
Yangwook Kang, Jingpei Yang, Ethan L. Miller

UC Santa Cruz

Object-based SCM - An Efficient Interface for
Storage Class Memories

2011년	 5월	 27일	 금요일

Storage Class Memories
• A new class of data storage and memory device blurs the distinction

between storage and memory
• Fast read/write speed like DRAM, Non-volatility like disks
• e.g. Memristor, Phase-change RAM, STT-RAM, Flash memory

• Differences in characteristics
• Endurance

• PRAM 108, RRAM 108 , STT-RAM 1015, MEMRISTOR 108, FLASH 105

• Asymmetric read/write performance
• PRAM, FLASH

• Destructive read
• FRAM

• Out-of-place update
• FLASH

• The use of SCMs in current systems
• Direct access: SCM-aware file system & custom designed device
• FTL-based storage devices

2
2011년	 5월	 27일	 금요일

Current Interface for SCMs
Direct Access Model
• Allows a file system to fully control the medium

• A file system is designed to handle the
characteristics of the target SCM

• Raw medium can be accessed directly
• memory bus, PCI-e slot

• Efficient
• Not easy to deploy

• requires specific fs, hw, os
• Difficult to adopt new SCM

3

Page-based interface

2011년	 5월	 27일	 금요일

Current Interface for SCMs
FTL-based model

• Allows the legacy file systems to access SCMs as a block-
based storage device
• Device maintains a mapping table and uses block interface
• SCM characteristics are handled by the device

• Compatibility
• Portability
• Sub-optimal performance

• two translation layers
• lacks of information about the

requests (requires TRIM)
• approaches to alleviate this problem:

• Nameless writes: let inodes contain physical address
• DFS: move FTL to the operating systems, not using block-interface anymore

4
2011년	 5월	 27일	 금요일

Object-based model for SCMs

• The object-based model
• Offloads the storage management layer to the device
• Encapsulates the VFS-level requests in an object with their

metadata information

5

• Drop-in replacement for
new type of SCM
• object-based FS need not know

about the underlying medium

• Better H/W optimizations
• Rich information about the requests
• The block management layer is inside

e.g. splitting a large requests into concurrent writes to multiple SCM chips

• The existence of objects
• better space efficiency, reliability

2011년	 5월	 27일	 금요일

Overview
the object-based model for SCM

6

!"#$%&'(

!"#"
$%#"
&"#"

!"#$%&')
!"#
"

$%
#"

(a) Object-based file system.

!"
#$%

&'()
&$*
+,%

$

-./%0'1,),2$3$)&'4,5$*

6,&,'7.,%3)&'7/.8%5

()9$:';&*<%&<*$

=.$,)$*

>$,*?4$@$.8)2

A$.8,"8.8&5

;$%<*8&5

;=1B

*$,9

C*8&$

%*$,&$

9$.$&$

(b) Object-based device.
Figure 2. System overview of object-based SCMs

3.2. Object-based SCMs

Similar to SSDs, an OSD consists of raw medium
and multiple subsystems required to handle the char-
acteristics of the medium such as a data placement
policy and a wear-leveling mechanism, as shown in
Figure 1 (c). However, the design of its subsystems
are more similar to that of typical native file systems
for SCMs. That is because OSD subsystems can utilize
the same level of information that native files systems
have while SSDs require many heuristic algorithms to
alleviate the problems of using block-interface, such
as a log-block merge optimization.
By having rich information about the requests and

a block management layer in the device, OSD en-
ables better hardware optimizations as well as simple
and efficient subsystems. For example, device man-
ufactures can split a large write request into small
concurrent write requests to multiple SCM chips in
order to improve performance. Moreover, OSDs can
further exploit the existence of objects to provide
more advanced features such as object-level reliability
and compression. In the following subsections, we
discuss the design of core subsystems and new features
enabled in the object-based SCMs.

