Flexible, Modular File Volume Virtualization in

Loris

Raja Appuswamy, David C. van Moolenbroek,
Andrew S. Tanenbaum

Vrije Universiteit, Amsterdam

May 27, 2011

Traditional Storage Stack

@ Originally one one file volume per block-based disk

Physical y blocks
@ Administration tradeoffs

o Efficiency vs Flexibility tradeoff

e Root cause was the file volume per disk bond Physical blocks

@ Volume managers virtualized file volumes
o Backward compatible logical disk abstraction

o One file volume per physieal logical disk bond .

@ Compatibility-driven integration has fatal flaws Traditional
storage stack

Flexibility(1): Complicated Device Management

@ Complicated storage model
e Simple device operations require several error-prone steps

o “File volume per logical disk” bond is the root cause

o Need to change data structures in both layers
o One operation per layer (example: expand LV, expand FS)

@ An ideal storage system should

o Allow administrator to just state the intent
e Automate implementation details

Flexibility(2): Coarse-grained File Management

@ Coarse-grained, volume-level policy specification

e Semantically unaware - no knowledge of block relationship
e Snapshotting & encryption of individual files not possible

@ But customers need more flexibility

o Storage retention/ILM policies applied to business objects
e Storage tiering performed on per-file basis
e End-users associate policies with files and file types

@ An ideal storage system should

e Enable policy specification at a range of granularities
e Have a modular policy-mechanism split

Flexibility(2): Coarse-grained File Management

@ Coarse-grained, volume-level policy specification

e Semantically unaware - no knowledge of block relationship
e Snapshotting & encryption of individual files not possible

@ But customers need more flexibility

o Storage retention/ILM policies applied to business objects
e Storage tiering performed on per-file basis
e End-users associate policies with files and file types

@ An ideal storage system should

e Enable policy specification at a range of granularities
e Have a modular policy-mechanism split

The traditional stack lacks flexibility

Heterogeneity(1): Complicated Integration of New Devices

@ New devices with new interfaces need to be integrated

o Byte-accessible or page-accessible flash devices
e Object-based storage devices

@ Building device-specific file systems
o Not compatible with block-based volume managers

@ Building a translation layer to hide device-specific interfaces

e Widens the “Information gap”
e Duplication of functionality

Heterogeneity(2): Inability to Exploit Device

Characteristics

@ SSDs with widely varying performance characteristics

SSD Sequential Read Sequential Write Random Read Random Write
Intel X25-V 170MB/s 35 MB/s 25,000 4KB 10PS 2500 4KB IOPS
Intel X25-M 250MB/s 100 MB/s 35,000 4KB IOPS 8600 4KB I0PS

@ Device-specific layout is required
o Write-optimized layout on X25-M
o Read-optimized layout on X25-V

@ Impossible to exploit heterogeneity with the traditional stack
e Impossible to bind file systems to devices
e Multiple file systems can share a device, rendering layout
optimizations futile

Heterogeneity(2): Inability to Exploit Device

Characteristics

@ SSDs with widely varying performance characteristics

SSD Sequential Read Sequential Write Random Read Random Write
Intel X25-V 170MB/s 35 MB/s 25,000 4KB 10PS 2500 4KB IOPS
Intel X25-M 250MB/s 100 MB/s 35,000 4KB IOPS 8600 4KB I0PS

@ Device-specific layout is required
o Write-optimized layout on X25-M
o Read-optimized layout on X25-V

@ Impossible to exploit heterogeneity with the traditional stack

e Impossible to bind file systems to devices
e Multiple file systems can share a device, rendering layout
optimizations futile

The traditional stack fails to support heterogeneity both within
and across device families

Context - The Loris Storage Stack

@ Traditional stack also suffers from serious reliability issues

e Silent data corruption, RAID write hole
e Lack of support for graceful degradation

@ In prior work, we presented Loris
e A modular redesign of the traditional storage stack

The Loris Storage Stack - Layers and Interfaces
o File-based interface between layers

e Each file has a unique file identifier Naming

e Each file has a set of attributes

. . L I
o File-oriented requests:
Create truncate

delete getattr Disk
read setattr driver

write sync

Loris - Division of Labor

: POSIX call processing
Namlng —a Directory handling

Cache / Data caching

Logical e File-level RAID
; —=m Metadata caching
PhySICal = Pgrental checksums

On-disk layout

@ Loris V1 did not support file volume virtualization

@ One file volume per set of devices bond
e No file volume snapshotting or thin provisioning support

@ Storage model similar to traditional file system days
o Online device addition/removal not possible

@ In this work, we augment the Loris stack to

o Automated device management using File Pools
e Provide flexible file volume virtualization

File Pools - Our New Storage Model

@ The pool of files serviced by a group of physical modules

Files Files Files

Physical Phy5|cal Physical

Physical E blocks Physical E blocks Physical E blocks

o File pools form the unit of device administration

e Each device is a part of one file pool
e Multiple file pools for performance isolation

Simplified Device Administration with File Pools

@ No resizing required - one physical module per device
@ Single-step device addition

o Efficient device removal
o Performed by moving files (not blocks) between physical
modules
o File-level data movement moves only live data

Device Addition Example

Logical

Physical @ Physical

118

o Fully-automated device addition
e Device-specific physical module started automatically

Device Addition Example

Register
(ModID =1,
Seqr = 90, Seqw = 90
Randr = 1, Randw =

o Fully-automated device addition

e Device-specific physical module started automatically
o Registration and handshake with logical module

