| 4 NATIONAL CENTER FOR
—.
EEEEEEEEEEEEEEEEEE CoMPUTING FaCiLITY N\

COMPUTATIONAL SCIENCES

Harmonia: A Globally Coordinated Garbage
Collector for Arrays of Solid-state Drives

Presented by Youngjae Kim

Collaborators: Sarp Oral, Galen M. Shipman, Junghee Lee

David Dillow, and Feiyi Wang

May 26, 2011

.S. DEPARTMENT OF

NERGY % Oax RinGe Narionar Lasoratory

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY




A Demanding Computational Environment

Jaguar XT5 18,688 224,256 | 300+ TB 2.3 PFlops
Nodes Cores memory

Jaguar XT4 7,832 31,328 63 TB 263 TFlops
Nodes Cores memory

Frost (SGlI Ice) 128 Node institutional cluster

Smoky 80 Node software development cluster

Lens ' 30 Node visualization and analysis cluster




Spider: A Large-scale Storage System

* Center-wide File System
— Based on Lustre file system

* 192 Lustre I/O Servers
— Over 3TB of memory (on Lustre I/O servers)

 Back-end Disk Arrays
— Over 10.7 PB of RAID 6 formatted capacity
— 13,400 x 1 TB HDDs

* IB Network

— Auvailable to many compute systems through high-speed IB network
e Over 2,000 IB ports
* Over 3 miles (5 kilometers) cable
* Over 26,000 client mounts for I/O
* Peak I/O performance is 240 GB/s




Spider Architecture
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-
Hard Disk Drive

 Main Storage Media for Object Storage Targets (OSTs)
« OST =10 x 1TB Disks (8+2 RAID 6 Configuration)

« Hard Disk Drive

— Mechanical device
— Spindle and voice-coil motors




Emergence of NAND Flash based SSD

* NAND Flash vs. Hard Disk Drives

— Pros:
« Semi-conductor technology, no mechanical parts

« Offer lower access latencies
— s for SSDs vs. ms for HDDs
* Lower power consumption
* Higher robustness to vibrations and temperature

— Cons:
« Limited lifetime 5 D
— 10K - 1M erases per block gud 6(0 ’{"0

" X @2
e High cost N/ @

— About 8X more expensive than current hard disks
* Random writes can be sometimes slow
— Performance variability




SSD based Object Storage Target (OST)

« SSD based OSTs

— PCI Express SSDs
* Fusion IO ioDrive, Virident tachlOn, OCZ RevoDrive, etc

~ SATASSDs $13,990/640GB

 Intel, SuperTalent, Samsung, etc

~1.3GB/s
e PCle SSDs versus RAID of SATA SSDs |
SSD Type Performance Cost EAuLci:Ogcizole&[l)?J%BioDrive
PCIE SSD (Fusino STl B
0) $799/64GB
Array of SATA SSDs High Relatively Cheap Intel X25-E
64GB SSD

~280MB/s



-
Efficiency Analysis of SSD RAID

* RAID of SSDs
— Configured 6 SSDs in RAID-0 using Mega RAID controller
— Mega RAID controller is only able to connect up to 6 SSDs.

* Cost efficiency analysis
— Metric (GB per $ and MB/s per $)
— Compared RAID-0 of 6 x SATA SSDs versus 1 x PCIE SSD

« SSDs used
SSD Type Specification Size (GB)
MLC SSD Super-Talent MLLC SATA |l SSD 120 415 296
SLC SSD Intel SLC SATA Il SSD 64 799 82

PCle SSD  Fusion-io ioDrive Duo MLC PCle x8 SSD 640 13,990

FRIDGE
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-
Capacity Efficiency Analysis
GB per dollar

Normalized Effiency
w

Device Type

M 6 MLC SSDs (RAID-0)  ® 6 SLC SSDs (RAID-0)  m 1 PCle SSD
* Total cost
— N (RAID controller) x $ (RAID controller) + N (SSD) x $ (SSD)

— We used $579 for PCIE LSI Mega RAID controller card. % OAK
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Performance Efficiency Analysis
MB/s per dollar
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M 6 MLC SSDs (RAID-0)  m 6 SLC SSDs (RAID-0)  m 1 PCle SSD
* Total cost
— N (RAID controller) x $ (RAID controller) + N (SSD) x $ (SSD)

— We used $579 for PCIE LSI Mega RAID controller card. %{){})KGE
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-
L essons Learned

 From the cost-efficiency analysis, we learned.:

— RAID of SSDs is more cost-efficient than PCIE SSD in terms of capacity
per dollar and bandwidth per dollar.

