

Rejuvenator: A Static Wear Leveling Algorithm for NAND Flash Memory with Minimized Overhead

Muthukumar Murugan and David H.C. Du

Agenda

- NAND flash memory Background
- Wear leveling Background
- Motivation
- Rejuvenator Design
- Adaptability in Rejuvenator
- Evaluation
- Conclusion

Background: NAND Flash Memory

- An array of flash blocks
- Read/write in page units
- Typical block = 128K; page = 2K or 4K
- Must erase block before write
- Read = 25 microseconds
- Write = 200 microseconds
- **Erase** = **1500** microseconds
- Limited number of erases per block
 - 100K for SLC
 - 10K for MLC

Background: Wear Leveling

Background: Static Wear Leveling

- Static wear leveling
 - Moves stale cold data around periodically

Least worn blocks

Most worn blocks

- Rejuvenator
 - Static wear leveling algorithm
 - Comprehensive design WL, GC and FTL components

Motivation

- General wear leveling goals :
 - Improve lifetime of flash memory
 - Reduce variance in erase counts of blocks
- Rejuvenator goals :
 - Prevent a **single block** from reaching its lifetime faster than other blocks
 - Reduce write amplification due to static cold data migration
 - Do static cold data migration judiciously!
 - Adapt to changing workloads and rate of increase in erase counts

Existing wear leveling algorithms

TrueFFS:

Virtu Observation: High eras variance in erase counts
 Folding stranges mapping to one physical erase unit

- Static wear leveling done periodically
- Valid data in the chain copied to one physical erase unit

Existing wear leveling algorithms

- Dual Pool:
- Two
 Observation: More than necessary data migrations due to constant threshold
 Coarse granted control of process
- Threshold based static wear leveling
 - Swap data between oldest and youngest blocks
- No explicit hot data identification

Can we control variance in erase counts with just enough cold data migrations?

Rejuvenator - Design

Rejuvenator: Overview

- Maintain lists of blocks based on erase count
- Initially all blocks associated with list 0

Rejuvenator: Overview

- Maintain lists of blocks based on erase count
- Initially all blocks associated with list 0
- As blocks are erased they get associated to higher lists
- Difference between minimum and maximum erase count is

```
diff = max_wear – min_wear
diff ≤ T-1
```


Rejuvenator: Mapping

Rejuvenator: Hot data Identification

- Account for recency and frequency
- LRU list with reference counts
- Window size : 1024
- Hot : Most frequently written LBAs
- Any LBA having ref. count
 - > Average reference count is hot

Rejuvenator: Handling Writes

Rejuvenator: Data Migrations

- Sliding window size ≤ T
- Window movement restricted at
 - Top : Cold data
 accumulation in lower lists

Rejuvenator: Data Migrations

$$diff = T - 1$$

- Sliding window size ≤ T
- Window movement restricted at
 - Bottom: Invalid blocksaccumulate in listmin_wear +(T-1)

Very Rare!

Rejuvenator: Garbage Collection

- Garbage collection
 - Copy valid pages of blocks elsewhere
 - Erase current block

Cleaning Efficiency –

No. of clean and invalid pages

of bld Enable efficient GC via

intelligent wear leveling

- Garbage collection starts in lower numbered lists
- Intuitively :
 - Lower numbered lists have lesser erase counts
 - Contain more invalid pages and hence better cleaning efficiency

Adaptability

Impact of the value of T

- Larger value of T
 - Large variance in erase counts
- Smaller value of T
 - Static cold data migration is done more often
- Goal: Strike a balance between the two
- Adapt the value of T depending on lifetime of flash memory
- Tighten the constraints on variance of erase counts gradually

Adapting the value of T

CR

- The value of T is very large in the beginning
- As the blocks get older the value of T is reduced gradually
- Decrease in T α life_diff

- Decreasing T
 - Linear
 - Non-linear

100K

50K

25K

10K

Value of life_diff

1K

0

Adapting the value of m

 Value of m controls proportion of blocks storing hot data

- Adapting to workload pattern changes
 - Increase m when hot data flow is more
 - Decrease m when cold data flow is more

Evaluation

Overheads in Rejuvenator

- Memory for the lists :
 - 4 bytes per block address
 - 1 TB flash (2KB page, 128 KB block) requires
 - ~ 32MB of memory
- Memory for mapping tables :
 - < 10 % hot data (page level mapping)</p>
 - at most 250 MB of memory for 1 TB of flash
- O (1) time for list association of blocks
- No block copy for hot writes

Simulation Environment

- Simulator written in C++
- Takes LBAs from trace as input
- Consider small portion of SSD
- Maximum erase count of blocks : 2K
- Traces used: Financial, Exchange, Cello
- Synthetic traces:
 - A: Random writes
 - B: 50% sequential

Lifetime

25% Improvement on the average

Standard Deviation in Erase counts

Better control of variance in erase counts

Standard Deviation in Erase counts - Trend CR

Tighter constraints only in the end

Static Cold Data Migrations- Trend

Tighter constraints only in the end

Wear Leveling Block Erase Overhead

Reduced by 15-18 times

Conclusion

- Rejuvenator
 - manages variance in erase counts with just enough static cold data migrations
 - improves lifetime of flash memory
 - manages data according to degree of hotness
 - deals with performance lifetime tradeoff
- Rejuvenator adapts to changes in workload patterns
- A case for integrated wear leveling and GC operations