
Flexible, Modular File Volume Virtualization in
Loris

Raja Appuswamy, David C. van Moolenbroek,
Andrew S. Tanenbaum

Vrije Universiteit, Amsterdam

May 27, 2011

Traditional Storage Stack

Originally one one file volume per block-based disk

Administration tradeoffs

Efficiency vs Flexibility tradeoff
Root cause was the file volume per disk bond

Volume managers virtualized file volumes

Backward compatible logical disk abstraction
One file volume per physical logical disk bond

Compatibility-driven integration has fatal flaws

Disk
driver

Volume
Mgmt

File
System

Traditional
storage stack

Physical blocks

Physical blocks

Flexibility(1): Complicated Device Management

Complicated storage model

Simple device operations require several error-prone steps

“File volume per logical disk” bond is the root cause

Need to change data structures in both layers
One operation per layer (example: expand LV, expand FS)

An ideal storage system should

Allow administrator to just state the intent
Automate implementation details

Flexibility(2): Coarse-grained File Management

Coarse-grained, volume-level policy specification

Semantically unaware - no knowledge of block relationship
Snapshotting & encryption of individual files not possible

But customers need more flexibility

Storage retention/ILM policies applied to business objects
Storage tiering performed on per-file basis
End-users associate policies with files and file types

An ideal storage system should

Enable policy specification at a range of granularities
Have a modular policy-mechanism split

The traditional stack lacks flexibility

Flexibility(2): Coarse-grained File Management

Coarse-grained, volume-level policy specification

Semantically unaware - no knowledge of block relationship
Snapshotting & encryption of individual files not possible

But customers need more flexibility

Storage retention/ILM policies applied to business objects
Storage tiering performed on per-file basis
End-users associate policies with files and file types

An ideal storage system should

Enable policy specification at a range of granularities
Have a modular policy-mechanism split

The traditional stack lacks flexibility

Heterogeneity(1): Complicated Integration of New Devices

New devices with new interfaces need to be integrated

Byte-accessible or page-accessible flash devices
Object-based storage devices

Building device-specific file systems

Not compatible with block-based volume managers

Building a translation layer to hide device-specific interfaces

Widens the “Information gap”
Duplication of functionality

Heterogeneity(2): Inability to Exploit Device
Characteristics

SSDs with widely varying performance characteristics

SSD Sequential Read Sequential Write Random Read Random Write
Intel X25-V 170MB/s 35 MB/s 25,000 4KB IOPS 2500 4KB IOPS
Intel X25-M 250MB/s 100 MB/s 35,000 4KB IOPS 8600 4KB IOPS

Device-specific layout is required

Write-optimized layout on X25-M
Read-optimized layout on X25-V

Impossible to exploit heterogeneity with the traditional stack

Impossible to bind file systems to devices
Multiple file systems can share a device, rendering layout
optimizations futile

The traditional stack fails to support heterogeneity both within
and across device families

Heterogeneity(2): Inability to Exploit Device
Characteristics

SSDs with widely varying performance characteristics

SSD Sequential Read Sequential Write Random Read Random Write
Intel X25-V 170MB/s 35 MB/s 25,000 4KB IOPS 2500 4KB IOPS
Intel X25-M 250MB/s 100 MB/s 35,000 4KB IOPS 8600 4KB IOPS

Device-specific layout is required

Write-optimized layout on X25-M
Read-optimized layout on X25-V

Impossible to exploit heterogeneity with the traditional stack

Impossible to bind file systems to devices
Multiple file systems can share a device, rendering layout
optimizations futile

The traditional stack fails to support heterogeneity both within
and across device families