— In particular, MLC based SSDs in RAID is more cost-efficient than SLC
based SSDs.

« Then what are problems and challenges in SSD RAID?
— Does SSD RAID offer sustainable bandwidth?
— If not, why not? Any solution?

11



RAID of SSDs”?

* Problems

— Overall bandwidth of RAID of SSD is dependent
on the slowest SSD.

— GC process of each SSD in RAID of SSDs is
is not globally coordinated.

* Challenges

— There is no functional support for coordinating individual GC processes
at the conventional RAID controller.

— We need to develop a mechanism for RAID controller to be able to
coordinate individual GC processes in RAID of SSDs.

* |[dea and Solution
— Harmonia!
— A Coordinated Garbage Collector for RIAD of SSDs
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NAND Flash based SSD

System Architecture

fwrite (file,data) Application

!

Block write
(LBA, size)

|

Page write

(Bank, Block, Page)

l

Control Signal

File System (FAT, Ext2, NTFS...)

Block Device Driver

I Block Interface (SATA, SCSI, etc) |

Memory

[ wite suter | EREIGHES

Garbage
Collector

—

. Flash  Device
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Basics of NAND Flash Memory

o NAND Flash Chip

* Block, Page (Data + OOB)
e (OOB (Out-Of-Band)

<> ECC, Logical Page Address,
State of page (valid, invalid,
free)

Data OOB Data OOB

Flash Chip Block Diagram

o Three Operations — Read, Write, Erase
Reads and writes are done at the granularity of a PAGE
Erases are done at the granularity of a BLOCK

lash Size Access Time
Flas
Page Page .
(Data) (OOB) Block Page Read | Page Write | Block Erase
Large Block 2KB 648 (128 +4)KB | 130.9 us 405.9 us 2 ms

o Out-of-place update operation (vs. In-place update)

® is more efficient than in-place update operation, however needs to
collect garbage (invalid pages)
14



-
Merge Operations in Garbage Collection

Switch and Partial Merge Operations
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-
Problem: Expensive Full Merge Operation

Full Merge Operation
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Pathological Behavior of SSDs

 Does GC have an impact on the foreground operations?

— If so, we can observe sudden bandwidth drop
* More drop with more write requests
* More drop with more bursty workloads

* Experimental Setup

— SSD devices

* Intel (SLC) 64GB SSD

« SuperTalent (MLC) 120GB SSD
— 1/O generator

* Used libaio asynchronous I/O library for block-level testing
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-
Bandwidth Drop for Write-Dominant Workloads

* Experiments
— Measured bandwidth for 1MB by varying read-write ratio
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Performance variability increases as we increase write-percentage
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-
Performance Variability for Bursty Workloads

Experiments
— Measured SSD write bandwidth for queue depth (qd) is 8 and 64
— Normalized I/0O bandwidth with a Z distribution

110

=| Intel SLC (SSD) | SuperTalent MLC (SSD)

3 nG m T i 1

Performance variability increases as we increase the arrival-rate of
requests (bursty workloads).
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-
L essons Learned

 From the empirical study, we learned:

— Performance variability increases as the percentage of writes in
workloads increases.

— Performance variability increases with respect to the arrival rate of write
requests.

« What about the performance variability of RAID of SSDs?
— Does it become worse for arrays of SSDs than for individual SSDs?
— If so, what is the main cause?

20



Pathological Behavior of RAID of SSDs

* Does uncoordinated GCs prevent bandwidth improvement?

