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Making Solid-State Disk Cost Competitive 

The solid-state disk (SSD) is becoming increasingly popular.
– Great performance advantage over HDD.  
– Uncompetitive price as HDD keeps rapidly dropping price. 
– Has to adopt low-end configurations to reduce cost (MLC, small DRAM 

cache). 

The built-in cache is performance critical.
– Much fast than the flash, especially for write.
– Used as buffer for data pages (well studied)
– Used as a buffer for mapping table of address translation. 

The challenge: how to maintain efficient SSD operations even witThe challenge: how to maintain efficient SSD operations even with h 
a small buffer cache?a small buffer cache?



Flash Address Translation 
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Method 1: Move the Table to the Flash (Page-level FTL)
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Method 2: Make the Table Smaller (Block-level FTL)
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For pages in a block, 

(1) The first LPN must 
be a multiple of block 
size; and 

(2) All pages’ LPNs
must be contiguous.



Maintaining Block-based Page Layout is Expensive!

The flash requires “erase before write”, or has to “out of place” write to 
erased place.
– The erase unit is block, which usually contains 32-128 pages.
– Erase operation is expensive (2ms compared with 0.1ms for read and 

0.4ms for write)
For the block-level FTL, one page write can lead to tens of reads/writes. 
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Hybrid FTL attempts to Address the Issue

Set aside a small number of log blocks to hold newly written 
pages managed by the page-level mapping.
Majority of pages stay in the data blocks managed by the block-
level mapping.
But garbage collection and block merging can still be expensive!
– because the rule for the page layout in a block is so strict!
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Only Block-based Page Layout can Help 
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S-FTL: Spatial-locality-aware FTL 

S-FTL does not impose mapping regularity to reduce mapping table.
– It uses page-level mapping. 
– The table is stored in the flash and cached in the memory. 

S-FTL can reduce the cached table by exploiting readily available locality 
in the access streams.
– Any access sequentiality exhibited in the request stream can be used 

to reduce the table.
– The more sequential, the more reduction. 
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If we know some PPNs are contiguous, all PPNs can be computed from the 
first mapping entry (head entry).
– An example:

– Therefore, only the head entry needs to be stored. 

Use bitmap to record the contiguousness of PPNs.
How much space can be saved?
– Assume 512 entries / page, 4B entries, and fully contiguous PPNs in the page 

reduced by 96.6%.
– Assume average contiguous sequence length is 2 reduced by nearly 50%.

Make the Translation Page Smaller 
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Use Multi-bit Bitmap to Retain Long Sequences
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•The first bit: is it a head entry?
•The second bit: is it my head entry?
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Efficient Caching and Batched Writeback

Exploit sequential access for efficient caching.
– Two convertible representations of a translation page: In-flash 

form and bitmap form.
– The size of translation page in the bitmap form changes.
– Use translation page as the caching unit.
– More space-efficient form is used for caching.

Use batched writeback to reduce overhead.
– Replaced dirty pages need to be written back.
– If there are only few dirty entries in a page,  keep them in the

cache for longer time.
– Batch the dirty entries for cost-effective writeback.



Experiment Setup
The SSD to be simulated:
– 32GB large-block NAND SSD
– 2KB pages, 128KB blocks, and 64KB cache by default.
– 0.12ms page read, 0.41ms page write, and 2.0ms block erasure. 
– Using the enhanced FlashSim simulator.
The FTLs to be compared:
– DFTL: use page-level mapping and cache recently used mapping entries.     

[Kim, et al. ASPLOS’09]
– FAST: use hybrid mapping. [Sang, et al, ACM TECS 2007]
– Optimal FTL: use page-level mapping with an infinitely large cache  
The  traces



Hit Ratios



Response times 



Standard Deviation of Respond Time 



Distribution of System Response Time (Financial) 

S-FTL vs. DFTL

Trans. page access reduced by 93%

Trans.  block erases reduced by 28%



Distribution of System Response Time (WebSearch) 

Hit ratio for DFTL is 93%

Hit ratio for S-FTL is 31%



Impact of Cache Size on Hit Ratio



Impact of Cache Size on Response Time 
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Conclusions

S-FTL reduces space demand for caching mapping table

S-FTL exploits only readily available spatial locality

S-FTL does not impose strict mapping rule and does not 
introduce additional garbage collection cost.

Experiments demonstrate that it can consistently improve 
response times for workloads of diverse access behaviors.


