

Reliability-Aware Energy Management for Hybrid Storage Systems

Wes Felter, Anthony Hylick, John Carter IBM Research – Austin

Energy Saving using Hybrid Storage with Flash Caching

- Goal: Demonstrate significant disk energy savings for storage systems
- Constraint: Maintain performance and reliability
- Target: Medium-duty workloads
 - can tolerate infrequent multi-second spin up delays, e.g., email, web, and file servers
- How we do it:
 - Use flash SSD as a secondary cache behind DRAM
 - Exploit (or create) opportunities to spin down idle disks
 - Use token bucket to limit disk spinup wear
- Why this saves energy:
 - Replaces high-energy disks (e.g., SAS/FC)
 with low-energy disks (e.g., SATA) and SSDs
 - Spins down disks that are idle because I/O requests are serviced by the flash cache

Disk spindown background

- Disks are not very energy-proportional idle uses nearly the same power as active
- Significant energy savings requires spindown
- Spinup takes time and consumes significant energy
 - -Breakeven time is critical
- Plenty of work in this area
 - -Extending battery life in laptops
 - -Spindown timeout of 2x breakeven time shown to be *competitive*
 - -Workload-adaptive timeouts
 - -Servers MAID, power-aware RAID and caching

Most prior work treats disk reliability naively

Disk Energy Management

- Disks starting to support multiple idle states:
 - Idle_A: Everything on
 - Idle B: A + some electronics off
 - Idle_C: B + Lower RPM, park head
 - Standby: C + Spindle motor off
- Trade off power and response time
- Most savings comes from Standby

Mode	Power	Recovery Time	Breakeven Time	Max Rate
Idle_A	5.8 W	0 s	0 s	1 s
Idle_B	4.5 W	0 s	1 s	4 min
Idle_C	3.5 W	0.4 s	2.3 s	10 min
Standby	0.3 W	6 s	15.4 s	15 min

From Western Digital RE2-GP and Seagate
Constellation 3.5" SATA disks

- Observation: Caching can increase idle intervals → enable more spindown
 - Non-linear relationship between I/O rate and power consumption
- Constraint: Each state has a reliability limit

Managing Reliability with Token Bucket Spindown

- Disks are rated for a limited number of lifetime spin-ups
 - Number varies depending on technology (e.g., SAS vs SATA)
 - Typical conservative default spindown policy: fixed timeout = lifetime / # of spin-ups
- Reliability dictates spindown frequency
 - Energy break–even point: 15 seconds (measured)
 - Reliability constraint: one spindown per 15 minutes (lifetime average)
 - Spindowns are a precious resource → do not waste opportunities
 - Fixed timeout policy wastes spindown opportunities during long idle/active phases (e.g., 10 hours of idle time overnight → 40 unused spindown opportunities)
- Key Idea: Use token bucket (from networking) to jointly manage energy & reliability
 - Add one "spindown token" to bucket as often as reliability allows (e.g., 15 mins)
 - Energy management policy can only spin down disk if token is available
 - Allows more aggressive spindown (e.g., after 1 idle minute)
 - Separate token bucket for each idle state

Add token every 15 mins	Remove token before spinning down —
Accumulated spindown opportunities	Can be combined with any spindown policy.

Workloa d	Disk Lifetime
proj_1	4 years
proj_2	14 years
prxy_1	1 year
usr_1	2 years
src1_1	5 years

Page 5 MSST 2011

Experimental Evaluation

- Used five MSR block I/O traces
 - -proj_1, proj_2, prxy_1, usr_1, src1_1
- Two sets of experiments:
 - -Simulation
 - Hardware testbed
- Baseline Configuration
 - -8 450 GB 3.5" SAS disks, RAID-6 (2.7 TB)
- Hybrid Storage Configuration
 - -8 750 GB 3.5" SATA disks, RAID-6 (4.5 TB)
 - -2 100 GB (128 GB raw) SandForce SF-1500 SSD cache (mirrored)
- Approximately equal-cost configurations
 - Note: SATA gives extra capacity (unused in our experiments)

