
Design and Evaluation of
Oasis: An Active Storage Framework
Based on T10 OSD Standard

Yulai Xie12, Kiran-Kumar Muniswamy-Reddy3, Dan Feng1, Darrell D. E. Long2

Yangwook Kang2, Zhongying Niu1, Zhipeng Tan1

1School of Computer, Huazhong University of Science and Technology
Wuhan National Laboratory for Optoelectronics

2University of California, Santa Cruz
3Harvard University

Outline

n Background and Motivation
n Oasis Design and Implementation
n Evaluation
n Conclusions and Future Work

Background and Motivation

uObject-based storage devices are more intelligent than block-
based storage devices.
l manage object data itself & rich semantic object attributes

u Active storage can make devices more intelligent by enabling
computation inside storage device.
l filter data on the device side & provide aggregation
processing capabilities

uWhy not using object-based storage devices to do active
storage jobs?

Another aspect, as for T10 OSD Standard…

l T10 OSD Standard
u Being developed by the OSD Technical Work Group within

the SNIA and the INCITS T10 Technical Committee

u Has defined four kinds of OSD objects, OSD commands,
OSD attributes page and basic capability-based OSD
security model

l The existing T10 OSD standard (V2) does not sufficiently
expose the intelligence/capabilities of object-based storage device.

Efforts to integrate active storage into OSD

l Existing Work
u Huston et al. (FAST’07)

u Piernas et al. (Super Computing’07)

u Qin et al. (AINA’06)

u John et al. (High Performance I/O Systems and Data Intensive
Computing’08)

u Devulapalli et al.
lMain shortcomings of these existing work
u Not designed for general object-based storage platform

u Lots of modifications to the file system or operating system

u Not practical for use

u Lack of comprehensive evaluation on real world applications

Our contributions

u Propose An active storage framework based on T10 OSD standard, called
Oasis that aims to be for practical use.

u Design in terms of user case.

Transparent processing, Multi-granularity processing, Flexible management,
preliminary security for execution

u Very small modifications to the T10 OSD standard, aims to be accepted by the
vendors

We have added another kind of object, two parameters in the OSD attribute
page and one permission bit in the capability

u Evaluate the performance, scalability and implementation overhead of Oasis on
three typical real-world applications: database selection, blowfish decryption
and edge detection.

Oasis Architecture Overview

l Object Command Handler
l Get and analyze OSD command
l Object Filesystem
l Manage various objects
l Association Check
l check whether any function objects
are associated with an OSD object

l Function Schedule
l schedule function object to execute

p Function Object
u Used to hold the offloaded application function

(e.g., compression、encryption, etc)
u A piece of code that can be executed in OSD to perform
operations on certain user objects

How we use this system?

l If a user want to read an encrypted file from an OSD, what
should he do?

u Create a function object that represent
Decryption application in the OSD

u Associate this function object with an
OSD object

u Send a READ command to the OSD
object

u Then the associated function object that
represent decryption will be scheduled
to execute.

Critical characteristics for practical use:
-- Transparent and Multi-granularity processing

l Associate a function object with an OSD object
u The function object will be invoked to execute during the read or write process
u We can flexibly apply different application function to different kinds of files
u Support different processing granularity

An association example

Critical characteristics for practical use:
-- Flexible and efficient management

l We use a separate partition to store function object

l Download a function object to the storage device.
------ CREATE AND WRITE command

l Remove a function object from the storage device.
------ REMOVE command

l Conveniently view which function objects are there in the storage device.
------ LIST command

l A user can know which function objects are associated with an OSD object.
------ GET ATTRIBUTES command

l We use OSD commands that manage user objects to manage function
objects by specifying the partition ID that holds the function objects.

Critical characteristics for practical use:
-- Preliminary security consideration

l Function object should be developed by vendors
l The vendor has professional knowledge and tools to write and validate code.

l We can use public&private keys to prevent function object code from being
modified
l The vendor encrypts the code with a private key, both the user and OSD
have a public key.

l We add a permission bit called FUN_EXE into the capability to prevent
unauthorized access

l Two users may both have authority to set the attributes of an OSD object,
but only the user that downloaded function object into OSD can invoke the
function object to execute .

Evaluation

l Experimental setup
l A host and 1, 2 or 4 OSDs, all machines run Redhat linux 2.4.20 and are
connected via 1Gbps Ethernet.
l Oasis is developed based on Intel OSD reference implementation (REFv20).

lWorkload

0800MB(100 million
line records)

Blowfish Decryption

96.7%584MB(10000
images)

Edge Detection

87.4%1.77GB (33 million
line records)

Database Selection

% of data filteringsize of datasetApplication

Evaluation

l Performance improvement

l TS: Traditional Storage
l AS: Active Storage

Evaluation

l Scalability

u The performance of AS and TS are both consistent with the increase in the
OSDs.

u TS and AS are comparable in the Blowfish Decryption as no data reduction
exists in this application.

Evaluation

l Impact of language of function objects

0
100
200
300
400
500
600
700
800

Database
Selection

Edge
Detection

Blowfish
Decryption

Ex
ec

ut
io

n
ti

m
e

(s
ec

)

TS AS(C) AS(Java)l A large number of I/O operations are
required for the Edge Detection algorithm to
generate the output image.
l Edge Detection algorithm implementation
using the Java language is significantly
slower than the implementation using the C
language.
l Even such performance degradation with
the Java implementation may compromise
the benefits of data reduction in the Edge
Detection application achieved by the active
storage technology.

l I/O intensive application would incur a performance bottleneck with
Java implementation.

Evaluation

l Impact of multiple function objects

u For a hybrid application that is
composed of multiple
applications, only applications
that can make data reduction
across the I/O interconnect can
really benefit system
performance.

0
50

100
150
200
250
300
350
400
450

1 2 4

Number of OSDs

Ex
ec

ut
io

n
ti

m
e

(s
ec

)

TS AS(one) AS(two)

A hybrid application that stacks a Database Selection service
on a Blowfish Decryption service

AS(one): first decryption on OSD, then selection on host
AS(two): process hybrid application on OSDs

Evaluation

l Implementation overhead

u During every Read or Write, the system has to check whether there exists any
function object associated with the OSD object that is being read or written.

u The overhead is small, 1.2%-5.9% for read and 0.6%-9.9% for write.

Evaluation

lManagement overhead

7.8REMOVEDelete a 1 KB function object5

4.5LISTList 512 bytes function objects4

12.1GET ATTRIBUTESRetrieve a 1KB association
information

3

2.8SET ATTRIBUTESAssociate a function object2

13.6CREATE AND WRITECreate a 1KB function object1

Completion Time
(ms)

Object CommandsManagement DescriptionNumber

Conclusions and Future work

lWe develop a system that is aimed to be practically used:
l Small modifications to the existing T10 OSD standard

Another kind of object, two parameters added, one permission bit added
l Four kinds of critical characteristics in terms of user case

Transparent and multiple granularity processing, flexible management,
preliminary security consideration
l System demonstration on three real world applications in terms of
performance, scalability, language, etc.

l Future work
l Concurrent execution of multiple function objects by employing sandbox
technology
l Dynamic workload partition when host or OSDs are heavily loaded.

Thanks!