3.2.1. Data placement policies. The main issue of
data placement policy is to maximize the performance
and lifetime by carefully placing data on SCMs. Typ-
ically, a variation of log-structure is widely used in
flash-based storage systems, because it supports out-
of-place update and wear-leveling by placing data and
metadata together in a log–an approach we term a
combined policy, shown in Figure 3(a). Since data
and metadata is sequentially written to a log and
never updated in this policy, a log-structure requires
a cleaner, which generates a free space by reclaiming
invalidated blocks. This overhead is known to be a
primary factor determining log-structure file system

performance. Thus, reducing the cleaning overhead
becomes a goal of the data placement policies for
SCMs.
In object-based SCMs, since the type and size of the

requests and other hints about data are known, various
techniques to reduce the cleaning overhead can be
applied. For example, hot-and-cold separation, which
store frequently accessed data blocks to a different
segment, can be used as the device can identify which
objects or internal data structures are frequently ac-
cessed than others. The intelligent cleaning algorithms
that have been developed for native file systems for
SCMs can also be adopted. Our approach to optimize
the data placement policy is based on the combined
policy, and then we separate frequently updated data
from cold data such as object metadata and access
time. Separating data and metadata was also used in
other file systems such as DualFS [27] and hFS [33].
Unlike those systems and other SCM devices that
do not manage file metadata internally, this approach
can easily be accomplished in object-based SCMs as
metadata of objects are maintained by the device itself.
Since inode no longer maintains physical addresses

of file blocks, OSD internally maintains metadata of
each object in a data structure called onode. It contains
metadata information of each object such as size,
access time and object ID as well as the pointer to its
blocks. an onode is one of the most frequently updated
data structure in the device, and thus stored separately
in our data placement polices, as shown in figure 3(b)
and 3(c).

3.2.2. Index structures. The FTL-based approaches
require a complex sector number to page number
mapping table to determine the physical addresses of
data blocks. This is because the index structure does
not recognize which block belongs to which file and
the sector number is the only information they can
use. Thus, various FTL schemes have been proposed to

2011년	 5월	 27일	 금요일

Design Issues of
Object-based SCM

• Core Subsystems
• Data placement policy
• Index structure
• Wear-leveling and Cleaning

• Advanced Features
• Object-level reliability
• Object-level compression and encryption
• Client library for object-based SCMs
• Object-level transactions

7
2011년	 5월	 27일	 금요일

Object-based Flash
Data placement policy

• Goal: maximize the performance and the lifetime of Flash

• A log-structure is typically
used for Flash
• wear-leveling
• out-of-place update

• Separate frequently
accessed data
• metadata: object metadata, indices
• access time

• Cleaner threshold
• lower the priority of metadata

segments

8

!"#"$
%"&'

()!'*
%"&'

+)+!'

!"#"$
%"&'

+)+!'

+)+!'

+)+!'

,'&
-'#"...

(a) Typical log-structured layout.

!"#"$
%"&'

!"#"$
%"&' !"#$ %%% &"'

!"#$
()*"+
,$'"

-)-*"

-)-*"

-)-*"

-)-*"

-./"0#1(* $00"&&1#(!" &(2" 3--#1)-*"1$**3 %%%

(b) Separation of data and metadata.

*$#$1
,$'"

*$#$1
,$'" %%% &"'

!"#$ %%% &"'
!"#$

()*"+
,$'"

-)-*"

-)-*"

-)-*"

-)-*"

$#(!"

$#(!"

$#(!"

$#(!"

$#(!"

$#(!"

$#(!"

$#(!"

%%%

%%%

%%%

%%%

-./"0#1(* $00"&&1#(!"

(c) Separation of data, metadata and access time.
Figure 3. Three kinds of data allocation policies

file metadata internally, this approach can easily be
accomplished in object-based SCMs as metadata of
objects are maintained by the device itself.
Since the inode no longer maintains physical ad-

dresses of file blocks, the OSD internally maintains
the metadata of each object in a data structure called
an onode. It contains information of each object such
as size, access time and object ID as well as a
pointer to the object’s constituent blocks. An onode
is one of the most frequently updated data structures
in the device, and thus stored separately in our data
placement polices, as shown in figure 3(b) and 3(c).
Index structures. The FTL-based approaches re-

quire a complex sector number to page number map-
ping table to determine the physical addresses of data
blocks. This is because the index structure does not
recognize which block belongs to which file and the
sector number is the only information they can use.
Thus, various FTL schemes have been proposed to
alleviate this problem. For example, log-block mapping
scheme maintains a small number of blocks in flash
memory as temporary storage for overwrites [17].
However, in native file systems for SCMs or OSDs, an
index structure utilizes full semantics of the requests
and does not require a complex mapping table, thus
being simpler and more efficient.
Since improving space efficiency not only saves the