Device Addition Example

A&eaw(._)
Physical @ Physical llPhysical

o Fully-automated device addition
e Device-specific physical module started automatically
o Registration and handshake with logical module
o All files in the new physical module are available for use

Supporting Heterogeneity with File Pools

yFiles
Logical

Files Fnes Files

Physical lPhysical lPhysical

Objectsy Physical y blocks Flash pages
OSD i
driver i

@ Single logical layer implementation across all device types
@ Integrating new device types requires only a new physical layer

@ Device-specific layout schemes to exploit heterogeneity

Flexible File Volume Virtualization - Policy Mechanism

Split

Open-close versioning policy Naming

Individual flle. and file volume [Volume sublayer |
shapshot policy

N\ Version Directory

= Volume management

RCIRVEEES —= File pool management

\ Snapshot mechanism

Physical Layer

Snapshot mechanism

@ Must provide some form of physical file snapshotting

e Schemes like copy or COW-based snapshotting etc.
e Prototype uses an MFS-style COW-based physical layer

@ No space efficiency-performance tradeoffs

o Block-granular data sharing between versions
o Integrated with on-disk layout to maximize performance

@ A new call to snapshot inodes exposed to logical layer

Logical Layer - Mechanism

Individual f|Ie_ and file volume Volume sublayer | Volume management
snapshot policy
eUIETEEES —= File pool management

@ Consists of File Pool and File Volume sublayers

o File pool sublayer implements the storage model

@ File volume sublayer provides volume management

e Supports volume administration (create/delete vol)
e Maintains <file-file volume> and <logical file-physical file>
relationships

e All file volumes share a single pool of files (Thin Provisioning)

Logical Layer - Policy

Individual ﬁle_ and file volume Volume sublayer R Volume management
snapshot policy
CIETEEM —= File pool management

@ Volume sublayer also acts as a policy enforcer

e Policies for snapshotting files/file volumes
o Builds on physical layer's inode snapshotting

@ Logical layer provides a new snapshot call
e Snapshot file/file volume using fileID/VolumelD

Naming Layer

Open-close versioning policy M
N Version Directory

@ Implements version directories - unified interface to browse
snapshot history

Version directory is a virtual directory

Each snapshot, irrespective of origin, is a file entry
Browsing history done by appending any file name with @
Entire subtrees can be also scoped to an older snapshot

@ Naming layer also provides open-close versioning policy
o Naming layer invokes a snapshot call after each close operation

Version directories - An Example

#cd /usr/bar

#echo "Each file is a version directory" > foo; snapshot foo
#1s foo@

REGVOL_O FILESNAP_1

Version directories - An Example

#cd /usr/bar

#echo "Each file is a version directory" > foo; snapshot foo
#1s foo@

REGVOL_O FILESNAP_1

#echo "Each snapshot is a dir entry" > foo; snapshot /usr
#1s foo@
REGVOL_O VOLSNAP_1 FILESNAP_2

Version directories - An Example

#cd /usr/bar

#echo "Each file is a version directory" > foo; snapshot foo
#1s foo@

REGVOL_O FILESNAP_1

#echo "Each snapshot is a dir entry" > foo; snapshot /usr
#1s foo@
REGVOL_O VOLSNAP_1 FILESNAP_2

#diff /usr/bar@2/foo /usr/bar/foo@l
< Each file is a version directory

> Each snapshot is a dir entry

Evaluation

o File volume virtualization adds negligible overhead

e Macro and micro-benchmarks showed less than 8% overhead
e Absence of heavy metadata footprint unlike block-level systems

@ All types of snapshotting added less than 5% overhead
o Efficient block-granular snapshotting avoids copying data

Conclusion

@ We highlighted several flexibility and heterogeneity issues with
the traditional stack

@ We showed how Loris simplifies device management using File
Pools - our new storage model

@ We showed how Loris supports flexible, modular file volume
virtualization and snapshotting

Conceptual Comparison - Modular Split (1)

Conceptual Comparison - Reliable Flip (2)

VFS

File
"""" x

ZFS Comparison

2o Il Narming
Files Files

Cache

yFiles
Logical

Physical y blocks Virtual y blocks

Physical y blocks Physical y blocks

Disk

Physical y blocks

driver

ZFS Loris

Traditional
storage stack storage stack

storage stack

File Volume Virtualization in Loris - Data S

v In-core meta index
' Logical layer
T TF In-core volume index
[[[[Data blocks
Physical layer
l:] Inodes
X
Meta index inode Volume index inode Data file inode

@ Each file volume has a volume index file

e One entry per logical file in that volume
o F1 = <RAID=1, PFILE=<P1:12>>

@ File volumes themselves tracked using meta index
@ < V1,REGULAR.VOL, VOLIDX=<RAID=1, PFILE=<P1:11>>>

Fully Automated Storage Tiering

Perf metric Preferred tier | Secondary Tier

SEQ READ HDD SSD

SEQ WRITE HDD SSD

RANDOM READ SSD HDD

RANDOM WRITE HDD SSD
File type Tier assigned
size = SMALL, rw =R SSD
size = SMALL, rw =W HDD
size = SMALL, rw = RW SSD
size = LARGE, rw = R, atype = SEQ HDD
size = LARGE, rw = R, atype = RAND SSD
size = LARGE, rw = W, atype = SEQ HDD
size = LARGE, rw = W, atype = RAND HDD
size = LARGE, rw = RW, atype = SEQ HDD
size = LARGE, rw = RW, atype = RAND SSD

