Object-based SCM - An Efficient Interface for
Storage Class Memories

Yangwook Kang, Jingpei Yang, Ethan L. Miller
UC Santa Cruz

‘ Center
NTer Research in the Interest of Society &

RIS
= > ;'- ¢ ':I\Qil -_
- | 1 » l %14 5,‘ \& \
- | y 7, il BN
o= A —_ 4 e H ;‘}’::\{5 ey .
Pl | "g
Vo e N 4‘- ._".
T %

. SNTR LAIT

20114 58 27 22¢

Storage Class Memories

s

- A new class of data storage and memory device blurs the distinction

between storage and memory
Fast read/write speed like DRAM, Non-volatility like disks
e.g. Memristor, Phase-change RAM, STT-RAM, Flash memory

- Differences in characteristics

Endurance
PRAM 108, RRAM 108 , STT-RAM 101, MEMRISTOR 108, FLASH 105

Asymmetric read/write performance
PRAM, FLASH

Destructive read
FRAM

Out-of-place update
FLASH

» The use of SCMs in current systems
Direct access: SCM-aware file system & custom designed device

FTL-based storage devices
X-\ M: Baskin

;;) : CR ‘S Engineering I

20114 53 27 24

2

Current Interface for SCMs
Direct Access Model

» Allows a file system to fully control the medium

A file system Is designhed to handle the
characteristics of the target SCM

Raw medium can be accessed directly
memory bus, PCl-e slot

SCM-aware file system g Raw SCM device
/

| . Inodes
¥+ Efficient -
File3 p——
=Not easy to deploy 5
Yoo fic fs, hw el
equ es SpeC C S, y 0S Page-based interface ! I | -:

= Difficult to adopt new SCM

Baskin

I3 33&]44 Engineering I
nd § & CRIS 3

20114 53 27 524

Current Interface for SCMs
FTL-based model

- Allows the legacy file systems to access SCMs as a block-

based storage device
Device maintains a mapping table and uses block interface
SCM characteristics are handled by the device

% Compatibility

Disk-based file systemd_ ',F,I"hT' s SCM device
4 Portability . i Al aon
File 2 ,
== Sub-optimal performance © I —— — —
two translation layers oy, m—
lacks of information about the & Ll

requests (requires TRIM) Block-based interfacel
approaches to alleviate this problem: |
Nameless writes: let inodes contain physical address
DFS: move FTL to the operating systems, not using block-interface anymore

\

Baskin

I3 33&]44 Engineering

20114 53 27 524

Object-based model for SCMs

- The object-based model
Offloads the storage management layer to the device
Encapsulates the VFS-level requests in an object with their
metadata information

%* Drop-in replacement for ;
new type of SCM Object-based file systemy Object nodes Object-based SCM
/' (onodes)
object-based FS need not know - 7 o
about the underlying medium File2 ’

File 3 + >
== Better H/W optimizations '

Rich information about the requests
The block management layer is inside

.- = BC .
e.g. splitting a large requests into concurrent writes to multiple SCM chips .)
Object-based interface

== The existence of objects
* better space efficiency, reliability

-

|
I
|
|

Baskin

Y N oy »rg Engineering

20114 58 27¢ =

Overview %
ne object-based model for SCM

read
Block Management Layer Cleaner
Obiject 1 > O—
Veta s § Data Placement Policy Wear-Leveling
data O+ 5 Reliability
create .._E Index Structure Security
C) o
Object 2 = [scms
delete @) [[[[[[I
O
(a) Object-based file system. (b) Object-based device.

Baskin

& & '/"‘ P Engineering
allnd § S CR S

20114 53 27 524

Design Issues of
Object-based SCM

- Core Subsystems
Data placement policy
Index structure
Wear-leveling and Cleaning

- Advanced Features
Obiject-level reliability
Object-level compression and encryption
Client library for object-based SCMs
Obiject-level transactions

Baskin

Y N e e C[i} lgs Engineering I
at.ad § | 7

20114 53 27 524

Object-based Flash
Data placement policy

- Goal: maximize the performance and the lifetime of Flash

* Alog-structure is typically

used for Flash
wear-leveling
out-of-place update

data data index noae
page | page | page node

meta

ofo|0|O
e} e}
gla|lala
[0} [0}

(a) Typical log-structured layout.

node
data node seg
page node met
node

- Separate frequently

accessed data
metadata: ObjeCt metadata, indices (b) Separation of data and metadata.
access time

| object id | access time | size | root node addr| |

> Cleaner threShO|d [objectid | access.:m
lower the priority of metadata
(c) Separation of data, metadata and access time.
segments

Baskin

I3 33&]44 Engineering

20114 53 27 524

Object-based Flash
Index Structure

- Goal: improve space efficiency

reduces the number of I/0Os
increase the lifetime of Flash

- An index structure designed for a Flash-aware file system can

be used
OSD and Flash-aware file system have the same level of information
SSD uses heuristics to extract those information from the request
patterns
e.g. detecting sequential writes in FAST

- Wandering Tree

- Two optimizations
Extent-based allocation for large objects
Write buffer for small objects

Baskin

;; _F : CR ‘S Engineering

20114 53 27 524

Object-based Flash
Wear-leveling and Cleaning

- Wear-leveling is to maintain the wear-level of each

erase unit and use them evenly
use a log-structure and a cleaner

- Selecting target segments to be cleaned
Erase count
Age of the segments (current time - erased time)
The number of live data pages in each segment

Type of segments: data, metadata, access time
e.g. metadata segments tend to be updated more frequently than
data segments -> skip selecting metadata segments until they
contains very small # of live pages