number of I/Os, but also affects the life time in SCM
devices, it is also one of the important design issues
of an index structure for SCM. For example, YAFFS
stores the index on a spare area of each flash page
to remove the index overhead. However, it needs to
scan the whole spare area to build an in-memory index

structure when mounting. Although it recently added
the checkpointing and lazy-loading techniques in order
to improve the mounting time, it still requires scanning
if the device is not properly unmounted. Thus, as
capacity of flash chips grows, this approach would
require more time, which can be a tradeoff between
index overhead and mounting time.
Another approach to store indices in SCM devices is

to use on-media index structures such as an inode-like
structure or a variant of B-tree. UBIFS uses a wander-
ing tree, which is a B+ tree that supports out-of-place
updates by writing all the internal tree nodes whenever
a leaf node is updated. Therefore, its index overhead
becomes much higher than that of a normal B+ tree.
A few attempts have been made to reduce the cleaning
overhead of the index structures. For instance, the mu-
tree places all the internal nodes in one page so that
only one page needs to be written [14]. Agrawal, et al.
proposed the lazy-adaptive tree, which minimizes the
access to flash medium by using cascaded buffers [1].
In order to reduce the overhead of an index structure

in object-based SCMs, two optimizations are used
based on a wandering tree with the dedicated cache in
this paper. The first is to use extent-based allocation.
Since an object has a variable-length, and its size and
request type are known to the device, an OSD can
efficiently support extents especially if a file system
has an ability of creating large object requests. This
tree structure uses a combination of object id and data
type as a key, and a combination of physical address,
offset and length as a value. The second approach to
reduce the index overhead is to use a write buffer for
small objects. Small objects whose size is less than a
minimum unit of write can be stored together to reduce
the internal fragmentation within one unit, thus saving
some page I/Os and index records. By sequentially
writing large objects, high write performance can be
achieved as well.
Wear-leveling and cleaning. Increasing the lifetime

of the medium is another important goal in designing
SCM devices, because most SCMs burn out after
a certain number of writes. Therefore, most SCM
devices need to maintain the wear-level of each erase
unit and try to use them evenly. Since the storage
management layer is inside the device in the object-
based storage model, the device manufacturers can
freely choose appropriate wear-leveling and cleaning
policies for target SCMs.
In SCMs that do not support in-place updates,

the global wear-leveling is typically done by a log-
structure cleaner. This will maintain metadata for each
segment such as number of erases and age, and select
the victim segments based on those values. For byte-

2011년	 5월	 27일	 금요일

Object-based Flash
Index Structure

• Goal: improve space efficiency
• reduces the number of I/Os
• increase the lifetime of Flash

• An index structure designed for a Flash-aware file system can
be used
• OSD and Flash-aware file system have the same level of information
• SSD uses heuristics to extract those information from the request

patterns
e.g. detecting sequential writes in FAST

• Wandering Tree
• Two optimizations

• Extent-based allocation for large objects
• Write buffer for small objects

9
2011년	 5월	 27일	 금요일

Object-based Flash
Wear-leveling and Cleaning

• Wear-leveling is to maintain the wear-level of each
erase unit and use them evenly
• use a log-structure and a cleaner

• Selecting target segments to be cleaned
• Erase count
• Age of the segments (current time - erased time)
• The number of live data pages in each segment
• Type of segments: data, metadata, access time

• e.g. metadata segments tend to be updated more frequently than
data segments -> skip selecting metadata segments until they
contains very small # of live pages

10
2011년	 5월	 27일	 금요일

Object-based Flash
Advanced Features

• Object-level Reliability
• Per-page error correction code can only detect and correct a certain number of

bits
• cannot protect against misdirected writes, whole page failures

• Detection
• Use algebraic signature to generate a fingerprint of each page (stored in the spare area)

• Correction
• Per-object parities

• parities for all data pages
• parities for all index pages
• a copy of an onode

• Users can adjust the number of parities and replicas to meet their requirements

