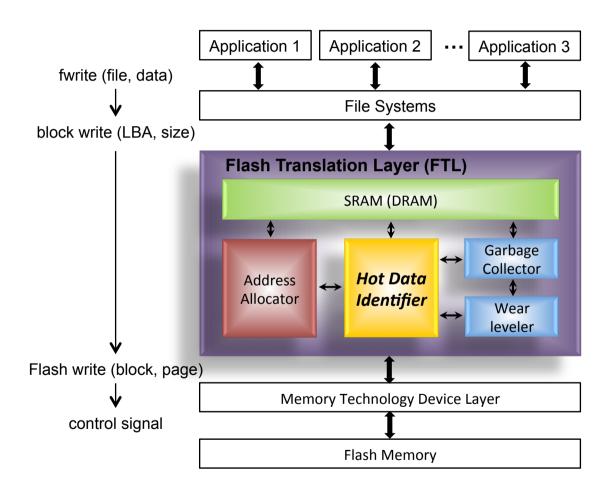


Hot Data Identification for Flash-based Storage Systems Using Multiple Bloom Filters

Dongchul Park and David H.C. Du
Computer Science and Engineering
University of Minnesota, Twin Cities

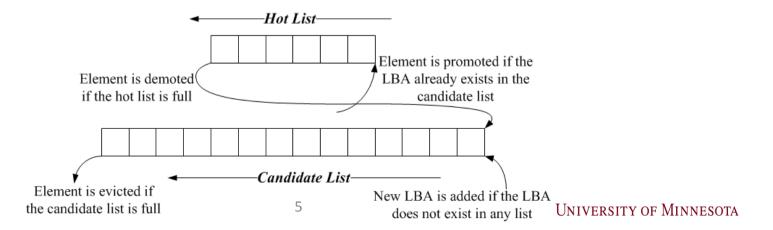
Motivations


- NAND Flash-based Storages
 - Good performance
 - Price is getting cheaper and cheaper
 - Widely adopted to a variety of fields
 - Enterprise servers as well as personal computers

- Applications (flash memory areas)
 - Garbage collection and wear leveling
 - Flash as a cache
 - Address mapping scheme
 - Hybrid SSDs
 - Buffer replacement algorithm
 - Sensor networks, etc...

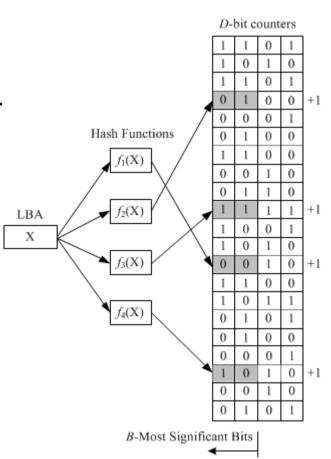
CR

Architecture of Flash-based Storage


Motivations

- Flash memory
 - Hot data identification has a critical impact on
 - The performance (due to GC)
 - The lifespan (due to WL)
 - Least investigated issue
- Factors for hot data identification
 - Frequency and recency
 - Not consider recency so much

Existing work

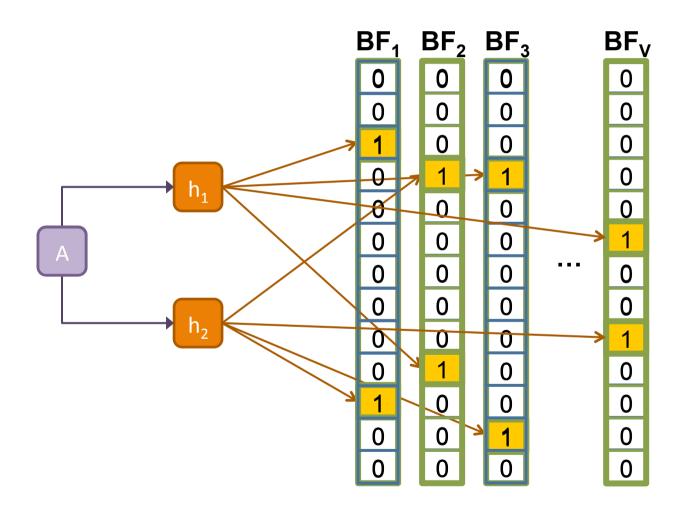

- Two-level LRU
 - Maintains a hot list and candidate list
 - Operates under LRU algorithm
 - Save memory space
 - Performance is sensitive to the sizes of both lists
 - High computational overhead

