
Wayne State University
Cluster and Internet Computing Laboratory

S-FTL: An Efficient Address Translation for Flash
Memory by Exploiting Spatial Locality

Song Jiang, Lei Zhang, Xinhao Yuan, Hao Hu, and Yu Chen

Department of Electrical and
Computer Engineering

Wayne State University

Department of Computer
Science and Technology
Tsinghua University

2

Making Solid-State Disk Cost Competitive

The solid-state disk (SSD) is becoming increasingly popular.
– Great performance advantage over HDD.
– Uncompetitive price as HDD keeps rapidly dropping price.
– Has to adopt low-end configurations to reduce cost (MLC, small DRAM

cache).

The built-in cache is performance critical.
– Much fast than the flash, especially for write.
– Used as buffer for data pages (well studied)
– Used as a buffer for mapping table of address translation.

The challenge: how to maintain efficient SSD operations even witThe challenge: how to maintain efficient SSD operations even with h
a small buffer cache?a small buffer cache?

Flash Address Translation

The Mapping Table

(in cache)

Logical Page Number
(LPN)

What if the table is too large to be fully held in the cache?What if the table is too large to be fully held in the cache?

The Mapping Rule

Physical Page Number
(PPN)

Data Pages

(In the flash)

Flash
Translation

Level

Method 1: Move the Table to the Flash (Page-level FTL)

The Mapping Table

Logical Page Number
(LPN)

The Mapping Rule

Physical Page Number
(PPN)

The Flash

Table
Miss? Writebacks?

Method 2: Make the Table Smaller (Block-level FTL)

Logical Block Number (LBN) In-block OffsetLogical Page Number (LPN)

Logical Page Number (LPN)

Page-level Table
LPN

PPNPPN00

PPNPPN11

PPNPPNnn--11

.

..

0
1

n-1

Physical Page Number (PPN)Physical Page Number (PPN)

LBN
Block-level Table

...

PBNPBN00

PBNPBN11

PBNPBNkk

1

0

k -1

Physical Page Number (PPN)Physical Page Number (PPN)
Physical Block Number (PBN)Physical Block Number (PBN) InIn--block Offsetblock Offset

For pages in a block,

(1) The first LPN must
be a multiple of block
size; and

(2) All pages’ LPNs
must be contiguous.

Maintaining Block-based Page Layout is Expensive!

The flash requires “erase before write”, or has to “out of place” write to
erased place.
– The erase unit is block, which usually contains 32-128 pages.
– Erase operation is expensive (2ms compared with 0.1ms for read and

0.4ms for write)
For the block-level FTL, one page write can lead to tens of reads/writes.

LPN = 0

LPN = 1

LPN = 2

LPN = 3

Physical Block 1

Write to
page 3

LPN = 0

LPN = 1

LPN = 2

LPN = 3LPN = 3

Physical Block 10

x

x

x

x

(Erased)(Erased)

Hybrid FTL attempts to Address the Issue

Set aside a small number of log blocks to hold newly written
pages managed by the page-level mapping.
Majority of pages stay in the data blocks managed by the block-
level mapping.
But garbage collection and block merging can still be expensive!
– because the rule for the page layout in a block is so strict!

Log Block

Switch
Merge

LPN = 0 √

LPN = 1 √

LPN = 2 √

LPN = 3 √

Data Block

LPN = 0 √

LPN = 1 √

LPN = 2 √

LPN = 3 √

LPN = 1 √

LPN = 2 √

LPN = 3 √

LPN = 4 √

LPN = 0

LPN = 1

LPN = 2

LPN = 3

LPN = 4

LPN = 5

LPN = 6

LPN = 7

LPN = 0 √

LPN = 1 x

LPN = 2 x

LPN = 3 x

LPN = 4 x

LPN = 5 √

LPN = 6 √

LPN = 7 √

Log Block

Data BlocksNew Data Blocks

Only Block-based Page Layout can Help

LPN = 0 √

LPN = 1 √

LPN = 2 √

LPN = 4 √

LPN = 0

LPN = 1

LPN = 2

LPN = 3

LPN = 4

LPN = 5

LPN = 6

LPN = 7

LPN = 0 x

LPN = 1 x

LPN = 2 x

LPN = 3 √

LPN = 4 x

LPN = 5 √

LPN = 6 √

LPN = 7 √

Log Block

Data BlocksNew Data Blocks

Only Block-based Page Layout can Help (cont’d)

10

S-FTL: Spatial-locality-aware FTL

S-FTL does not impose mapping regularity to reduce mapping table.
– It uses page-level mapping.
– The table is stored in the flash and cached in the memory.