• Consistency check
• misdirected writes:

• read all data pages belonging to an object, and compare with parities
• page failures

• recover from temporal/permanent page failures regardless the number of bit-flips within a
page

11
2011년	 5월	 27일	 금요일

Object-based Flash
Advanced Features

• Object-level compression and encryption
• Selective-compression/encryption

• infer the type of an object, and determine if a compression or
encryption is required

• Right order: compress followed by encrypt

• Client library
• Allows users to customize the OSDs by providing hints to

the devices e.g. bypassing VFS for small objects

• File system can also use hints: embedding inodes in
onodes

12
2011년	 5월	 27일	 금요일

Implementation
Object-based Flash

13

!"#$

%"&$'()&*

+,)-$

%.(.

)/0$'(1"-
&))(1.--&
2.&"(*1.--&

+,)-$
333

),)-$4

5#)/.#1",-$61(&$$
2$&7)/0$'(1",-$61(&$$

2.&"(*12.5$4

-$,(&*

%"&18.48

+,)-$

)/0$'(1"-
&))(1.--&
2.&"(*1.--&

+,)-$
333

49.##1)/01/:;;$&

!"#$%&'"()$*+,-$+).)&$/ !"#$%&'"()$*+0()1+/$/!2.

111111

0()1+/$/!2.

Figure 4. The implementation of Object-based flash memory

onodes, small objects and reverse indicies, as shown in
Figure 4. Small objects, which are less than one page,
are maintained by the global tree instead of generating
a tree node that has only one entry, thus improving the
space efficiency.
In order to show the effects of the hints from a file

system or user space, we set a flag for inode so that
it can be stored within onodes. As inode is very small
and onodes need to be read to retrieve the inode object,
embedding inodes into onodes can remove at least one
page read per each inode operation.
A cleaner is invoked whenever the number of free

segments is below a certain value. Unlike a combined
policy, which has only one type of segment, victim
segments are ordered by segment priority. For example,
an access time segment always contains no live data
in it, and the data in metadata segments is likely to
be invalidated. Thus, we set a different threshold for
each type of segment so that access time segments
have the highest priority. Data segments have the next
highest priority, and metadata segments have the lowest
priority. This means a data segment will be picked first
if a metadata segment has similar amount of live data,
because metadata segments are likely to be invalidated
sooner.
To demonstrate the advanced features enabled by

the object-based storage model, we have implemented
object-level reliability in our prototype. For all data
pages in an object, the OSD uses a Reed-Solomon code
to generate a parity page and algebraic signature to
detect bit corruptions [15]. The signature of each data
page is stored in the spare area of a flash page, and
the parity page is written as a part of an object. Since
the algebraic signature and Reed-Solomon code use
the same Galois field, the device can run a quick scan
to check the validity of an object by the operations of
taking the signatures of each page and combining them
via XOR; XOR of signatures of data pages should be
the same as the signature of a parity page. For index

tree nodes per each object, the file system generates a
parity page for tree nodes and stores the page as a part
of an object.
There are several other data structures that are

adopted to improve the efficiency of the device. For
example, since onodes and tree nodes are accessed
frequently, the osd has a cache for each data structure.
A one page write buffer is also used to store multiple
onodes and small writes in a page. In order to increase
the mounting time, it uses the next-k algorithm, which
enables the file system to quickly find the most recently
written segment [15].
The object-based storage devices for byte-

addressable SCMs may require different block
management policies depending on the characteristics
of each type of SCM. For example, the minimum unit
of allocation can be adjustable while flash memory
has a fixed page size. A different indexing and data
placement scheme can also be used, instead of a log-
structure [30]. Although the internal data structure of
OSDs might change, the object-based storage model
does not require the changes of upper layers in the
storage hierarchy. Thus, as SCM technologies evolve,
an object-based file system can easily switch to an
advanced device without requiring any modification.

