

Simona Boboila Peter Desnoyers

Northeastern University

- Performance of flash devices on real workloads is hard to characterize and predict:
 - workload-dependent
 - real workloads are not well-behaved
 - depends on the Flash Translation Layer (FTL) implementation
 - this implementation is often not known

Comparison with previous work

- Benchmarking (e.g. uFLIP) :
 - Performance measures for specific IO patterns from synthetic workloads
- Trace-driven simulations:
 - Run each trace entirely and get exact performance values per trace
- Our work:
 - Performance estimations for real workloads with real IO patterns
 - Black-box model (2 phases):
 - Training:
 - One-time preparation phase per SSD, consisting in running multiple synthetic workloads
 - Application:
 - Given a real workload, compute two statistics and use them to estimate performance, without running the trace on the SSD;
 - Analytic model for specific FTLs (probabilistic model for FAST, BAST)

Model

Model

Black-box model using interpolation (FTL: FAST)

Model

Black-box model using interpolation (FTL: FAST)

Method

- For each workload segment:
 - assume well-behaved traffic: uniformly distributed requests; exponentially distributed write lengths
 - compute 2 statistics which give the parameters of the model (traffic sequentiality, free space utilization across workload segments)
 - estimate performance: using an interpolation-based black-box model constructed from multiple simulated (FlashSim) or measured (SSDs) data points, or analytically (for FAST, BAST)

Simulation results

Analytical and interpolation-based performance prediction for real workloads

(*) "Write throughput" is erasure cost – based: Writes (in blocks) / erasures.

SSD results

SSD performance predictions on real workloads

In all but two cases (dea2 for Plextor, proj2 for Kingston) good correspondence between predicted and measured throughput was observed.

SSD results

SSD performance predictions on real workloads

In all but two cases (dea2 for Plextor, proj2 for Kingston) good correspondence between predicted and measured throughput was observed.

SSD results

SSD performance predictions on real workloads

In all but two cases (dea2 for Plextor, proj2 for Kingston) good correspondence between predicted and measured throughput was observed.