
DBLK: Deduplication for primary storage

Yoshi Tsuchiya and Takashi Watanabe

Fujitsu

5/26/2011 IEEE MSST Research Track

This work is supported by the Green IT project of New Energy and Industrial Technology Development Organization (NEDO)

Outline

 Background

DBLK outline

DBLK Hash index

Multilayer Bloom Filter (MBF)

MBF Bitwise Transposition (MBF BT)

 Summary

1

 2

Deduplication Background

 Deduplication: Reduce size of storage by removing redundancy in data

 Dedup for Primary storage/Backup storage

 Primary storage: file servers, small latency is required

 Inline/Post-process dedup

 Inline: immediately deduplicate and write data

 Post process: write data first, deduplicate later, needs extra storage

 Deduplication unit

 Fixed size block

 File

 Variable-sized segment

 3

DBLK iSCSI implementation

iSCSI
client

RAID

Linux kernel

Logger

Compression

Deduplication

Volume

Meta
data

Chunk

iSCSI target

network

DBLK

Primay block storage

Inline, block-wise deduplication,

thin provisioning and compression

 4

DBLK Data Structure

Hash log

Data log

Hash

PBA

Hash

PBA

Hash

PBA

Data

compressed

Data

compressed

Data

compressed

Volume (Block map)

Hash index

LBA

SHA-1

Block address of Hash log

Disk Disk Disk

・・・

LBA

chunk chunk

Bloom filter

Volume (Block map)

SHA-1

 5

DBLK Data Structure: Logs

Hash log

Data log

Hash

PBA

Hash

PBA

Hash

PBA

Data

compressed

Data

compressed

Data

compressed

Volume (Block map)

Hash index

LBA

Block address of Hash log

Disk Disk Disk

・・・

LBA

chunk chunk

Bloom filter

Volume (Block map)

 6

DBLK Data Structure: Block maps

Hash log

Data log

Hash

PBA

Hash

PBA

Hash

PBA

Data

compressed

Data

compressed

Data

compressed

Volume (Block map)

Hash index

LBA

SHA-1

Block address of Hash log

Disk Disk Disk

・・・

LBA

chunk chunk

Bloom filter

Volume (Block map)

SHA-1

 7

DBLK Data Structure: Hash index

Hash log

Data log

Hash

PBA

Hash

PBA

Hash

PBA

Data

compressed

Data

compressed

Data

compressed

Volume (Block map)

Hash index

LBA

SHA-1

Block address of Hash log

Disk Disk Disk

・・・

LBA

chunk chunk

Bloom filter

Volume (Block map)

SHA-1

 8

DBLK Data Structure

Hash log

Data log

Hash

PBA

Hash

PBA

Hash

PBA

Data

compressed

Data

compressed

Data

compressed

Volume (Block map)

Hash index

LBA

SHA-1

Block address of Hash log

Disk Disk Disk

・・・

LBA

chunk chunk

Bloom filter

Size: 8TB

Size: 80GB

Problem

Too big: 56GB with B+tree

Volume (Block map)

SHA-1
Size: 5.5GB

 9

Hash index implementations

B+tree

Append only log.

only one dirty block

Hash function

Hash bucket with

lots of I/O
I/Os for leaf nodes

 10

Solution: Multilayer Bloom filter

yes

no yes

yes no

Hash value of incoming data

Address of hash table block

 read this block Hash log

 Layers of Bloom filters

 If it reaches to a lowest filter, read the hash-log block

 False positive means ….

 Extra I/Os but a correct answer

 11

MBF implementation

Hash-log blocks

A binary MBF An N-ary MBF

with smaller memory

The bigger N, the shorter MBF = less memory.

 12

MBF Optimization: MBF-BT

1 2 3 4 5 6 … 64
64-Mbit Bloom Filters M bit

Compute (b1&b2&…&b10) 64 times

 13

MBF Optimization: MBF-BT

1 2 3 4 5 6 … 64

1
2
3

64-Mbit Bloom Filters M bit

 14

MBF Optimization: MBF-BT

1 2 3 4 5 6 … 64

1
2
3
4
5
6
…
64

64b
it in

teg
er

64b
it in

teg
er

64b
it in

teg
er

64-Mbit Bloom Filters M bit

M-integers

 15

MBF Optimization: MBF-BT

MBF Bitwise Transposition

1 2 3 4 5 6 … 64

Bitwise transpose to

M-64bit integers 1
2
3
4
5
6
…
64

64b
it in

teg
er

64b
it in

teg
er

64b
it in

teg
er

64-Mbit Bloom Filters M bit

M-integers

Compute (b1&b2&…&b10) 64 times

Compute x1&x2&…&x10 once

64x speedup

Large N for N-ary MBF
1664 in our implementation

 16

MBF implementation

1664 filters

Result: 2-layer MBF

1664x1664 filters

5.5GB for each layer, i.e. 11GB

Bloom filter and B+tree

Bloom Filter

5.5GB+56GB

Summary

MBF

On-memory data structure

Helps reduce the latency of primary dedup

MBF bitwise transposition

Reduces CPU cost to lookup bunch of Bloom filters

Optimizes access to MBF

DBLK

 Smaller latency than other implementation

No I/O for hash index

17

18

Thank you!

 19

