
Wayne State University
Cluster and Internet Computing Laboratory 

YouChoose: A Performance Interface Enabling
Convenient and Efficient QoS Support for

Consolidated Storage Systems

Xuechen Zhang, Yuehai Xu, and Song Jiang

Department of Electrical and Computer Engineering
Wayne State University



2

Data-intensive Applications using 
Consolidated of Storage Systems

Applications become more data intensive
– Scientific applications may analyze large data sets. 
– Internet search and E-commerce rely on efficient data access.
– Applications’ performance highly depends on I/O service quality. 

Advantages of consolidated storage system
– High utilization due to resource sharing.
– Cost-effectiveness of centralized management.
– Lower operating cost. 

Each user essentially reserves a virtual storage device.  
– Contractual quality of services (QoS) requirements (SLA). 

– How to specify the I/O QoS requirements?



Amazon EC2 is a web-based service that provides resizable computing 
capacity in the cloud.
– Create an Amazon Machine Image (AMI), including your programs 

and data. 
– Upload the AMI into Amazon data storage facility. 
– Choose the computing capacity (instance type).  

An Example Issue: Amazon Elastic 
Compute Cloud (Amazon EC2)

Equivalent CPU capacity of a 1.0-1.2 GHz 
2007 Opteron or 2007 Xeon processor. 



Internet

Consolidated 
storage server

E-Commerce 
Server 

TPC server

Search engine 
server

Computing 
Server

Service 
subscribers

Service Level 
Agreement 

(e.g., response time<100ms, 
throughput>100 trans./s)

(e.g., execution 
time < 5 minutes)

100MB/s or 10MB/s 
throughout ? 

System Structure

100ms or 10ms 
latency? 



5

Issues with the Use of Fixed I/O Bounds

I/O intensity can change from time to time.
– Requests in the burst period share the same latency bound with those 

in the quiet period?
– If the bound is determined according to requests in the quiet period, 

how much resources are demanded to meet it during the busy period?

Request size can be highly variable.
– One common latency bound for small and large requests?
– If the throughput is in form of MB/s, any incentive to aggregate small 

requests into one large one?

Spatial locality of requests can vary substantially.
– One common throughput bound for random and sequential requests?
– Shall the bound be determined according to random requests or 

sequential ones?



6

Implications of Fixed I/O Bounds

They may not reflect applications’ real QoS needs.

They may discourage programmers’ efforts on the 
optimization of I/O requests.

They can pose highly variable resource demands on the 
storage system.



7

Our Solution: Use Reference Storage 
System as Performance Interface

Assume that a user can receive satisfactory application performance with 
use of a dedicated storage system.  
– He wants to keep the performance after outsourcing I/O service to a 

shared storage system.

The dedicated storage system is used as its performance interface.
– The interface is called Reference Storage System (RSS) 
– By implementing the interface, the user will receive performance at least 

as good as that received on the RSS.

The RSS interface is not subject to variation of I/O behaviors.  
– The interface is tangible to end users and is more relevant to application 

performance.
– The interface can easily bound the resource demand on the shared 

storage system.



Interconnection Fabric 

controller controller controller

Application 
server 1

Application 
server 2

Application 
server n

…..

HDD disk array SSD disk array Hybrid disk array

Request 
Streams

QoS-aware 
Scheduler

iSCSIiSCSI FibreChannel

VSD VSD VSD VSDVSDVSD VSD VSD VSD VSD

Virtual 
Storage 
Device



Interconne

controller contro

Application 
server 1

Application 
server 2

HDD disk array SSD dis

Request 
Streams

QoS-aware 
Scheduler

iSCSIiSCSI

VSD VSD VSD

Dedicated Local Storage

Application

RSSPerformance 
Interface

Reference Storage System 



Interconnection Fabric 

controller controller controller

Application 
server 1

Application 
server 2

Application 
server n

…..

HDD disk array SSD disk array Hybrid disk array

Request 
Streams

QoS-aware 
Scheduler

iSCSIiSCSI FibreChannel

RSS RSS RSS RSSRSSPerformance 
Interface

VSD VSD VSD VSD VSD



11

YouChoose: Implementation and challenges 

Interpret RSS for the I/O scheduler to implement the interface
– Predict what the latency of an arriving request is if it was received by 

RSS.
– It’s a challenge with different access patterns and system 

configurations.

