Semi-RAID: A Reliable Energy-Aware RAID Data Layout for Sequential Data Access

Li Xiao Tan Yu-An Sun Zhizhuo Beijing Institute of Technology

Outline

- ➤ Introduction to RAID architecture
- Storage requirement of video surveillance system
- ➤ Pros and Cons of traditional RAID architecture
- ➤ The idea of Semi-RAID (S-RAID)
- > S-RAID 4 and S-RAID 5 data layout
- > Improvement of S-RAID by grouping
- ➤ Power consumption and Performance of S-RAID

Introduction to RAID architecture

What is RAID?

- RAID combines multiple disk drive components into a logical unit.
- Data is distributed across the drives in one of several ways called "RAID levels".
- Advantages of RAID:
 - Increasing the reliability of data storage
 - Improving the read/write performance of data access

Introduction RAID architecture

RAID-4

- Improve performance by block-level striping
- Exploit XOR parity for fault tolerance
- Use one dedicated parity disk (bottleneck)

$$P = \bigoplus_{i} D_{i} = D_{0} \oplus D_{1} \oplus \cdots \oplus D_{n-1}$$

$$P_{k} = \bigoplus_{i=0}^{n-1} B_{i,k}$$

$$= B_{0,k} \oplus B_{1,k} \oplus \cdots \oplus B_{n-1,k}$$

Introduction to RAID architecture

RAID-5

- Improve performance by block-level striping
- Exploit XOR parity for fault tolerance
- Distribute parity blocks across data disk

Storage requirement of video surveillance system

Large storage capacity

- ➤ A disk array of 16 2TB-disk has 30TB available capacity
- ➤ Assume 2Mb/s video code rate, 30TB storage space is capable for video data of (Day · Channel):
 - > 24*3600s*2Mb/s=24*3600*0.25MB=21.6GB
 - > 30TB/21.6GB=30000GB/21.6GB=1388 Days
- ➤ With One camera installed, The disk array can keep 1388 days' video data.
- ➤ With 32 cameras installed, The disk array can keep 1388/32≈43 days' video data.

Storage requirement of video surveillance system

High reliability

- ➤ Users of video surveillance system (airport, prison, etc.) need to meet strict regulations
- > video surveillance system runs 7X24 hours
- The video fragment loss will cause extreme high risk , so the intact of data must be guaranteed .
- Performance of the video surveillance must be guaranteed in degraded mode and rebuild mode of RAID.

Storage requirement of video surveillance system

Moderate performance

- ➤ To support 32 cameras saving video data concurrently, the disk array should have a write bandwidth of
- > 32*2Mb/s=32*0.25MB/s=8MB/s
- ➤ Indeed, 32 cameras only write 8MB data every second.
- > 100 Cameras: 100*0.25MB/s=25MB/s

Advantages of traditional RAID

- Large Storage Capacity requirement
 - > It can be satisfied
 - ➤ Disk array supports at least 16 disks, scales well through Disk Expansion Enclosure.
- Data protection requirement
 - > It can be satisfied
 - ➤ Use RAID-4/5, data can be rebuilt during disk failure
- Performance requirement
 - ➤ It can be satisfied, but don't take full advantage of the performance of disk array
 - ➤ 32 cameras only need 8MB/s, 100 cameras only need 25MB/s

Disadvantages of traditional RAID

- High failure rate of individual disk
 - ➤ Disk lifetime depends on its working hours
 - > All disks in RAID work 7X24 hours

- Current solution: divides RAID into sub-RAID systems, idle sub-RAID can be put into sleep
 - > Every sub-RAID needs a separate parity disk
 - ➤ Management of the sub-RAIDs is complicated.

Disadvantages of traditional RAID

Partitioning the storage system into RAID systems.

Disadvantages of traditional RAID

- High power consumption
 - ➤ Video surveillance has a moderate requirement on performance, it can be satisfied by one or a few disks' bandwidth.
 - > To meet the high performance requirement, a plurality of disks must work parallel
 - ➤ All disks in RAID work 7X24 hours, consuming large amount of energy.
 - ➤ The high performance provided by parallel working disks cannot be exploited by video surveillance application
 - The heat generated by high-load disks needs extra cooling system

Observations

- Video surveillance system doesn't need many disks work parallel
 - ➤ Rearranging the video stream data sequentially can save multi-channel video data into a single disk
 - Performance of a single disk can satisfy the requirement
 - ➤ The sequential write speed of SATA disk is around 100MB/s Seagate 2TB SATA Test Results:

The ideas of Semi-RAID (S-RAID)

Target:

- ➤ In a RAID system, All disks are not working parallel, only a few disks needs to be in active mode.
- Preserve the data protection function of tradition RAID

S-RAID is not DVR (DVR is equivalent to Non-RAID)

- ➤ DVR writes data to a single disk, and only move to the second disk when the first disk is full
- > DVR has no data protection function

The ideas of Semi-RAID (S-RAID)

Ideas:

- S-RAID doesn't need stripping
- Rearrange the data layout to make it suitable for video surveillance and other applications alike。

S-RAID 4

S-RAID 4 resembles RAID 4 in:

- Data is stored in data blocks
- Exploit XOR parity for fault tolerance
- Use one dedicated parity disk (bottleneck)

S-RAID 4 differs from RAID 4 in:

