
A Forest-structured Bloom Filter with Flash
Memory

Guanlin Lu Biplob Debnath David H C DuGuanlin Lu, Biplob Debnath, David H.C. Du
Department of Computer Science and Engineering

University of Minnesota Twin Cities

This work was partially supported by
NSF grants 0960833 and 0934396

Introduction to Bloom Filter

What’s it?
A bit vector that compactly represents a set of items (keys)

S t k /i t tiSupport key query/insert operations
Tell definitely if a key is NOT present; couldn’t tell with guarantee
that a key is indeed present (a few false positives may exist)

Wh i Bl Filt (BF) d f ?Where is Bloom Filter (BF) used for?
Database applications
Network applicationsNetwork applications

E.g., router

Backup applications
E g chunking based data dedupe (not found new chunk!)E.g., chunking based data dedupe (not found new chunk!)

MSST 2011

1

Extending BF to Secondary Storage Device

Why?
In-RAM BF size is limited by the available RAM size on the
machine However some Apps like dedupe needs BF sizemachine. However, some Apps like dedupe needs BF size
beyond RAM capacity.

Main concept
Utilize a limited amount of RAM space combined with a much
larger secondary storage space to form a BF

Secondary storage device choicesSecondary storage device choices
flash memory vs. magnetic disk

MSST 2011

2

Building a BF with Flash Memory

Special characteristics of flash memory
page-level read/write but block-level erase
random page read is almost as fast as sequential page read

How is the BF
design optimized for

random page read is almost as fast as sequential page read
page write is slower than page read; page update needs a flash
erase first

h fl h ll ll li it d t d i lif l

flash characteristics?

each flash cell allows a limited erase count during life-cycle

MSST 2011

3

Existing Works
ki

h()%N
Query key ki

Single-layer Design
subB
F 1

… … … Sub
BF N

h()%N

Hit!

Pros

F 1 BF N

It requires only 1 flash page R /key query best for key query
Cons

B ff i li it d f h b BF fl h dBuffer space is very limited for each sub-BF many flash read-
then-write ops are required for each sub-BF during the run.
Some sub-BFs tend to receive more keys than others (by single
h h f ti) b t b ff i ll titi dhash function), but buffer space is equally pre-partitioned
BF size has to be determined in advance and could not be
changed during the runMSST 2011

4

Existing Works
Ki+1

h()%N

Query key ki+1

Single-layer Design
subB
F 1

… … … Sub
BF N

h()%N

Miss!

Pros

F 1 BF N

It requires only 1 flash page R /key query best for key query
Cons

B ff i li it d f h b BF fl h dBuffer space is very limited for each sub-BF many flash read-
then-write ops are required for each sub-BF during the run.
Some sub-BFs tend to receive more keys than others (by single
h h f ti) b t b ff i ll titi dhash function), but buffer space is equally pre-partitioned
BF size has to be determined in advance and could not be
changed during the runMSST 2011

4

Existing Works
Ki+1

h()%N

insert key ki+1
Insert more keys……

Single-layer Design
subB
F 1

… … … Sub
BF N

h()%N

Miss!

Pros

F 1 BF N

RAM write buffer

It requires only 1 flash page R /key query best for key query
Cons

B ff i li it d f h b BF fl h dBuffer space is very limited for each sub-BF many flash read-
then-write ops are required for each sub-BF during the run.
Some sub-BFs tend to receive more keys than others (by single
h h f ti) b t b ff i ll titi dhash function), but buffer space is equally pre-partitioned
BF size has to be determined in advance and could not be
changed during the runMSST 2011

4

Existing Works
update sub-BF

Single-layer Design
subB
F 1

… … … Sub
BF N

Pros

F 1 BF N

RAM write buffer

It requires only 1 flash page R /key query best for key query
Cons

B ff i li it d f h b BF fl h dBuffer space is very limited for each sub-BF many flash read-
then-write ops are required for each sub-BF during the run.
Some sub-BFs tend to receive more keys than others (by single
h h f ti) b t b ff i ll titi dhash function), but buffer space is equally pre-partitioned
BF size has to be determined in advance and could not be
changed during the runMSST 2011

4

Existing Works
update sub-BF

Single-layer Design
subB
F 1

… … … Sub
BF N

Pros

F 1 BF N

RAM write buffer Applied updates
Write sub-BF back

1 flash page R /key query best for key query
Cons

B ff i li it d f h b BF fl h dBuffer space is very limited for each sub-BF many flash read-
then-write ops are required for each sub-BF during the run.
Some sub-BFs tend to receive more keys than others (by single
h h f ti) b t b ff i ll titi dhash function), but buffer space is equally pre-partitioned
BF size has to be determined in advance and could not be
changed during the runMSST 2011

4

Existing Works

Linear-chaining Design
BF 1RAM query key kiMiss!

