index. If the dirdata bitmaps shows an inactive dirdata han-
dle at that index, the highest bit is taken off and the dirdata
bitmap is checked again with the new matching index. In
the end, an active dirdata handle is picked and the corre-
sponding operations can be processed. The dirdata object at
index 0 is always active which guarantees a dirdata object
is selected under any circumstances.

Figure 4. Illustration of the lookup process in
scalable distributed directory on OrangeFS.
N denotes the total number of dirdata ob-
jects. In this example, N=8 and the key starts
at 7.

3.2.3 Dirdata Splitting

Dirdata splitting is supported when the number of direc-
tory entries in one dirdata object exceeds a threshold value,
which is a configurable parameter with a default value. Be-
cause the maximum number of dirdata objects of a directory
is fixed at the number of metadata servers, splitting is not
possible, or necessary, when all of the dirdata objects are in
use. In that case, the number of directory entries stored in
the dirdata object is allowed to exceed the threshold. If new
servers are added to the system, overloaded dirdata objects
can resume splitting to dirdata objects on new servers.

The dirdata splitting process follows the splitting method
of GIGA+ mentioned in Section 2. If the initial number of

active dirdata objects is n, then during directory creation,
the first n bits of dirdata bitmaps will be set to ‘1’ and their
depths will be calculated. Upon splitting from a dirdata ob-
ject with an index of i and depth of r, the index of the new
dirdata object is i + 2r if the index is still within range. Di-
rectory entries with a ‘1’ on the r + 1st bit position of their
hash values will be moved to the new dirdata object. Both
dirdata objects will bump to a depth of r + 1 afterwards.

After splitting is completed between two dirdata objects,
an updated bitmap is sent to the server holding the metadata
object of the directory to update the bitmap there, basically
setting the bit at the new dirdata position as ‘1’. With this
mechanism, the metadata object will have the most up-to-
date information of the directory at all times. If the client
uses an out-of-date bitmap in its cache and finds that the di-
rectory entry is no longer on the indicated dirdata server be-
cause of splitting, it can always turn to the metadata object
for the newest copy of the bitmap and start again. This sim-
plifies the synchronization process and a client only needs a
maximum of two probes to locate the correct dirdata object,
comparing to possible multiple probes in GIGA+ because
of the lazy client update mechanism they used [10].

3.2.4 Maintenance and Removal

Some attributes, such as the timestamp information and the
number of directory entries, will be distributed with the dir-
data and collected by the client if needed. Only active dir-
data objects are contacted for these distributed attributes and
directory entries. Other attributes like permissions are kept
in the metadata object, similar to regular files.

The removal of a scalable distributed directory is con-
ducted mainly by the server which holds the metadata ob-
ject to simplify the error handling procedure. It will make
sure all the dirdata objects are deleted before the removal
of the metadata object of the directory. If anything goes
wrong when removing dirdata objects, the dirdata array can
be rebuilt to restore the functionality of the directory.

3.3 Current Status

At the time when this paper is prepared, the main
framework of scalable distributed directory has been im-
plemented in OrangeFS and is available as an experimen-
tal release. Clients are able to conduct directory operations,
like create and delete files, list directory, change directory
names and etc. The number of active dirdata objects can
be specified when creating a directory. We are still working
on the function of splitting directory entries between dirdata
objects.

4



4 Performance Evaluation

The performance of the scalable distributed directory
was evaluated on the Palmetto Cluster housed by Clemson
Computing and Information Technology [3]. The cluster
was configured as follows at the time of our experiments.
There were 1,541 nodes in total with 8 cores per node. The
nodes were running Linux 2.6.18 and equipped with In-
tel Xeon E5345/E5410/L5420 at 2.33GHz/2.5GHz or AMD
Opteron 2356 at 2.3GHz and memory sizes of 12GB/16GB.
The interconnect network utilizes Myrinet 10G and high
throughput storage is attached to all nodes.

The UCAR metarates benchmark [4] is an MPI applica-
tion that measures throughput of file creation rates in one di-
rectory with multiple clients concurrently. We modified the
benchmark program to use OrangeFS native APIs to com-
municate with OrangeFS servers and add a function to mea-
sure the file removal rates under a directory. The through-
put results from creating and removing empty files under
one directory with different numbers of OrangeFS servers
is illustrated in Figure 5. The number of clients is twice the
number of OrangeFS servers. The throughput of scalable
distributed directory shows great scalability as the number
of servers increase and can reach more than 8,000 file cre-
ations and over 11,000 file removals on average in one sec-
ond with 64 servers.

Next, the number of clients is varied when running the
benchmark on a 64 server setup. The results are illustrated
in Figure 6. The results show that OrangeFS with scalable
distributed directories can scale with the number of clients
up to twice the number servers, while the vanilla OrangeFS
can not scale up with the number of clients. Figure 6 also
shows the results with 192 clients and 256 clients, where
the average file creations per second maintains over 8,000
and the average file removals per second drops a little from
11,000 but still lingers above 8,000. This means the servers
are overloaded with client requests and are reaching their
full capacities. The faster drops in file removal may be due
to the OrangeFS file removal implementation because the
vanilla OrangeFS shows similar trend as servers are satu-
rated.

