

EGI-InSPIRE Current Requirements & Outlook

Maria Girone, CERN-IT & EGI-InSPIRE

EGI-InSPIRE RI-261323

www.egi.eu

- The EGI-InSPIRE project: Activities and Communities
- Common solutions across diverse communities
- Current Requirements
 - Data Management
- The European Digital Agenda

EGI-InSPIRE Project

European Grid Initiative - Integrated Sustainable Pan-European Infrastructure for Researchers in Europe

A 4 year project with €25M EC contribution

- Total Effort ~€330M
- Effort: 9261PMs

Project Partners (51) EGI.eu, 38 NGIs, 2 EIROs Asia Pacific (9 partners)

EGI-InSPIRE Goals

- Multi-disciplinary project aimed at identifying and providing common, sustainable solutions
- Goals:
 - The continued operation and expansion of today's production infrastructure that can be increasingly sustained outside of specific project funding
 - The support for current heavy users (HUCs) as they move to sustainable support models for their own communities
 - Allow the integration of **new** technologies (e.g. **clouds** and **virtualization**) and heterogeneous resources (e.g. HTC & HPC)

European Grid Infrastructure (April 2011 and yearly increase)

- Logical CPUs (core – 239,840 EGI (+24.1 /₀)
- 100 PB disk
 90 PB tape
- Resource Centres

 338 EGI
- Countries (+11.5%)
 51 EGI

10:14:26 DTC (3 minutes ago)

30/05/2011 EGI-InSPIRE RI-261323 6 www.egi.eu

Imperial College

UK Computing for Particle Physics

EGI Usage (April 2011)

~11000 End-users 220 VOs ~30 active VOs

User Communities

Archeology Astronomy **Astrophysics Civil Protection** Comp. Chemistry Earth Sciences Finance Fusion Geophysics **High Energy Physics** Life Sciences Multimedia **Material Sciences**

Average usage 2010-2011 vs 2009-2010

- 1Mjobs/day (+420%)
- 74.6M CPU wall clock hours/month (+86.5%)
- 551M HEP-SPEC06 CPU wall clock hours/month (+99.4%)

30/05/2011 EGI-InSPIRE RI-261323

Work Package Breakdown

Work Package	Goal		
SA1	Operations		
SA2	Software Provisioning		
SA3	Support for Heavy User Communities (HUCs)		
NA1	Project Management		
NA2	Dissemination		
NA3	User Community Support (other than HUCs)		
JRA1	Operational Tools		

Communities & Activities

High Energy Physics The four LHC experiments use **grid** computing for data distribution, processing and analysis. Strong focus on common tools and solutions. Areas supported include: Data Management, Data Analysis and Monitoring. Main VOs: ALICE, ATLAS, CMS, LHCb

Focuses on medical, biomedical and bioinformatics sectors to connect worldwide laboratories, share resources and ease access to data in a secure and confidential way. Supports 4 VOs (biomed, Isgri, vlemed and pneumogrid) across 6 NGIs via the Life Science Grid Community.

Covers a variety of projects including the European Extremely Large Telescope (E-ELT), the Square Kilometre Array (SKA) and Cerenkov Telescope Array (CTA). Activities focus on visualisation tools and database/catalog access from the grid.

Covers seismology, atmospheric modelling, meteorological forecasting, flood forecasting and climate change. Provides access from the **grid** to resources within the Ground European Network for Earth Science Interoperations - Digital Repositories (GENESI-DR). Also assists scientists working on climate change via the Climate-G testbed.