Context - The Loris Storage Stack

Traditional stack also suffers from serious reliability issues

Silent data corruption, RAID write hole
Lack of support for graceful degradation

In prior work, we presented Loris

A modular redesign of the traditional storage stack

The Loris Storage Stack - Layers and Interfaces

File-based interface between layers

Each file has a unique file identifier
Each file has a set of attributes

File-oriented requests:

create truncate
delete getattr
read setattr
write sync

Loris - Division of Labor

Physical

Naming

Cache

Logical

POSIX call processing
Directory handling

Data caching

File-level RAID

Parental checksums

Metadata caching

On-disk layout

Loris V1

Loris V1 did not support file volume virtualization

One file volume per set of devices bond
No file volume snapshotting or thin provisioning support

Storage model similar to traditional file system days

Online device addition/removal not possible

In this work, we augment the Loris stack to

Automated device management using File Pools
Provide flexible file volume virtualization

File Pools - Our New Storage Model

The pool of files serviced by a group of physical modules

Disk
driver

Physical
Physical blocks

Files

Disk
driver

Physical
Physical blocks

Disk
driver

Physical
Physical blocks

Files FilesFiles

Logical

File pools form the unit of device administration

Each device is a part of one file pool
Multiple file pools for performance isolation

Simplified Device Administration with File Pools

No resizing required - one physical module per device

Single-step device addition

Efficient device removal

Performed by moving files (not blocks) between physical
modules
File-level data movement moves only live data

Device Addition Example

Disk
driver

Physical

Disk
driver

Physical

Disk
driver

Physical

Logical

Fully-automated device addition

Device-specific physical module started automatically

Registration and handshake with logical module
All files in the new physical module are available for use

Device Addition Example

Disk
driver

Physical

Disk
driver

Physical

Disk
driver

Physical

Register
(ModID =1,
Seqr = 90, Seqw = 90
Randr = 1, Randw = 90)

Logical

Fully-automated device addition

Device-specific physical module started automatically
Registration and handshake with logical module

All files in the new physical module are available for use

Device Addition Example

Disk
driver

Physical

Disk
driver

Physical

Disk
driver

Physical
Create(...)

Logical
Create(...)

Fully-automated device addition

Device-specific physical module started automatically
Registration and handshake with logical module
All files in the new physical module are available for use

Supporting Heterogeneity with File Pools

Disk
driver

Physical
Physical blocks

Files

MTD
driver

Physical
Flash pages

OSD
driver

Physical
Objects

Files FilesFiles

Logical

Single logical layer implementation across all device types

Integrating new device types requires only a new physical layer

Device-specific layout schemes to exploit heterogeneity

Flexible File Volume Virtualization - Policy Mechanism
Split

Physical

Naming

Cache

Volume management

Version Directory

File pool management

Volume sublayer

Pool sublayer

Snapshot mechanism

Open-close versioning policy

Individual file and file volume
snapshot policy

Physical Layer

Physical
Snapshot mechanism

Must provide some form of physical file snapshotting

Schemes like copy or COW-based snapshotting etc.
Prototype uses an MFS-style COW-based physical layer

No space efficiency-performance tradeoffs

Block-granular data sharing between versions
Integrated with on-disk layout to maximize performance

A new call to snapshot inodes exposed to logical layer

Logical Layer - Mechanism

Volume management

File pool management

Volume sublayer

Pool sublayer

Individual file and file volume
snapshot policy

Consists of File Pool and File Volume sublayers

File pool sublayer implements the storage model

File volume sublayer provides volume management

Supports volume administration (create/delete vol)
Maintains <file-file volume> and <logical file-physical file>
relationships

All file volumes share a single pool of files (Thin Provisioning)

Logical Layer - Policy

Volume management

File pool management

Volume sublayer

Pool sublayer

Individual file and file volume
snapshot policy

Volume sublayer also acts as a policy enforcer

Policies for snapshotting files/file volumes
Builds on physical layer’s inode snapshotting

Logical layer provides a new snapshot call

Snapshot file/file volume using fileID/VolumeID

Naming Layer

Naming
Version Directory

Open-close versioning policy

Implements version directories - unified interface to browse
snapshot history

Version directory is a virtual directory
Each snapshot, irrespective of origin, is a file entry
Browsing history done by appending any file name with @
Entire subtrees can be also scoped to an older snapshot