5. Evaluation

We evaluate our object-based flash memory using
two sets of performance benchmarks. First, we set
the postmark benchmark to generate a read-intensive
workload and write-intensive workload, each of which
contains a large number of data and metadata oper-
ations. These two workloads are used to show the
effects of our two data placement policies. The second
benchmark we use is a large file benchmark, which
was used to evaluate the log-structured file system
in [28]. It creates one large file using four types of
I/Os; sequential write, sequential read, random write
and random read, and used to evaluate extent-based

• Hash-directory
• Small object buffer
• Three data placement policies
• Next-K algorithm

• Wandering tree with extents
• Embedding inodes in onodes
• Object-level Reliability

2011년	 5월	 27일	 금요일

Evaluation
Data placement policies

14

(a) Read-intensive workload (b) Write-intensive workload
Figure 5. Cleaning overhead of the three data placement policies. The X-axis represents three data
placement policies and the Y-axis is the cleaning overhead normalized to combined policy

allocation. To measure the cleaning overhead and space
efficiency, we make our file system module report the
number of segment erases, the number of page I/Os
for each subsystem, and the number of bytes copied
during cleaning.

Our experiments were conducted on a virtual ma-
chine, which has a single CPU, 1024MB RAM, and a
10GB hard disk. The NANDsim is configured to model
a 128MB NAND flash memory with 2KB pages and
128KB erase blocks. The overall flash size is set by
looking at the average response time of readpage and
write operations. When we increase the size further, we
begin suffering from big latency, making the writepage
operation to take up to 4 seconds due to the virtual
memory reclamation. The use of a small flash size
will limit the number of cold data pages we can
generate and the size of the segment, making it difficult
to look at long-term effects of the cleaning policies.
However, each experiment in this section is designed
to involve a large number of cleaning operations so
that it would not underestimate the cleaning overhead
due to the limited flash size; more than 500 segments
were cleaned in each experiment. The size of cache
is also set proportional to the size of flash memory;
the size of the onode cache is set to 10KB and the
tree node cache to 50KB. The segment size is set to
256KB. In the postmark benchmark, the read/append
ratio is set to 1, the smallest number we can set for
a write-intensive workload, and the number of files is
increased to 1000 while the number of transactions is
set to 40000. For a read-intensive workload, we set the
read/append ratio to 8 and the number of transactions
are increased to 90000 in order to generate a read-
dominant environment. The cleaning threshold for data
segments and metadata segments is set to 80 and 60
respectively, based on the result in Section 5.2. The
default read/append ratio of the postmark benchmark,
which generates metadata five times more than data,
is used in other experiments. Each experiment is con-

ducted 20 times and we take an average except for the
highest value and the lowest value.

5.1. Cleaning Overhead of Data Placement
Policies

We measure the cleaning overhead of the three data
placement policies under both read-intensive work-
load and write-intensive workloads using the postmark
benchmark. For each policy in the Figure 5, the left
bar indicates the total number of segments cleaned
and the right bar indicates the number of bytes copied
during cleaning. Since more onodes and index nodes
are written to update access time in the read-intensive
workload, both the split policy and the split+atime
policy works better than the combined policy as shown
in Figure 5(a). This is because each segment in the
combined policy has some invalidated metadata pages
and a large number of live data pages, causing only
a small amount of free space per victim segment. On
the other hand, each metadata segment in the split and
split+atime policies contain a very small amount of
metadata, thus reducing the cleaning overhead as well
as the total number of pages written. The split+atime
policy further reduces the cleaning overhead, because
fewer onodes are written by atime journaling.
In the write-intensive workload, the benefit of sep-

arating metadata has a smaller effect. This is because
access times are written together when updating the
fields in onodes and these dirty onodes are cached
in memory. However, we still get some benefits from
the onodes that are read but not written, as shown in
Figure 5(b).

5.2. Effects of cleaning thresholds

Since the three different types of segments have
different update frequencies, the device can set a
different cleaning threshold for each segment in order

Postmark Benchmark

• Left bar: the total number of segment cleaned
• Right bar: the number of bytes copied during cleaning

• object inode and index nodes
are frequently written to
update access time

• access times and modified
fields are written together

2011년	 5월	 27일	 금요일

Evaluation
Extent-based Allocation

15

(a) Largefile benchmark (b) Postmark benchmark
Figure 6. Effects of an extent-based allocation