S-FTL can reduce the cached table by exploiting readily available locality
in the access streams.
– Any access sequentiality exhibited in the request stream can be used

to reduce the table.
– The more sequential, the more reduction.

78
79
80
81

21
22
23
24

Data PPN

TransLPN = 0

TransPPN = 10

203
204
205
206

199
200
201
202

Data PPN

TransLPN = 1

TransPPN = 50

… …

Mapping Table

TransLPN = 0

TransLPN = 6

TransLPN = 10

TransLPN = 8

… …

Cached Trans. Pages

10 √
50 x

…

TransPPN

Global Translation
Directory

Th
e

Fl
as

h The C
ache

Page LPN = 10

TransLPN is 1 (10 ÷ 8)

In-page offset is 2 (10 mod 8)

PPN = 201

If we know some PPNs are contiguous, all PPNs can be computed from the
first mapping entry (head entry).
– An example:

– Therefore, only the head entry needs to be stored.

Use bitmap to record the contiguousness of PPNs.
How much space can be saved?
– Assume 512 entries / page, 4B entries, and fully contiguous PPNs in the page

reduced by 96.6%.
– Assume average contiguous sequence length is 2 reduced by nearly 50%.

Make the Translation Page Smaller

1 2 3 4 10 11 12 14
Translation Page

PPN

LPN 8 9 10 11 12 13 14 15
3

PPN of LPN 11 is 4 [1 + (11 - 8)]

1 0 0 0 1 0 0 1bitmap

1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0

Translation Page

Bitmap

1
5

Use Multi-bit Bitmap to Retain Long Sequences

8 9 10 11 12 13 14 15LPN

32 33

1 1

1 2 3 32 33 6 7 8

10 00 00 11 01 00 00 00

Translation Page

Bitmap

8 9 10 11 12 13 14 15LPN

•The first bit: is it a head entry?
•The second bit: is it my head entry?

14

Efficient Caching and Batched Writeback

Exploit sequential access for efficient caching.
– Two convertible representations of a translation page: In-flash

form and bitmap form.
– The size of translation page in the bitmap form changes.
– Use translation page as the caching unit.
– More space-efficient form is used for caching.

Use batched writeback to reduce overhead.
– Replaced dirty pages need to be written back.
– If there are only few dirty entries in a page, keep them in the

cache for longer time.
– Batch the dirty entries for cost-effective writeback.

Experiment Setup
The SSD to be simulated:
– 32GB large-block NAND SSD
– 2KB pages, 128KB blocks, and 64KB cache by default.
– 0.12ms page read, 0.41ms page write, and 2.0ms block erasure.
– Using the enhanced FlashSim simulator.
The FTLs to be compared:
– DFTL: use page-level mapping and cache recently used mapping entries.

[Kim, et al. ASPLOS’09]
– FAST: use hybrid mapping. [Sang, et al, ACM TECS 2007]
– Optimal FTL: use page-level mapping with an infinitely large cache
The traces

Hit Ratios

Response times

Standard Deviation of Respond Time

Distribution of System Response Time (Financial)

S-FTL vs. DFTL

Trans. page access reduced by 93%

Trans. block erases reduced by 28%

Distribution of System Response Time (WebSearch)

Hit ratio for DFTL is 93%

Hit ratio for S-FTL is 31%

Impact of Cache Size on Hit Ratio

Impact of Cache Size on Response Time

23

Conclusions

S-FTL reduces space demand for caching mapping table

S-FTL exploits only readily available spatial locality

S-FTL does not impose strict mapping rule and does not
introduce additional garbage collection cost.

Experiments demonstrate that it can consistently improve
response times for workloads of diverse access behaviors.

