

Long term data Archive Study on new Technologies

© GMV, 2011 Property of GMV All rights reserved

Index

- Introduction
- Mission & Objectives
- Survey Results
- Technological Evaluation
- Conclusions & Future Work

Introduction

Introduction: EO Long Term Archiving

The need for accessing historical Earth Observation data strongly increased in the last ten years. The trend will increase much more in future due to the urgency of global change monitoring. Therefore we need to preserve, access and exploit all available data.

Users Perspective

- Missions Increase
- Products Increase
- Product Resolution Improvement (High Resolution)
- New Users and Applications (Climate Change studies)
- Increase of the demand of products in the long term
- Demand for major interoperability

Systems Perspective

- Storage Capacity Increase
- Performance Improvement
- Continuous capacity to Migrate from old to new technologies
- Safety and security of stored data
- Open and distributed architectures
- Capacity of multiple interfaces
- Use of standards for a better interoperability
- Efficient search and catalogue services

Introduction: Technologies Evaluated

STORAGE ARCHITECTURES	Operating Systems	Unix Servers	Hard Disks	Databases
SERVER-CENTRIC IT		HP Integrity SuperDome	Netapp FAS 3210	Oracle
ARCHITECTURE	Linux commercial (Dod Llat)	IBM Power 780	Netapp FAS6200	
STORAGE-CENTRIC IT		HP Integrity SuperDome 2	HP StorageWorks P9000	
ARCHITECTURE	HP-UX	IBM Power 795	Hitachi Universal Storage	Sybase
BASIC DISTRIBUTED	Solaris	IBM Power 770	Platform [®] V	MarkLogic
ARCHITECTURES	BSD	HP Integrity rx6600	Oracle Sun ZFS Storage 7740	msSQL Server
CLIENT-SERVER		IBM Power 750 Express	Fujitsu Storage Systems	PostgreSQL
PEER-TO-PEER		SPARC M4000	ETERNUS DX8400	db4o
INTEGRATION	Linux Open	SPARC M9000	HP StorageWorks 6400/8400	
ARCHITECTURES	IBM AIX	HP Integrity rx7640	Symmetrix DMX-4	GemStone
MULTI-TIER	OpenIndiana	SPARC M8000	Synthetitx Divix-4	Object Store
SERVICE ORIENTED	Operindiana	HP Integrity rx8640	Sun Storage 6780 Array	Cassandra
CLOUD			IBM System Storage DS8800	eXist
		X86 Servers	EMC CLARION CX4 Model 240	Monot DR Yayony
Middlewares	Switches	Dell PE R815	Huawei Symantec	
CORBA	Cisco Nexus 7000	Dell PE R915	OceanspaceTM S8100	Sedna
DCOM	Series 48-Port Gigabit	Dell PE R6R7	•••	
JAVA/RMI	Ethernet Module	HP DL300	Tape Libraries	
TIBCO		HP DL500	Oracle StorageTek SL8500	
OSGi	HP A12500 GbE module	Dell PE R2R3R4R5	Modular Library System	
Apache ServiceMix		IBM x3850 & x3950 x5	Quantum scalar i6000	
Oracle JMS	Enterasys [®] X-Series module	Fuj-Primergy rx900s	IBM System Storage TS3500	
Oracle Fusion	Extreme Networks Black	Fuj-Primergy rx600	Tape Library	
IBM Websphere	Diamond 10808 module	Sun Fire x4000	Spectra T-finity	
MuleSoft		HP DL700	HD Storage Works ESL E corios	
Red Hat JBoss		Sun Fire x6000	Tane Library	
FUSE	Juniper EX820 40XS	SGI Altix 4700	FTERNUS LT270 Tape Library	
Tuscany		SGI Altix UV	(Fujitsu)	

Mission

The ultimate goal of **LAST** is to perform an independent study on the different archiving technologies and solutions helping on technological and architectural decision-making

Mission & Objectives (1/2)

Look for the best technological solutions to satisfy the requirements and needs of ESA, LTDP, and other European and Canadian EO partners, in terms of digital information preservation

Mission & Objectives (2/2)

- Identify solutions mature enough to be implemented (and be put in operation), in the short, mid, and long-term
- Provide a gap analysis between ESA's practices and the best practices in mainstream IT industry
- Consider the risks associated with the migration to the new technologies, from the solutions currently in use (and proposing solutions to reduce them)

Survey Results

Survey Results – Introduction (1/5)

Approximately 54 organizations of reference in LTA were contacted and twenty (20) replied to the whole questionnaires and interviews

Survey Results – Storage Capacity (2/5)

The capacity of the systems interviewed ranged from 2,5 TB to 20 PB

Parameter	Minimum	Maximum	Mean
Total volume	2,5 TB	20 PB	716 TB
Online storage	2 TB	4 PB	80 TB
Near-line storage	2,5 TB	15 PB	385 TB
Off-line storage	2,5 TB	5 PB	279 TB

Capacity each 5 years, since 2000, and expected by 2020

Survey Results – Common System Requirements

Survey

 ✓ Big science (e.g. astronomy, high energy physics).

✓ Supercomputing centers.

✓ Digital libraries and repositories.

✓Online storage and services.

Standards Analysis

Identifier	Description		
ESA LTDP	Long Term Preservation of Earth Observation Space Data (European LTDP		
	Common Guidelines)		
ISO 14721	Open archival information system (OAIS)		
ISO 15489	Information and documentation (Records management)		
ISO 19115	Geographic information (Metadata)		
ISO 19119	Geographic information (Services)		

Identification of Common System Requirements Classified by main aspects: ✓ Procurement ✓ Operations ✓ Security ✓ Performance ✓ Interface ✓ Migration ✓ Maintenance ✓ Reliability ✓ Standards

Technological Evaluation

Once a set of Common System Requirements is defined, the next step is to perform an independent analysis of technologies to identify the best solutions and architectures that may be utilized

Technological Evaluation - Technological Areas

9 INNOVATING SOLUTIONS

Technological Evaluation - Overview

Technological Evaluation – Operating Systems

Technological Evaluation – Databases

Database Management Systems

Technological Evaluation – Hardware Platforms

Hardware Platforms

Technological Evaluation – Storage Systems

Hardware Storage Systems

Technological Evaluation – Firewalls

Communication Networks - Firewalls

Conclusions & Future Work

Conclusions & Future Work

- An initial survey of LTA systems has helped to set a number of System Requirements, classified by main aspects of interest
- An evaluation method and specific model has been used to evaluate the technologies of each Technological Area, according to the different aspects concerning the System Requirements
- A list of most appropriated technologies has been selected in each technological area
- An analysis of compatibilities is being done in order to identify complete solutions that may be prototyped during the next phase of the project
- A gap analysis between ESA's practices and the best practices in mainstream IT industry is going to be provided

Thank you

Rubén F. Pérez <u>rfperez@gmv.com</u>

GMV Aerospace and Defence

www.gmv.com