Naming layer also provides open-close versioning policy

Naming layer invokes a snapshot call after each close operation

Version directories - An Example

#cd /usr/bar

#echo "Each file is a version directory" > foo; snapshot foo

#ls foo@

REGVOL_0 FILESNAP_1

#echo "Each snapshot is a dir entry" > foo; snapshot /usr

#ls foo@

REGVOL_0 VOLSNAP_1 FILESNAP_2

#diff /usr/bar@2/foo /usr/bar/foo@1

< Each file is a version directory

> Each snapshot is a dir entry

Version directories - An Example

#cd /usr/bar

#echo "Each file is a version directory" > foo; snapshot foo

#ls foo@

REGVOL_0 FILESNAP_1

#echo "Each snapshot is a dir entry" > foo; snapshot /usr

#ls foo@

REGVOL_0 VOLSNAP_1 FILESNAP_2

#diff /usr/bar@2/foo /usr/bar/foo@1

< Each file is a version directory

> Each snapshot is a dir entry

Version directories - An Example

#cd /usr/bar

#echo "Each file is a version directory" > foo; snapshot foo

#ls foo@

REGVOL_0 FILESNAP_1

#echo "Each snapshot is a dir entry" > foo; snapshot /usr

#ls foo@

REGVOL_0 VOLSNAP_1 FILESNAP_2

#diff /usr/bar@2/foo /usr/bar/foo@1

< Each file is a version directory

> Each snapshot is a dir entry

Evaluation

File volume virtualization adds negligible overhead

Macro and micro-benchmarks showed less than 8% overhead
Absence of heavy metadata footprint unlike block-level systems

All types of snapshotting added less than 5% overhead

Efficient block-granular snapshotting avoids copying data

Conclusion

We highlighted several flexibility and heterogeneity issues with
the traditional stack

We showed how Loris simplifies device management using File
Pools - our new storage model

We showed how Loris supports flexible, modular file volume
virtualization and snapshotting

Conceptual Comparison - Modular Split (1)

Disk
driver

SW
RAID

File
system

VFS

Disk
driver

RAID

Naming

VFS

Cache

Physical

Disk
driver

Physical

Naming

VFS

Cache

Logical

Conceptual Comparison - Reliable Flip (2)

Disk
driver

SW
RAID

File
system

VFS

Disk
driver

RAID

Naming

VFS

Cache

Physical

Disk
driver

Physical

Naming

VFS

Cache

Logical

ZFS Comparison

Disk

driver

SW

RAID

File

system

SPA

ZPL

DMU

Disk

driver

Traditional

storage stack

ZFS

storage stack

Loris

storage stack

Virtual blocksPhysical blocks

Physical blocks Physical blocksPhysical blocks

Files

Files

Files Files

File Volume Virtualization in Loris - Data Structures

Data blocks

Inodes

In-core volume index

In-core meta index

Logical layer

Physical layer

Meta index inode Volume index inode Data file inode

V1

F1

I1 I2

Each file volume has a volume index file

One entry per logical file in that volume
F1 = <RAID=1, PFILE=<P1:I2>>

File volumes themselves tracked using meta index
< V 1,REGULAR VOL, VOLIDX=<RAID=1, PFILE=<P1:I1>>>

Fully Automated Storage Tiering

Perf metric Preferred tier Secondary Tier
SEQ READ HDD SSD

SEQ WRITE HDD SSD

RANDOM READ SSD HDD

RANDOM WRITE HDD SSD

File type Tier assigned
size = SMALL, rw = R SSD

size = SMALL, rw = W HDD

size = SMALL, rw = RW SSD

size = LARGE, rw = R, atype = SEQ HDD

size = LARGE, rw = R, atype = RAND SSD

size = LARGE, rw = W, atype = SEQ HDD

size = LARGE, rw = W, atype = RAND HDD

size = LARGE, rw = RW, atype = SEQ HDD

size = LARGE, rw = RW, atype = RAND SSD