— If so, should we be able to observe higher variability for RAID of SSDs than
that for single SSDs?

Computer

!

RAID Controller

 Experimental Setup

— RAID configuration
* RAID-0 using 6 SSDs (striping)

Block 2
— SSD devices Block 4 Block 5

Block 6

Block 7 Block 8 Block 9

* Intel (SLC) 64GB SSD

o SuperTalent (MLC) 120GB SSD
— 1/O generator

* Used libaio asynchronous I/O library for block-level testing

Block Striping
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-
Bandwidth Drop for Write-Dominant Workloads

* Experiments
— Measured bandwidth for 1.87 MB by varying read-write ratio (qd=64)
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Performance variability increases as we increase write-percentage
of workloads.

“RIDGE

2 2 -‘i\'ational Laboratory




-
Performance Variability for Bursty Workloads

* Experiments
— Measured bandwidth for queue depth=64, 60% writes of workloads
— Normalized I/0O bandwidth with a Z distribution

Fitted Distribution Comparison Fitted Distribution Comparison

——  Single SSD - —— Single SSD
--- 4 8SDs RAID-0 = ---  4SSDs RAID-0
-—-— 6 88Ds RAID-0 I -—-— 6 585Ds RAID-0

(1.6

04

02 03 04 05 06

0.2

00 0l

(.0

RAID-0 of MLC SSDs RAID-0 of SLC SSDs

Performance variability increases as we increases the number of
participant SSDs in RAID array.
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Performance Variability (Cont’)

* Per-Drive Bandwidth (MB/s per drive)
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Uncoordinated Garbage Collectors

Time

FRIDGE

Mational Labotatory

- Local GC process - Aggregate degraded performance *Om
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A Globally Coordinated Garbage Collector

Time

Mational Labotatory

FRIDGE

- Local GC process - Aggregate degraded performance &0\1\
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-
Design

e SSD optimized RAID controller (O-RAID)

— A RAID controller designed to enable global coordination of garbage
collection when used with SSDs supporting that capability.

e Global GC optimized SSD
— An SSD designed for participating in a globally coordinated
garbage collection process in an O-RAID.
 GC coordination algorithms

— A set of algorithms to perform a globally coordinated GC process
on a given SSD-based RAID set comprised of an O-RAID and
multiple O-SSD devices.

 Reactive method vs. Proactive method

* Extension of storage protocols

— Extension of storage protocols such as SATA and SCSI for
controlling the additional capabilities of O-SSD device.

27



-
Experimental Setups

 Simulator
— Microsoft Research’ SSD simulator based on DiskSim
— Configured RAID-0 of 8 32GB SSDs using 4KB Stripe unit size

 Workloads

28

— HPC-like Synthetic workloads
» Used the synthetic workload generator in DiskSim

« HPC (W): 80% Writes, HPC (R): 80% Reads
— Enterprise-scale Realistic workloads

Average request Read ratio || Arrival rate
Workloads size (KB) (%) (IOP/s)
Write Financial 7.09 18.92 47.19
dominant Cello 7.06 19.63 74.24
Read TPC-H 31.62 91.80 172.73
dominant OpenMail 9.49 63.30




Results for HPC-like Synthetic Workloads

1.2
v 1
g o S
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Response time improvements are 69% and 55% for HPC(W) and
HPC(R) workloads respectively.

Significant improvement on standard deviations by GGC
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Results for Realistic Workloads

Normalized Average Response

30
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Performance improvement is about 10%.

Standard deviation significantly improves by GGC.
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Conclusions

 Empirical experiments using real SSDs

— We showed that RAIDs of SSDs exhibit high performance variability due
to uncoordinated GC processes.

« Harmonia: A coordinated garbage collector

— We proposed Harmonia, a global garbage collector, that coordinates the
local GC process of the individual SSDs.

 Results

— We showed that for bursty workloads dominated by large writes, a 69%
improvement in response time and a 71% reduction in performance
variability when compared to uncoordinated garbage collection.
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