Figure 7. Effects of cleaning thresholds for differ-
ent types of segments

to reduce the cleaning overhead. Figure 7 shows the
cleaning overhead of the device varying the threshold
for data segment and metadata segment. The number
after each type of segment represents the precentage
of the maximum amount of live data that the victim
segments of that type can have. In a pure greedy
policy, each threshold value is set to 100. Setting
the lower threshold for metadata segment works well,
because the live data in metadata segment is likely
to be invalidated, so deferring cleaning the metadata
segment until the amount of live data becomes very
small. When the threshold for data segments is less
than 60, the flash runs out of space, because it copies
too much data to the new segments. The pure greedy
policy also works well in this short term cleaning
overhead test. This is due to the existence of metadata
segments, which contains less live data, the segment
that has the least amount of live data was the metadata
segments in most cases.

5.3. Index Structures

The efficiency of the index structure is critical to
device performance, especially for devices that do
not support in-place update. In order to show the
effects of an extent-based allocation, we measure the

w/o inode embed w/o small obj buf with all
pages read 378101 389165 364142
pages write 92006 91606 66615
seg write 718 714 288
seg clean 240 235 65

Table 2. Effects of informed-placement

cleaning overhead and I/O operations with and without
extent-based allocation. When extent-based allocation
is enabled, physical locations of objects are stored in
terms of several address-length pairs. Otherwise, each
data page is maintained by a wandering tree.
We measure the number of page I/Os issued by

the index structure. In the largefile benchmark, since
only one large file is sequentially written and then ran-
domly rewritten, the result includes both the benefits
of sequential writes and the overhead from random
rewrites, and thus it is good to show the effect of an
extent-based allocation. Figure 6(a) shows that extent-
based allocation significantly reduces both the number
of page reads and the number of page writes, regardless
of the overhead of random rewrites. In the postmark
benchmark, which generates many small metadata op-
erations and a small number of large data files, the
benefit of using extents are minimized as shown in
Figure 5.2. However, it still get some benefits from
using extent-based allocation, reducing the number of
page writes by around 1000.

5.4. Effects of Informed Placement

A file system or user applications can send a hint to
the device to optimize the behavior of the subsystems.
For example, the write-amplification problem, which
happens when the size of the request is smaller than
the minimum unit of writes can be alleviated by using
a hint for inode objects. This is because inode objects
are now very small, infrequently updated, and have a
fixed size. Since one tree node is generated for each
object, this flag reduces the generation of one tree node
and possibly some internal tree nodes.

2011년	 5월	 27일	 금요일

Evaluation
Effects of Informed placement

16

(a) Largefile benchmark (b) Postmark benchmark
Figure 6. Effects of an extent-based allocation

Figure 7. Effects of cleaning thresholds for differ-
ent types of segments

to reduce the cleaning overhead. Figure 7 shows the
cleaning overhead of the device varying the threshold
for data segment and metadata segment. The number
after each type of segment represents the precentage
of the maximum amount of live data that the victim
segments of that type can have. In a pure greedy
policy, each threshold value is set to 100. Setting
the lower threshold for metadata segment works well,
because the live data in metadata segment is likely
to be invalidated, so deferring cleaning the metadata
segment until the amount of live data becomes very
small. When the threshold for data segments is less
than 60, the flash runs out of space, because it copies
too much data to the new segments. The pure greedy
policy also works well in this short term cleaning
overhead test. This is due to the existence of metadata
segments, which contains less live data, the segment
that has the least amount of live data was the metadata
segments in most cases.

5.3. Index Structures

The efficiency of the index structure is critical to
device performance, especially for devices that do
not support in-place update. In order to show the
effects of an extent-based allocation, we measure the

w/o inode embed w/o small obj buf with all
pages read 378101 389165 364142
pages write 92006 91606 66615
seg write 718 714 288
seg clean 240 235 65

Table 2. Effects of informed-placement

cleaning overhead and I/O operations with and without
extent-based allocation. When extent-based allocation
is enabled, physical locations of objects are stored in
terms of several address-length pairs. Otherwise, each
data page is maintained by a wandering tree.
We measure the number of page I/Os issued by

the index structure. In the largefile benchmark, since
only one large file is sequentially written and then ran-
domly rewritten, the result includes both the benefits
of sequential writes and the overhead from random
rewrites, and thus it is good to show the effect of an
extent-based allocation. Figure 6(a) shows that extent-
based allocation significantly reduces both the number
of page reads and the number of page writes, regardless
of the overhead of random rewrites. In the postmark
benchmark, which generates many small metadata op-
erations and a small number of large data files, the
benefit of using extents are minimized as shown in
Figure 5.2. However, it still get some benefits from
using extent-based allocation, reducing the number of
page writes by around 1000.

