Sampling-Based Garbage Collection Metadata Management for Flash-based Storage

Biplob Debnath, Srinivasan Krishnan, Weijun Xiao David J. Lilja, David H.C. Du

Flash-based Solid State Disk (SSD)

- Solid State Disks
 - Acts like a virtual HDD
 - NAND Flash-based
 - Faster read performance
 - Good sequential write performance
- Read/write in page units
- Erase in block units
- Must erase a block before write
- Typical block = 128K; page = 2K
- Read latency 25 microseconds
- Write latency 200 microseconds
- Erase latency 1500 microseconds
- Limited number of erases per block

NAND Flash-based SSD

Two Main SRAM Consumers

- Page Addressing Metadata
 - Most of current research focus to reduce SRAM space
- Garbage Collection Metadata
 - Main focus of this paper
 - Various garbage collection algorithms exist
 - To implement them
 - Per block metadata needed: utilization, age, erase count
 - Need a in-memory priority queue for faster access

Garbage Collection Metadata

- Need O(N) space to implement priority queue
 - -N = SSD capacity in total no. of blocks

- When SSD capacity scales to bigger size
 - N also scales to larger

- In this case, due to RAM scarcity
 - We cannot implement priority queue for all N blocks.

Sampling-based Approach

Our Goal

 Emulate existing garbage collection algorithms in a small amount of SRAM

Use sampling-based approximation

- Memory requirement is fixed
- Saves CPU processing time
- Performance needs to be as good as "no sampling" approach

Illustration (N = 5, M = 2)

Score(j) = min ; (erase_count (j))

Sampling-based Algorithm

- If (Eviction Needed)
 - If (First Iteration)
 - Draw N fresh samples
 - Else // subsequent iterations
 - Draw *N-M fresh samples*
 - Select a victim from these N samples
 - Remove N-M-1 bad samples
 - which are less likely to be selected to be a victim in the next iteration

Experimental Setup

- DiskSim SSD Simulator
- Page Mapping Scheme: DFTL
- Traces
 - Financial-1
 - Financial-2
 - Microsoft Cambridge Trace
- Three settings
 - -N = 3, M = 1; N = 8, M = 2; N = 30, M = 5

Financial-1

Variance of Erase counts

Max Erase count

GC Overhead

- Greedy Clean scheme
 - Selects the block with the largest number of invalid pages as a victim

Financial-1

Variance of Erase counts

Max Erase count

GC Overhead

- Greedy Wear scheme
 - Selects the block with the least erase count as a victim

Summary

- Preliminary Results shows that
 - 30 samples (N = 30, M = 5) are good enough to emulate existing garbage collection algorithms

 Need more experiments and analysis to establish that sampling-based approximation is a good idea

Thank You! Comments / Questions?

Back-up Slides

Metadata Size on SRAM (1GB)

Total blocks	8192
Erase count metadata	8192*4 = 32 KB
Other metadata	8192*4 = 32 KB
Total metadata size	64 KB

For 1 TB SSD Requires, 64 MB!!!!

Sampling overhead

- Depends on N-M
 - i.e., the number of new samples drawn in each iteration