Existing work

- Multi-hash function scheme
 - Adopts multiple hash functions
 - One bloom filter with D-bit counter
 - Decay after a specific period
 - Save memory space and computational overheads
 - Baseline (ideal) algorithm
 - DAM (Direct Address Method)
 - Cannot capture recency
 - Exponential batch decay

Efficient hot data identification

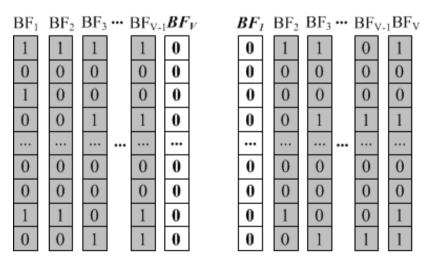
- Requirements
 - Effective recency capture
 - As well as frequency capture
 - Small memory consumption
 - Low runtime overheads
- □ Goal: design an efficient hot data identification scheme
- → Multiple bloom filter-based hot data identification scheme
- → WDAC (Window-based Direct Address Counting)


Multiple BF-based scheme

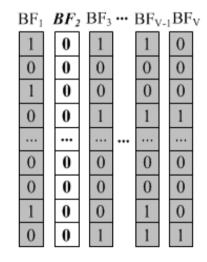
Overview

- Multiple bloom filters
 - To capture finer-grained recency
 - To reduce memory space and overheads
- Multiple hash functions
 - To reduce false identification
- Frequency
 - Does not maintain access counters
- Recency
 - Different recency coverage

Basic operations


Capturing Frequency

- No access counters
 - Needs a different mechanism
- For frequency capturing
 - Chooses one of BFs in a round-robin manner
 - If the chosen BF has already recorded the LBA
 - Records to another BF available.
 - Shortcut decision
 - If all BFs store the LBA information
 - Simply define the data as hot
 - → The Number of BF can provide frequency information

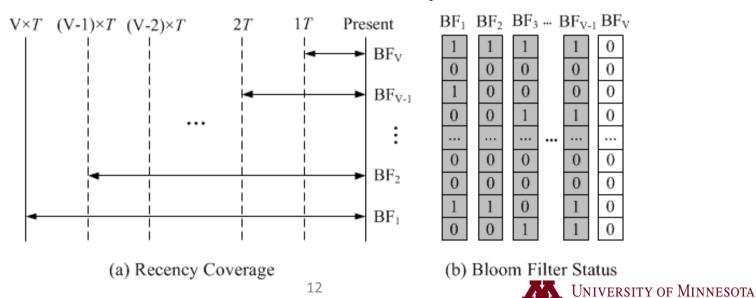

Capturing Recency

- After a decay period (T)
 - Choose one of V-BFs in a round-robin manner
 - Erase all information (i.e., reset all bits to 0)
 - → Each BF retains a different recency coverage.

(a) First T Interval

(b) Second T Interval

(c) Third T Interval



Recency coverage

For finer-grained recency

MSST 2011

- Each BF covers a different recency coverage
 - The reset BF (BF_v): Shortest (latest) coverage
 - The next BF (BF₁): Longest (oldest) coverage
- Each BF has a different recency value

Discussion: Baseline Algorithm

- DAM (Direct Address Method)
 - An existing baseline algorithm
 - Assuming unlimited memory space and all LBAs maintain their own counters.
 - Retains the same problem as Multi-hash scheme
 - Cannot capture recency properly.

→ Window-based Direct Access Counting (WDAC)

WDAC

Overview

- Adopts a sliding window concept
- Within the window, all elements have a different recency value.
 - Head: Highest recency value
 - Tail: Lowest recency value
- Maintains hot data index (HDI) values
- → WDAC can capture very-fine grained recency information

