

Why RAIT for BW at NCSA?

Michelle Butler mlbutler@illinois.edu

GREAT LAKES CONSORTIUM

Science & Engineering on Blue Waters
Blue Waters will enable advances in a broad range of science and engineering disciplines. Examples include:

Molecular Science

Weather & Climate Forecasting

Astronomy

Earth Science

Health

Diverse Large Scale Science

Science areas			High	High	High	Large	Low	High
			Speed	Performance		Memory	Interconnect	Storage and
	of Teams	Balanced	CPU	Memory	Bandwidth	Capacity	Latency/	Network
		System					Acceleration	Bandwidth
Nano/ Material Science	2		Х	Х		Х		
Chemistry	3	Х	Х	×	Х	Х	X	X
Biophysics	2	Х	Х	×	Х		Х	
GeoScience	3	Х		X		Х	Х	X
Climate/Weather	3	Х		X		Х	Х	X
Turbulence	1	Х		X	Х			X
Astrophysics/ Cosmology/ Astronomy	6	X		Х		Х	Х	Х
Life Science	2	Х		Х	Х	Х	×	
Nuclear/QCD	1	Х	Х	X		Х	Х	
Plasma	1	Х				Х	Х	X
System Balance Tests	Total 24	ALL	PS-NAMD PS-MILC WRF PARATEC HPL	PS-NAMD NSF-MILC	PS-DNS3D PS-NAMD PARATEC	HPL	PS-MILC PS-NAMD	IOR PS-DNS3D

National Petascale Computing Facility

Partners

EYP MCF/ Gensler IBM Yahoo!

Modern Data Center

- $90,000+ \text{ ft}^2 \text{ total}$
- 30,000 ft² raised floor 20,000 ft² machine room gallery

• Energy Efficiency

- LEED certified Gold
- Power Utilization Efficiency = 1.1–1.2

BLUE WATERS

=== coentinveccondolii

Building Blue Waters
Blue Waters will be the most powerful

IH Supernode

4 IH Server Nodes

1024 cores

16 TB/s bw

36 TB/s bw

41 TB memory

32 Hub chips

Up to 32 TF (peak)

Blue Waters will be the most powerful computer in the world for scientific research when it comes on line in 2011-2.

Blue Waters

≥10 PF Peak ~1 PF sustained ≥300,000 cores ≥1 PB of memory >25 PB of disk storage 500 PB of archival storage ≥100 Gbps connectivity

32 IH server nodes
256 TF (peak)
32 TB memory
128 TB/s memory bw
4 Storage systems (>500 TB)
10 Tape drive connections

Quad-chip Module

4 Power7 chips Up to 1 TF (*peak*) 128 GB memory 512 GB/s bw

Hub Chip 1.128 TB/s bw

8 QCM's (256 cores) Up to 8 TF (peak) 1 TB memory 4 TB/s bw 8 Hub chips 9 TB/s bw Power supplies PCIe slots

Fully water cooled

IH Server Node

Blue Waters is built from components that can also be used to build systems with a wide range of capabilities—from desk side to beyond Blue Waters.

Power7 Chip

8 cores, 32 threads L1, L2, L3 cache (32 MB) Up to 256 GF (peak) 128 Gb/s memory bw

45 nm technology

Blue Waters Computing System

System Attribute	JAGUAR	Blue Waters			
Vendor	CRAY XT5		IBM		
Processor	AMD OPTERON	IB	IBM Power7		
Peak Performance (PF)	2.3	4x	>10		
Sustained Performance (PF)	≤1		≥1		
Number of Cores/Chip	6	1.3X	8		
Number of Processor Cores	224,256	1.2 X	>300,000		
Amount of Memory (TB)	299	4X	1,200		
Memory Bandwidth (PB/s)	.478	10X	>5		
Interconnect Bisection BW (TB/s)	~2	2 X	~1		
Interconnect HW Latency (µs)		>>			
Amount of Disk Storage (PB)	5	3X	18		
I/O Aggregate BW (TB/s)	.24	6X	>1.5		
Amount of Archival Storage (PB)	20	25 X	>500		
External Bandwidth (Gbps)			100-400		

I/O Software environment

5 Years of Growth

BW Estimated Growth

Why RAIT at NCSA

- Tape is still viable solution:
 - At the scale that we are at (500PB in 5 years)
 - To date no reliable, scalable disk solution that has a cheaper TOC
 - TOC is total cost of ownership
 - Power & cooling required
 - Floor Space required
 - Length of time for use/viable solution
 - Rolling forward for use of 10 years?
- Tape is still the name of the game
 - 2TB archive site 20 years ago is a different story

Why RAIT at NCSA

- Primary reason is for Data Protection.
 - At BW scale, we could NOT afford to duplicate copy this data which is current practice at NCSA today.
 - A redundant array of tapes with 8 data and 2 parity can survive the loss of 2 tapes at a cost of only 25% more tapes than unmirrored, single tape
- In last 25 years NCSA has lost 2 user files.
 - We have seen on numerous occasions the need for the second tape.
 - Firmware being one of the worst occasions LTO1/LTO2
 - Library drop tape, tape drive eat tape are more rare, but still occasionally happen

Why RAIT at NCSA

- HPSS already had striped data on tape.
 - NCSA and HPSS collaboration are adding RAIT engine to the overall HPSS environment.
 - Will generate the data that is required to be written in parity.
 - Depending on environment sites will need mulitple RAIT Engines and should not be the bottleneck to the tape device. Parity takes COMPUTE CYCLES!
 - Up to 16 wide devices and 8+8 is the highest level of parity (8 levels).
 - D+P <= 16; D >=P; D>=2, (P<=8)

11