TRAIDe Simulator

- Trace-driven RAID array energy Simulator
- Block trace-driven storage array software simulator
 - -RAID-5 and RAID-6
 - -Energy-aware LRU flash caching
 - -Several disk spindown policies
 - Outputs the time and energy spent in each power state (reading, writing, seeking, spindown, idle, etc.) per disk
- Based upon prior research that accurately generates disk energy models from performance characteristics
 - -Minimal disk profiling required
 - -Seek time taken from disk data sheets
 - -Does not model detailed timing for each request
 - -Simulator output validated to be within 5% of measured energy

Policies Studied

- SAS: Conventional configuration w/ SAS disks, no flash, no spindown
- SATA: SATA disks, no flash cache, conservative fixedtimeout spindown
- Write-back caching (WC): SATA + write-back mirrored energy-aware flash cache (Zhu et al.)
- Token Bucket (TB): WC + competitive spindown algorithm moderated by token bucket — our contribution
 - -Disk spins down when it is idle for twice the breakeven time **and** a token is available
- Safe Oracle (SO): WC + reliability-aware oracle spindown
 - -Disk spins down during the longest 672 intervals (avg. one spindown per 15 mins for one week)
 - -Disk exactly meets its reliability target
 - -Lowest possible energy while maintaining reliability

Time spent in each power state — Simulation

Energy consumption — simulation

averages

Token accumulation over time

Page 11 MSST 2011 © 2011 IBM Corporation

Performance — measured experimentally

- Heaviest hour of proj2
- Measured on real hardware
 - •x86 server
 - •Linux storage stack
 - Custom flash cache
- Equal-cost comparison:
 - -8 15K SAS disks vs
 - -8 7200 SATA disks + 100 GB SSD flash cache
- SATA capacity >> SAS

- System with caching is as fast or faster than without (note log scale!)
- proj2 representative of all runs (essentially identically-shaped CDF plots)

Related Work

- Making hard disks more energy efficient
 - DRPM (Gurumurthi 2003)
 - -Intra-Disk Parallelism (Sankar 2008)
- Disk Spin-down Techniques
 - -Laptops (Wilkes 1992, Douglis 1995)
 - Massive Array of Idle Disks (MAID) (Colerelli 2002)
 - Popular Data Concentration (Pinheiro 2004)
 - PARAID (Weddle 2007)
 - -Write Off-Loading (Narayanan 2008)
- Flash Caching
 - SieveStore (Pritchett 2010)
 - FlashCache (Kgil 2006)
- Energy-Aware Caching
 - Power-Aware Cache Management (Zhu 2004)
 - NVCache (Bisson 2006)
 - Augmenting RAID with SSD (Lee 2008)
 - C-Burst (Chen 2008)
- Disk Reliability
 - Failure trends in a large disk drive population (Pinheiro 2007)

Conclusions

- 85% energy savings possible with spindown and hybrid storage
- Disk energy management must be reliability-aware
- Reliability management and energy management are separable concerns
- Token bucket reliability management is near-optimal
- Intermediate power states provide little benefit

Thank you!

Questions?

SAS vs. SATA disks

- "SAS": High RPM (10–15K), lower latency, lower capacity, higher power, higher MTBF*, fewer spinups, higher cost
- "SATA": Low RPM (5–7K), higher latency, higher capacity, lower power, lower MTBF, more spinups, lower cost
- Conventional wisdom: Only SAS drives can meet enterprise workload demands
 - -E.g. Sub-10 ms latency
- Flash changes the situation
 - -Sub-ms flash latency can offset slower SATA disks

Reliability-Aware (Safe) vs. Unsafe Oracle

Active Idle

Active (R, W, S)

SSD

Spin-Up (all)

Why time in each state

Include hit rates here

Workloa d	Cache Read Hit Rate (%)
proj_1	39
proj_2	52
prxy_1	65
usr_1	67
src1_1	85

Performance (Simulated)