Current Requirements - HEP

- Have described so far activities that began prior to EGI-InSPIRE but have been continued and/or extended
- EGI-InSPIRE has explicitly foreseen the need to address issues arising from first LHC data taking and production
- Key examples are:
 - Data Management in general, including:
 - Data Placement / Dynamic Caching & Evolving Network Architectures
 - Catalogue / Storage Element Consistency
 - Data analysis support
- Work done in collaboration with WLCG and the LHC experiments as well as technology providers such as EMI (see P. Fuhrmann talk)

Data Management – 1

- Crucial area for LHC and other HEP experiments
 - Data volumes: tens of PB/year, rates: up to 200TB/day between sites, several hundred active analysis users / expt, 1M analysis jobs / day (see M. Ernst talk)
- Experience from first data taking has shown that some assumptions on data placement are no longer optimal
 - Based on MONARC, the initial phase of LHC data distribution was based on static pre-placement
 - Significant fraction of such data never read!
- Computing models now driving towards dynamic data placement (see I. Fisk talk)
 - Replication is based on usage ("popularity") this results in more efficient network and storage utilization
- Implemented first for ATLAS, now for CMS and LHCb

Data Placement / Dynamic Caching & Evolving Network Architectures

Data Management – 2

- With 50PB of data storage across a large number of sites worldwide, inconsistencies can easily arise
 - Data that resides on Storage Elements but not in various catalogs (grid, experiment) referred to as "Dark Data"
 - One site recently reported 70TB dark data!
- Using a messaging-based system, various catalogs and SEs can talk to each other and implement lazy synchronization

Catalogue / Storage Element Consistency

Maria Girone, IEEE MSST

Data Analysis Support

- Covers the final stage of data processing leading on to publication
 - Large number of users/month (~1000) and analysis jobs/day (~1M) running across (~100) Tier2 and other sites "chaotic" data access
 - All frameworks support heterogeneous back-ends
- Ganga (ATLAS, LHCb) used by 10 other communities and 500 600 users
- Common site stress testing system (Hammercloud) used by ATLAS, CMS and LHCb
- New areas of commonality and optimization
 - Move to "community support" model
 - Simplify data access and improve monitoring
 - Use common components and frameworks, such as for job submission and file transfer (built on gLite / EMI FTS)
 - An area of potential future common work and simplification

The Next Challenge

- EGI-InSPIRE has demonstrated that multiple disciplines can work together, which leads naturally into the next challenge
- The EU intends to invest significantly from 2014 in what it refers to as "the Digital Agenda"
- This should address as wide a range of disciplines as possible from science to humanities and beyond
 - eHealth, climate change, science and education explicitly mentioned amongst many others
- As a multi-disciplinary project that is largely data-driven, EGI-InSPIRE offers an attractive foundation on which to build such an effort
- An initial step is a data management requirements matrix across the EGI-InSPIRE communities: review matrix in **Panel on Requirements**

Maria Girone, IEEE MSST

<u>Digital Agenda</u>

Europe

for

0 2018-2028

Draft Requirements Matrix

Discipline	Preservation	Volume	Access	Security	
Earth Sciences	Millennia	No intrinsic limit – broken down into many different areas	Cross- correlation	Some data clearly sensitive	
Astronomy & Astrophysics	Millennia	No limit – current projects range from 100 TB – low PB range	Cross- correlation between different observations	Explicit policy on placing data in public domain after 1 year	
Life Sciences	1+ centuries	# people (life-forms) x data	By Individual By condition Evolution	Patient privacy; Copyrighted tools; Competing industries	
High Energy Physics	A few decades More for educational purposes?	100PB – 1EB today; Previous generations, e.g. LEP, are in commodity market	Range from sequential access to bulk data to many // accesses	Often traded for performance & scalability	
Maria Girone, IEEE MSST 23					

EGI-InSPIRE is a **multi-disciplinary** project that supports large-scale, long-term projects

- Peta-scale in terms of computing resources, global in terms of communities and deployment
- High level of service both quantitatively and qualitatively
- Common, sustainable solutions with more to come

Long-term means adapting to changing requirements and technology

- Multi-core; virtualization; clouds; network capacity and topology
- Have to be integrated / adopted whilst constantly ramping up the service in terms of capacity