5 Conclusions and Future Work

This paper describes a scalable distributed directory de-
sign and implementation on Orange File System. Similar to
data files, directory entries are distributed across multiple
servers. The number of partitions can be specified during
directory creation and dynamically incremented when fill-
ing the directory. Files are assigned to a specific partition
by hashing their names to achieve load balancing among
partitions. Clients are responsible for contacting the correct
server when initiating a request.

(a) average file creation throughput with different numbers of servers

(b) average file removal throughput with different numbers of servers

Figure 5. Scale and performance of scalable
distributed directory implementation on Or-
angeFS with different number of OrangeFS
servers. The UCAR metarates benchmark is
used and the number of clients are selected
to be 2x the number of servers.

A complete scalable distributed directory implementa-
tion on OrangeFS has been carried out except the dynamic
splitting function when the paper was prepared. A modi-
fied version of UCAR metarates benchmark is used to eval-
uate the performance of the scalable distributed directory.
Comparing with vanilla OrangeFS, the scalable distributed
directory shows great scalability in creating and removing
large number of files by multiple clients concurrently. On
a 64-servers setup and 128 clients accessing the same di-
rectory concurrently, the scalable distributed directory can
achieve more than 8,000 file creations per second and over
11,000 file removals per second on average.

We are working to complete the splitting function of the

5



(a) average file creation throughput with different numbers of clients on
64-server system

(b) average file removal throughput with different numbers of clients on
64-server system

Figure 6. Scale and performance of 64
servers scalable distributed directory imple-
mentation on OrangeFS with different num-
ber of clients.

scalable distributed directory and optimize the current im-
plementation, including optimizing collective communica-
tions and the readdir functionality. Afterwards, we plan to
instrument the scalable distributed directory and obtain de-
tailed measurements on performances like throughput, scal-
ability, overheads and etc.

6 Acknowledgments

This material is based upon work supported in part by
the National Science Foundation under Grant No. CCF-
0621441 and Omnibond Systems LLC. Any opinions, find-
ings, and conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily re-
flect the views of the National Science Foundation.

We would like to thank Clemson Computing and Infor-
mation Technology for the use of the Palmetto Cluster re-
source. Michael Moore and Becky Ligon from Clemson
Computing and Information Technology provided great as-
sistance during the work.

7 Availability

The scalable distributed directory feature is available as
an experimental release of OrangeFS at

http://orangefs.org/download/

References

[1] Lustre a Network Clustering FS. http://www.lustre.
org.

[2] Orange File System. http://orangefs.org.
[3] The Palmetto Cluster. http://citi.clemson.edu.
[4] UCAR Metarates Benchmark. http://www.cisl.

ucar.edu/css/software/metarates.
[5] TOP500 Supercomputing Sites. http://www.top500.

org, November 2010.
[6] P. H. Carns. Achieving Scalability in Parallel File Systems.

PhD thesis, Clemson University, Clemson, SC, USA., 2005.
[7] P. H. Carns, W. B. L. III, R. B. Ross, and R. Thakur. PVFS:

A Parallel File System for Linux Clusters. In Proceedings
of the 4th annual Linux Showcase & Conference, Berkeley,
CA, USA, 2000. USENIX Association.

[8] R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong.
Extendible Hashing - A Fast Access Method for Dynamic
Files. ACM Transactions on Database Systems, 4(3):315–
344, 1979.

[9] M. A. Olson, K. Bostic, and M. Seltzer. Berkeley DB. In
Proceedings of the FREENIX Track: 1999 USENIX Annual
Technical Conference, Monterey, CA, USA, 1999.

[10] S. Patil and G. Gibson. GIGA+: Scalable Directories
for Shared File Systems. Technical Report CMU-PDL-08-
110, Carnegie Mellon University Parallel Data Lab, October
2008.

[11] F. Schmuck and R. Haskin. GPFS: A Shared-Disk File
System for Large Computing Clusters. In Proceedings of
the Conference on File and Storage Technology (FAST’02),
Berkeley, CA, USA, January 2002.

[12] B. W. Settlemyer. A Study of Client-Based Caching for Par-
allel I/O. PhD thesis, Clemson University, Clemson, SC,
USA, August 2009.

[13] R. S. Studham and R. Subramaniyan. Lustre: A Future Stan-
dard for Parallel File Systems? Invited presentation at Inter-
national Supercomputer Conference, June 2005.

[14] S. A. Weil, S. A. Brandt, and E. L. Miller. Dynamic Meta-
data Management for Petabyte-Scale File Systems. In Pro-
ceedings of the 2006 ACM/IEEE Conference on Supercom-
puting (SC’04), November 2004.

6



[15] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and
C. Maltzahn. Ceph: A Scalable, High-Performance Dis-
tributed File System. In Proceedings of the 7th symposium
on Operation systems design and implementation, Berkeley,
CA, USA, 2006.

[16] Y. Wu. A Study for Scalable Directory in Parallel File Sys-
tems. Master’s thesis, Clemson University, Clemson, SC,
USA, July 2009.

[17] X. Zhang, K. Davis, and S. Jiang. IOrchestrator: Improving
the Performance of multi-node I/O Systems vis Inter-Server
Coordination. In Proceedings of the 2010 ACM/IEEE In-
ternational Conference for High Performance Computing,
Networking, Storage and Analysis, November 2010.

7