Pros
best for key insertion: each chained BF will be only written once,
hence the flash write # is minimized
BF size grows dynamically as the # of chained BFs increasedBF size grows dynamically as the # of chained BFs increased

Cons
Querying a key may require traverse all chained BFs
False positive errors tend to be much higher than single-layer
design

MSST 2011

5

Existing Works
Ki

Linear-chaining Design
RAM insert key kiBF 1

Pros
best for key insertion: each chained BF will be only written once,
hence the flash write # is minimized
BF size grows dynamically as the # of chained BFs increasedBF size grows dynamically as the # of chained BFs increased

Cons
Querying a key may require traverse all chained BFs
False positive errors tend to be much higher than single-layer
design

MSST 2011

5

Existing Works

Linear-chaining Design
RAM insert more keys …BF 1BF 1

Pros
best for key insertion: each chained BF will be only written once,
hence the flash write # is minimized
BF size grows dynamically as the # of chained BFs increasedBF size grows dynamically as the # of chained BFs increased

Cons
Querying a key may require traverse all chained BFs
False positive errors tend to be much higher than single-layer
design

MSST 2011

5

Existing Works

Linear-chaining Design
RAM BF 1 Write sub-BF to flash

Pros
FLASH

best for key insertion: each chained BF will be only written once,
hence the flash write # is minimized
BF size grows dynamically as the # of chained BFs increasedBF size grows dynamically as the # of chained BFs increased

Cons
Querying a key may require traverse all chained BFs
False positive errors tend to be much higher than single-layer
design

MSST 2011

5

Existing Works

Linear-chaining Design
RAM create new in-RAM

sub-BF for new
BF 2

Pros
FLASH

insertions
BF 1

best for key insertion: each chained BF will be only written once,
hence the flash write # is minimized
BF size grows dynamically as the # of chained BFs increasedBF size grows dynamically as the # of chained BFs increased

Cons
Querying a key may require traverse all chained BFs
False positive errors tend to be much higher than single-layer
design

MSST 2011

5

Existing Works

Linear-chaining Design
RAM query key kjBF 2Miss!

Pros
FLASH BF 1

best for key insertion: each chained BF will be only written once,
hence the flash write # is minimized
BF size grows dynamically as the # of chained BFs increasedBF size grows dynamically as the # of chained BFs increased

Cons
Querying a key may require traverse all chained BFs
False positive errors tend to be much higher than single-layer
design

MSST 2011

5

Existing Works

Linear-chaining Design
RAM query key kjBF 2Miss!

Pros
FLASH BF 1Hit!

best for key insertion: each chained BF will be only written once,
hence the flash write # is minimized
BF size grows dynamically as the # of chained BFs increasedBF size grows dynamically as the # of chained BFs increased

Cons
Querying a key may require traverse all chained BFs
False positive errors tend to be much higher than single-layer
design

MSST 2011

5

Existing Works

Linear-chaining Design
RAM more insertions … BF

K+1

Pros
FLASH

K+1

BF 1 BF 2 BF
K

… …

best for key insertion: each chained BF will be only written once,
hence the flash write # is minimized
BF size grows dynamically as the # of chained BFs increasedBF size grows dynamically as the # of chained BFs increased

Cons
Querying a key may require traverse all chained BFs
False positive errors tend to be much higher than single-layer
design

MSST 2011

5

Proposed Forest-structured BF(FBF) Design

Goal: To strike a balance between key query and insert
performance
Partition flash space into a collection of sub BFs of flash pagePartition flash space into a collection of sub-BFs of flash-page
sized and organize them into a forest structure.
Key features

Overall BF size can grows by extending another layer of forest
Each key query will at most require # of flash reads equal to
forest height
Key insertions are buffered temporarily in RAM buffer, which is
designed to minimize flash write counts (explained in next page).

MSST 2011

6

Proposed Buffer Space ManagementProposed Buffer Space Management
Scheme for FBF Design

FBF inserts new keys into the lowest-layer of the forest only,
which optimizes for

allowing larger buffer space per sub-BFallowing larger buffer space per sub-BF
Minimize the target address range for flash writes

FBF manages buffer space by
grouping consecutive sub-BFs into blocks
buffering key insertions per block in a in-RAM set data structure
keeping all sets into a linked-list p g
selecting the block corresponding to the set containing most
insertions to update when the entire buffer space is used up.

MSST 2011

7

Experimental Evaluation Results

Workload description:
A sequence (20 millions) of SHA1 hash value of 160-bit length.
Each of which represents a chunk-id produced by standardEach of which represents a chunk id produced by standard
content-defined chunking algorithm; 57% are unique chunk-ids

BF access pattern: Key query & insert are interleaved
TR b ff i f b h h i hTR vs. buffer size for both cache managing schemes:

MSST 2011

8

Experimental Evaluation Results

Throughput Rate (TR) vs. buffer sizes for forest-structure BF
and single-layer BF

MSST 2011

9

Summary of Contributions

We present a novel BF design (FBF) with flash memory that
strikes a balance between key query and key insert performance
achieves a significantly higher TR with the same buffer sizeachieves a significantly higher TR with the same buffer size
compared with existing designs.

Furthermore, our proposed buffer space managing scheme
d th b f fl h it k bl (50%reduces the number of flash writes remarkably (e.g., 50%

less), even with the same existing BF design.

MSST 2011

10

Thank you!

11
MSST 2011

Thank you!

11
MSST 2011

Background Works
ki

h()%N
Single-layer Design

subB
F 1

… … … Sub
BF N

h()%N

Pros

F 1 BF N

RAM write buffer

requires only 1 flash page R /key query best for key query
Cons

B ff i li it d f h b BF fl h dBuffer space is very limited for each sub-BF many flash read-
then-write ops are required for each sub-BF during the run.
Some sub-BFs tend to receive more keys than others (by single
h h f ti) b t b ff i ll titi d h dhash function), but buffer space is equally partitioned ahead
BF size should be determined in advance and could not be
changed during the runMSST 2011

4