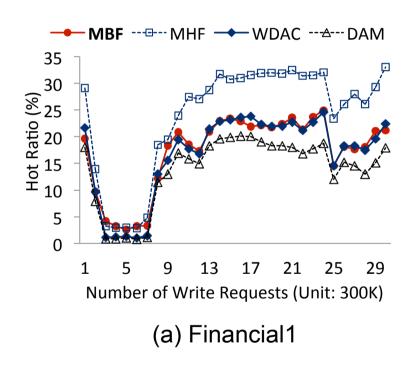
WDAC Operations

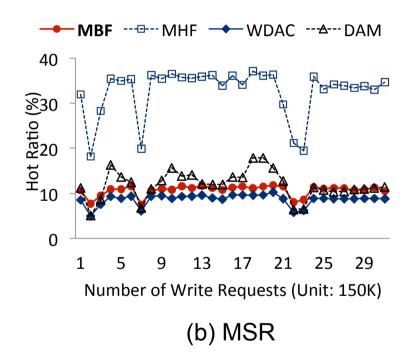
< 0.2≯	< 0.4≯	< 0.6≯	< 0.8≯	<1.0 ≯	≪1.2 ≯	<1.4>	<1.6 ≯	<1.8≯	<2.0 ≯				
11,	13	, 5,	11,	24	, 11	, 30	, 3,	11	, 5,	10,	24,	3,	17,

LBA	HDI
11	2.0
30	0.8
5	1.4
24	2.2
3	3.0
10	1.6

Performance Evaluation

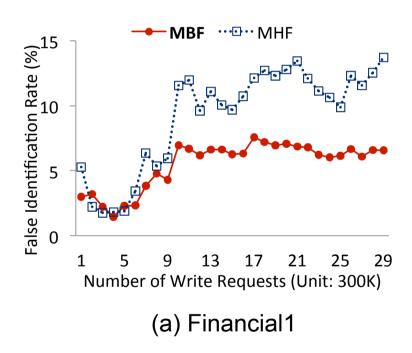
- Evaluation setup
 - Four schemes
 - Multiple bloom filter scheme (refer to as MBF)
 - Multiple hash function scheme (refer to as MHF)
 - Direct Address Method (refer to as DAM)
 - Window-based Direct Address Counting (refer to as WDAC)
 - Four realistic workloads
 - Financial1, MSR (prxy volume 0), Distilled, and RealSSD

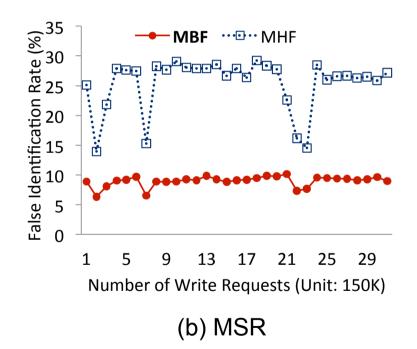



Performance Evaluation

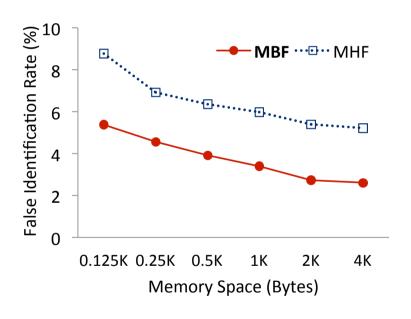
- Performance metrics
 - Hot ratios
 - A ratio of hot data to all data
 - False identification rate
 - Try to compare each identification result of each scheme whenever a request is issued.
 - Memory consumption
 - Runtime overhead
 - Measure CPU clock cycles per operation

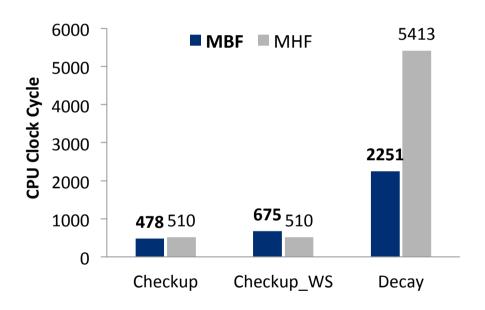
Hot Ratios (MBF vs. MHF vs. WDAC vs. DAM)





False Identification Rates


(MBF vs. MHF)



Memory Impact and Computational Overheads

Conclusion

- Multiple BF-based hot data identification
 - Adopts multiple BFs and hash functions
 - Can capture finer-grained recency
 - Shows better performance than multi-hash function scheme
- Window-based Direct Access Counting (WDAC)
 - Adopts a sliding window and maintains hot data index values
 - All elements have a different recency value
 - Can capture very-fine grained recency information

Questions?

□ Thank you!

Dongchul Park

park@cs.umn.edu