Baskin

»
. ‘ Q) (> . ‘
~ S A S ﬂ“&": Engineering
2ad § S CRIS 10

20114 53 27 524

Object-based Flash
Advanced Features

- Object-level Reliability

Per-page error correction code can only detect and correct a certain number of
bits
cannot protect against misdirected writes, whole page failures

Detection
Use algebraic signature to generate a fingerprint of each page (stored in the spare area)

Correction
Per-object parities
parities for all data pages
parities for all index pages
a copy of an onode
Users can adjust the number of parities and replicas to meet their requirements

Consistency check
misdirected writes:
read all data pages belonging to an object, and compare with parities
page failures
recover from temporal/permanent page failures regardless the number of bit-flips within a
pDage

X\ 72 Baskin

;; “f” : CR "S Engineering

20114 53 27 524

Object-based Flash
Advanced Features

- Object-level compression and encryption

Selective-compression/encryption
infer the type of an object, and determine if a compression or
encryption is required

Right order: compress followed by encrypt

- Client library
Allows users to customize the OSDs by providing hints to
the devices e.g. bypassing VFS for small objects

File system can also use hints: embedding inodes in
onodes

/;4' Baskin

- g o = C[_i}"s Engineering I
it b B _ l 12

20114 53 27 524

Implementation
Object-based Flash

/

object-based flash memory

: j global index tree
Inode | ! FLM‘ per-object index tree
| E ' '- small obj buffer 4
: - ; é E - 2 g =
Directory +| dentry I : > . |
parity pages

R l : :
| Dir hash | E —
| Inode | ' | l—Lu Lu
| \ flash memory | |
ks E
— I Data I E

Figure 4. The implementation of Object-based flash memory

object-based file system

onodes

g
{0

- Hash-directory - Wandering tree with extents
- Small object buffer - Embedding inodes in onodes
- Three data placement policies - Object-level Reliability
- Next-K algorithm
S Engin%?asrikrig I

r—J —d (—\J
SSTC CRIS .

20114 58 27¢ =

Evaluation
Data placement poli

Postmark Benchmark

L4r @A data segments cleaned Bl bytes of data i l4r @A data segments cleaned Bl bytes of data
| metadata segments cleaned ™ bytes of metadata | | [metadata segments cleaned ™ bytes of metadata | |
Bl atime segments cleaned Bl atime segments cleaned

=

N

=

N
T

=

o
T

=

o
T

cleaning overhead
o
(0]
cleaning overhead
o
(0]

o..o ‘ | D_‘ o..o
combined split split+atime combined split split+atime
read intensive write intensive
(a) Read-intensive workload (b) Write-intensive workload
* object inode and index nodes * access times and modified
are frequently written to fields are written together

update access time

- Left bar: the total number of segment cleaned
- Right bar: the number of bytes copied during cleaning

h Baskin
—l — '/_)

S S| S Cl’i} ‘ Engineering

20114 53 27 524

/\ S
Extent-based Allocat

1600}/ index page read

B2 index page write |

number of pages I/Os

B+ tree w/o extents

numper or pages 1/Us

B+ tree with extents

(a) Largefile benchmark

CC'C

80000}

[index page read B2 index page

write

700001

60000}

50000

40000

30000

20000}

10000}

B+ tree w/o extents B+ tree with extents

(b) Postmark benchmark

Figure 6. Effects of an extent-based allocation

CRI

N

NONNN

Baskin
Engineering

20114 58 27 22¢

Evaluation .
Effects of Informed placement

w/0 inode_embed w/o small obj buf with all

pages read 378101 389165 364142
pages write 92006 91606 66615
seg write 718 714 288
seg clean 240 255 635

; ' Baskin
I3 33&]44 Engineering
wdod § CR | S 6

20114 53 27 524

Evaluation

/

overall Performance
211 B T
—¢ OBFS — UBIFS SYNC &~ -Ao JFFS2
510 || m—m UBIFS — — YAFFS2 .
______ { JFFS2
[ClbX ST
% e
g 28 A --77
+ 57 L -~ -7 -)
ks i UBIFS SYNC
L _
f_u‘j R YAFFS2
e — OBFS
UBIFS
24
20000 20000 60000 80000 100000
number of transactions
r ‘ coginesrng

ESrc CRI'S

Conclusion

* The object-based model
enables SCM devices to overcome the disadvantages of the

current interfaces
provides new features such as object-level reliability and

compression

 Object-based SCM prototype

Implemented in the 2.6 Linux kernel to explore the design issues
of the object-based Flash

Separating frequently accessed data can significantly affect the

cleaning overhead
Extent-based allocation works well for large objects
Achieve compatible performance with other flash-aware file

systems

AT Baskin

;; j- : C [ﬁ['ﬁs Engineering g

20114 53 27 524

Fast-SSDs

- Fast-SSDs

Use PCI-E to avoid the limitation of block-interface

Move some parts of a FTL to the host
Obtain more information from the running FS, and use them to
optimize the FTL
Translation Layer
Cache

Advantage
High Performance

Disadvantage

Platform, FS dependent(need for a module per each FS)
Two translation tables

Memory footprint

Less portability

Baskin

;; _F : CR ‘S Engineering

20114 53 27 524

he three model

Comparison of t
/_\ e

Direct Access Model FTL-based Model Object-based Model

Performance

Portability

Design Flexibility

Support for new types
of SCM

System change

Legacy FS support

Baskin

&S C CR S Engineering

20114 58 27 22¢

Evaluation _—

fects of cleaning threshold

20

m—8 dataseg-threshold-100 e—e dataseg-threshold-80

number of bytes moved (MB)

% 20 60 80 100
metadata segment threshold

Baskin

FTIX X Engineering
wlnd § @ CR S 21

20114 53 27 524