5.4. Effects of Informed Placement

A file system or user applications can send a hint to
the device to optimize the behavior of the subsystems.
For example, the write-amplification problem, which
happens when the size of the request is smaller than
the minimum unit of writes can be alleviated by using
a hint for inode objects. This is because inode objects
are now very small, infrequently updated, and have a
fixed size. Since one tree node is generated for each
object, this flag reduces the generation of one tree node
and possibly some internal tree nodes.

2011년	 5월	 27일	 금요일

Evaluation
Overall Performance

17

The size of an object can also be used as a hint
for the device. We use a one page buffer for small
objects, so that the device can store multiple small
objects in one page. In our implementation, a directory
entry fits in this category. The size of each directory
entry is around 256KB, and thus it could store around
10 entries per each 2K page.
In order to show the effects of these optimizations,

we set the postmark benchmark to create more files.
Specifically, the number of files is set to 2000, and
it executes 30000 transactions which includes read,
append, and delete system calls. The read/append ratio
is set to 5. As shown in Table 2, when inode objects
are not stored with onodes, they consume more pages,
thus increasing the cleaning overhead mostly due to
the increment of the index overhead. If a small object
buffer is not enabled, each directory entry has to use
one flash page due to the write-amplification problem.
Therefore, the number of page I/Os increases. With
both optimization enabled, the number of pages I/Os
is reduced by more than 65%, and the overall cleaning
overhead is also significantly reduced.

5.5. Object-level Reliability

The object-level reliability allows the device to
detect more types of errors than the current error
correction mechanism, which stores 4-8 bytes of ECC
on the spare area of each page. It can even be used
in conjunction with the current error correction mech-
anism to reduce the recovery time for simple errors
like a single bit-flip. In this section, we measure how
much additional space is required in order to support
object-level reliability. Since we generate two parity
pages per each object, and the parities are updated
whenever an object needs a modification, the overhead
is proportional to the number of files and the number
of operations.
We separately measure the parity overhead, which

is the number of pages written by the object-level
reliability mechanism, and compare it with the total
number of page I/Os during the benchmark as increas-
ing the number of files from 500 to 1000 with the same
transaction size. As shown in Table 3, the number
of pages written or read by the object-level reliability
mechanism increases, but the overall overhead is less
than 10% of the total I/Os. There is no significant
performance difference between the two setups. While
incurring a small performance overhead, object-level
reliability provides a dectection and a correction of
errors that cannot otherwise be achieved.

Figure 8. Overall performance

5.6. Overall Performance

Lastly, we compare the overall performance of our
file system module with the currently available flash-
aware file systems: YAFFS, JFFS2, and UBIFS. Both
YAFFS and JFFS2 do not have on-media index struc-
tures, and thus have less index overhead, but require
more mounting time, especially when the file system
is not unmounted cleanly. UBIFS uses write-back,
compression, and a small write buffer to improve both
performance and space-efficiency. In our file system,
we use the split+atime policy, B+ tree combined with
extent-based allocation, small object buffers and inode
embedding.
Figure 8 shows the overall performance of flash-

aware file systems and our file system under a
read-intensive workload and write-intensive workload.
OBFS represents our prototype, the object-based SCM
for flash memory, and UBIFS SYNC is the ubifs
file system runs in synchronous mode. UBIFS shows
the best performance among the file systems as it
uses write-back while other file systems are using
write-through. When the write-back is turned off, the
performance became slower than YAFFS and OBFS.
Overall, OBFS Shows the comparable performance
with other flash-aware file systems, nevertheless the
block management layer itself reside in the device and
each file system file system uses different optimiza-
tions. For example, YAFFS and JFFS2 have less index
overhead and UBIFS uses compression to increase
the space-efficiency. Our prototype can be further im-
proved by optimizing the implementation and adopting
other features such as compression and write-back.
Moreover, the object-based SCMs can further improve
performance by hardware optimizations in the real
devices.