Efficiently implement the RSS interface.
– Meet simultaneously RSS requirements for different VSDs
– Able to exploit request locality for system efficiency. 

Migrate virtual storage devices (VSDs) for high device utilization.
– Different disk arrays exhibit various efficiency in hosting VSDs.
– Automatically place and migrate VSDs to host arrays for high efficiency. 



Prediction with the CART Tool

The CART (Classification And Regression Trees) Tool
– Known for its efficiency and accuracy.
Model Training 

r1

r2

r3

rn

.

.

.

Training 
Workload RT1

RT2

RT3

RTn

.

.

.

FV1

FV2

FV3

FVn

.

.

.

Request Feature Vector (request size, location, sequentiality, R/W)

Reference 
System

Response 
Time (RT) 

Model 
Construction

Trained 
Storage Model

12



Prediction with the CART Tool (cont’d)

Use the Model

r1

r2

r3

rn

.

.

.

PRT1

PRT2

PRT3

PRTn

.

.

.

Request Feature Vector (request size, location, sequentiality, R/W)

Trained 
Storage Model

13

Real Workload

Predicted 
Response 
Time (PRT) 



Stream 1 Stream 2 Stream 3

Reference 
Clock 1

Reference 
Clock 2

Reference 
Clock 3

Wall Clock

YouChoose Request Scheduling

We can predict a request’s 
service time on RSS (ref_time)

N+1 clocks:
– One wall clock (wall_clock) 
– N reference clocks (ref_clock).

When the stream is considered 
for scheduling: 
– If its request is dispatched, 

then 
ref_clock += ref_timereq

– No pending requests, then 
ref_clock = wall_clock.



VSD 1 VSD 2 VSD 3

Requested data spread 
over multiple disks

Slot K

Slot K+1

Slot K+2

Serving Requests in Batches for Efficiency



Performance Evaluation
Disk arrays simulated by DiskSim

– Fast disks: QUANTUM TORNADO (10025RPMs, 1.245ms)
– Slow disks: SEAGATE ST32171W (7200RPMs, 1.943ms)
Synthetic traces
– Request size: 4KB
– Spatial locality x%    [0%-100%]: the probability of two consecutive 

requests for contiguous data.  
Real-world I/O traces
– Financial : traces from OLTP applications at two large financial 

institutions.
– WebSearch: traces from a popular search engine.
– OpenMail:  collected on a production e-mail system running the HP 

OpenMail
– VideoStreaming: collected when playing a movie (sequential access)



Accuracy of the RSS Interface interpreted by CART

17

R
el

at
iv

e 
Er

ro
r R

at
e 

(%
) 

WebSearch

Time (seconds)



Estimation Accuracy for Time Windows 

for Individual Requests for 0.08s Time Windowfor 0.04s Time Window

More than 85% of 
relative errors are 
smaller than 15%



Impact of Spatial locality  (on Dedicated RSS)

19



Impact of Spatial locality 
(on Shared Storage w/ YouChoose) 

20



Impact of Spatial locality 
(on Shared Storage using the 100 IOPS Bound)

21



Performance Isolation (on Dedicated RSS)

22

100% 
Locality

75% 
Locality

0% 
Locality

75% 
Locality



Performance Isolation
(on Shared Storage w/ YouChoose) 

23

100% 
Locality

75% 
Locality

0% 
Locality

75% 
Locality



Performance Isolation 
(on Shared Storage using the 100 IOPS Bound)

24



Performance Isolation 
(Real-world workloads on dedicated RSS)

25

WebSearch

OpenMail

WebSearch

Financial



Performance Isolation (Real-world workloads)

26



27

Conclusions

Introduce reference storage system as the 
performance interface.
– Dynamic access behavior is well accommodated in the 

interface.
– Resource demand is well capped.
Use the machine learning technique to implement the 
RSS interface. 
Achieve system efficiency with batched request 
scheduling.