Data Layout (like N-RAID)
 Disks cannot work in parallel to increase performance when reading / writing LBA adjacent data blocks

S-RAID 4 Data Layout

Data Layout of Semi-RAID 4

	D_0	D_1	D_2	D_3	Р
Stripe ₀	B_0	B _n	B _{2n}	B _{3n}	P ₀
$Stripe_1$	B ₁	B _{n+1}	B _{2n+1}	B _{3n+1}	P_1
$Stripe_2$	B ₂	B _{n+2}	B _{2n+2}	B _{3n+2}	P ₂
$Stripe_3$	B ₃	B _{n+3}	B _{2n+3}	B _{3n+3}	P ₃
	• • •	• • •	• • •	• • •	• • •
Stripe _{n-1}	B _{n-1}	B _{2n-1}	B _{3n-1}	B _{4n-1}	P_{n-1}

Read and Write Operation in S-RAID

- Read operation is the same as RAID 4
 - > Reading from standby disk needs to wake up the disk
- In the case of sequential write operation:
 - ➤ Use disk 1 first, then use disk 2, and so on...
 - Only one data disk and one parity disk are active at a time
 - > All other data disks are in standby mode
 - ➤ While writing to the data disk, the parity should be recomputed at the same time (not like N-RAID)
- In the case of random write operation:
 - > Other data disks may be woken up

Optimizations of S-RAID 4

- One write request needs 4 I/O operation:
 - Read old data and old parity;
 - Write new data and new parity;
- Optimizations
 - > Readahead (read old data and parity in large chunk)
 - Aggregation (aggregate new data into large chunk before write to disk);
 - > Caching;
- Test results:
 - ➤ Single disk Seq Read/Write: 110MB/s / 107MB/s。
 - > 16MB Cache, 1 disk S-RAID 4 Seq Write: 32MB/s.
 - > 1GB Cache, 1 disk S-RAID 4 Seq Write: 52MB/s .

Grouping S-RAID 4

Performance limitation

> S-RAID4 has only one data disk work at one time

Grouping Strategy

- > Allow more than one disk (group) working at the same time
- use stripping in each group, write data blocks parallel
- ➤ The more disks there are in active mode, the higher the performance will be. But power consumption increases and disk lifetime decreases accordingly.
 - When all disks are in active mode, the disk array is equivalent to a traditional RAID
- > The size of group is fixed, thus it must be planned in advance
- Grouping can be used in both S-RAID 4 and S-RAID 5

S-RAID 4 Group Data Layout

Group Data Layout of Semi-RAID 4

S-RAID 4 Group Data Layout

- The LBA of the array is mapped to blocks in such a way that the first half of the LBA space lies in G_0 , and the second half of the LBA space lies in G_1 .
- when the requests are clustered in group G_0 , disks in group G_1 could be put into standby mode.

A group includes at least a whole data disk, therefore there is enough LBA space in one group for the sequential request to cluster in.

Advantages of S-RAID 4

- Reduce the power consumption
 - > Only part of the disks array are in active mode at the same time
- Enhance disk reliability
 - Working hours of individual data disk is much shorter than the working hours of the disk array
- Protect data from disk failure
 - S-RAID 4 data layout is like N-RAID data layout, but S-RAID provides data protection function of the traditional RAID

Limitation of S-RAID 4

- S-RAID 4 uses a fixed parity disk like the traditional RAID 4, hence the parity disk may also become a bottleneck.
- This not only affects the performance but also reduces reliability, because parity disk cannot be put into standby mode.
- To ease the bottleneck of parity disk, we introduce the S-RAID 5 data layout that uniformly distributes parity blocks among the disks.

4. Semi-RAID Data Layout

Data Layout of Semi-RAID 5

Performance of S-RAID 5

• Read Performance of S-RAID 5

Performance of S-RAID 5

• Write Performance of S-RAID 5

Power Consumption of S-RAID 5

To evaluate the power saving effect of S-RAID in actual situation, we test the power consumption of a video surveillance system with 32 digital cameras.

We run the experiment for a time period of 1 hour and measure the power consumption of each disk in the S-RAID 5 every second.

Power Consumption of S-RAID 5

Experiment Results:

The S-RAID 5 includes 5 Seagate ST3500418AS 500G 7200RPM Disks, and is divided into 2 groups of 2 disks. The number of vertical group is set to 5, the same as the number of the disks.

Conclusion

- S-RAID is an alternative RAID data layout optimized for sequential data access, S-RAID provides extra reliability and high energy efficiency.
- The trade-off is that, the performance drops in S-RAID especially for write request. So, S-RAID is only suitable for applications like video surveillance, CDP, VTL, etc.
- S-RAID addresses performance issue by adjusting the group size.

Conclusion

- Applicable scenarios: (Sequential data access)
 - > Video surveillance
 - > CDP (Continuous Data Protection)
 - ➤ VTL (Virtual Tape Library)
- Inapplicable scenarios:
 - Database (exhibits random data access pattern)
 - Video-on-demand, File sever, etc.(ask for high performance)

Further Work

- Set and manage dynamic group size in S-RAID, Therefore the same S-RAID can adapt to the variations of data transfer rate of the application.
- Design fine-grained schedule algorithm for disk spindown and spin-up. instead of waiting for the idle disk for a constant length of time
- Exploit log-structure file system to obtain sequential write workloads.

Thank you!