UBIFS
OBFS
YAFFS2

UBIFS_SYNC

JFFS2

2011년	 5월	 27일	 금요일

Conclusion
• The object-based model

• enables SCM devices to overcome the disadvantages of the
current interfaces

• provides new features such as object-level reliability and
compression

• Object-based SCM prototype
• Implemented in the 2.6 Linux kernel to explore the design issues

of the object-based Flash

• Separating frequently accessed data can significantly affect the
cleaning overhead

• Extent-based allocation works well for large objects
• Achieve compatible performance with other flash-aware file

systems

18
2011년	 5월	 27일	 금요일

Fast-SSDs

• Fast-SSDs
• Use PCI-E to avoid the limitation of block-interface
• Move some parts of a FTL to the host

• Obtain more information from the running FS, and use them to
optimize the FTL

• Translation Layer
• Cache

• Advantage
• High Performance

• Disadvantage
• Platform, FS dependent(need for a module per each FS)
• Two translation tables
• Memory footprint
• Less portability

19
2011년	 5월	 27일	 금요일

Comparison of the three models

20

Direct	
 Access	
 Model FTL-­‐based	
 Model Object-­‐based	
 Model

Performance

Portability

Design	
 Flexibility

Support	
 for	
 new	
 types	

of	
 SCM

System	
 change

Legacy	
 FS	
 support

2011년	 5월	 27일	 금요일

Evaluation
Effects of cleaning threshold

21

(a) Largefile benchmark (b) Postmark benchmark
Figure 6. Effects of an extent-based allocation

Figure 7. Effects of cleaning thresholds for differ-
ent types of segments

to reduce the cleaning overhead. Figure 7 shows the
cleaning overhead of the device varying the threshold
for data segment and metadata segment. The number
after each type of segment represents the precentage
of the maximum amount of live data that the victim
segments of that type can have. In a pure greedy
policy, each threshold value is set to 100. Setting
the lower threshold for metadata segment works well,
because the live data in metadata segment is likely
to be invalidated, so deferring cleaning the metadata
segment until the amount of live data becomes very
small. When the threshold for data segments is less
than 60, the flash runs out of space, because it copies
too much data to the new segments. The pure greedy
policy also works well in this short term cleaning
overhead test. This is due to the existence of metadata
segments, which contains less live data, the segment
that has the least amount of live data was the metadata
segments in most cases.

5.3. Index Structures

The efficiency of the index structure is critical to
device performance, especially for devices that do
not support in-place update. In order to show the
effects of an extent-based allocation, we measure the

w/o inode embed w/o small obj buf with all
pages read 378101 389165 364142
pages write 92006 91606 66615
seg write 718 714 288
seg clean 240 235 65

Table 2. Effects of informed-placement

cleaning overhead and I/O operations with and without
extent-based allocation. When extent-based allocation
is enabled, physical locations of objects are stored in
terms of several address-length pairs. Otherwise, each
data page is maintained by a wandering tree.
We measure the number of page I/Os issued by

the index structure. In the largefile benchmark, since
only one large file is sequentially written and then ran-
domly rewritten, the result includes both the benefits
of sequential writes and the overhead from random
rewrites, and thus it is good to show the effect of an
extent-based allocation. Figure 6(a) shows that extent-
based allocation significantly reduces both the number
of page reads and the number of page writes, regardless
of the overhead of random rewrites. In the postmark
benchmark, which generates many small metadata op-
erations and a small number of large data files, the
benefit of using extents are minimized as shown in
Figure 5.2. However, it still get some benefits from
using extent-based allocation, reducing the number of
page writes by around 1000.

5.4. Effects of Informed Placement

A file system or user applications can send a hint to
the device to optimize the behavior of the subsystems.
For example, the write-amplification problem, which
happens when the size of the request is smaller than
the minimum unit of writes can be alleviated by using
a hint for inode objects. This is because inode objects
are now very small, infrequently updated, and have a
fixed size. Since one tree node is generated for each
object, this flag reduces the generation of one tree node
and possibly some internal tree nodes.

2011년	 5월	 27일	 금요일

