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NAND Flash Memory

* NAND flash memory becomes an attractive storage solution

* Flash memory has unique characteristics
— Erase-before-write architecture
— Asymmetric read/write and erase operation

Flash Translation Layer(FTL) is used



Flash Translation Layer

* Main functionsof FTL
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— AddressTranslation

— Garbage Collection (GC)
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GCcan decrease the performance of NAND flash
memory (by up to 20%).



Reducing Garbage Collection Overhead

* Keyrequirement for reducing GC overhead
— Gatherina data with similar undate tfimes< intn the same hlack

In order to gather data with similar update times into the
same block, efficient data separation technique is necessary
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Existing Data Separation Technique

* Hot/cold Data Separation Technique
— KeyAssumption
» Temporal locality of data updates

— Classification based-on data update frequency

* Hot: frequently updated data (9
¢ Cold:infrequently updated data gt

Frequently
updated data?

Hot block Cold block

Yes No




Problems of Hot/cold Separator

Wide variations on future update times

Timeline

Hot/cold Separator Hot data maybe
invalidated in

different times
Page3

because of different
updatelocalities
Hot block

Ifthere is no clear temporal locality, hot/cold separator does not work
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Contributions

 Evaluate performance gap of existing hot/cold

separator with oracle predictor on future update
times

— Knowing future update time is a more important
factor than update frequency

* Propose a new data separation technique based
on update times of data

— Predicts update times of data based on program
contexts
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ORA: Oracle Predictor on future Update Time

Perfect knowledge on future update times of data

Cansort data based on the future update times of data

An FTL with ORA can gather data with similar
update times into the same block

Can be used as lower bound of GC overhead



Motivation Example
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Hot/cold Separator vs. ORA

* ORAcanreduce GC overhead significantly
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Updatetimeis a more important factor in data separation
technique than frequency of updates
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Basic Idea

Predicts update times of data based on program
behavior

A program behaves similarly when the same
program context is executed

A program contextis used to predict update
times of data



Overview of Program Context

* A program context represents an execution path which
generates write requests

main()
- " [a0] [e0] [e0]| [g0
Fu nc!:lons n o J/ \L \L PC:Program Context
execution paths b " o o LI
Systemcall write()

* |dentification

* Each program context is identified by summing program counter
values of each execution path of function calls

Reference

Chris Gniady, and Ali R. Butt, and Y. Charlie Hu, "Program Counter Based
Pattern Classification in Buffer Caching,” 0SDI, 2004
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Program Context-Based Update Time Prediction

* We can indirectly predict future update times of data by exploiting program

contexts
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These data are updated in a similar period when PC1, PC2, and PC3 are executed ‘



Program Context and Update Behavior

Observation

— Asmallnumber of PCs repeatedly generate a large number of update requests
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Program Context and Update Behavior

Observation 2

Data generated by non-dominating PCs and dominating PCs form sequential
update patterns

¢ | Data generated by dominating PCs and non-dominating PCsare
updatedin a similar period
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Program Context Based Data Separation Heuristic

* Clustersdata with similar update times
— Clusters data generated by a dominating PC

— Clusters data generated by a non-dominating PC and
adjacent dominating PC if update patterns of the
data are sequential



Separating Data using Program Contexts

#ofupdates > threshold
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FTL with our proposed data separator stores data based on simultaneously updated group
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Experimental Environments (1)

* Usedatrace-driven NAND flash memory simulator

— Parameters

Flash Translation Layer

Flash memory

* Techniquesfor comparison
— HASH: Hash-based hot/cold separation technique
— ORA:Oracle predictor on future update times of data

Mapping Scheme
GCTriggering
Read Time (1 page)
WriteTime (1 page)

Erase Time (1 block)

Page-level mapping
5%
25usec
200usec

1200usec




Experimental Environments (2)

e Benchmarks characteristics

The number of writes  The number of updates

Benchmarks Scenario . :
(unit: page) (unit: page)
cscope Linux source code examination 17575 15398
gcc Building Linux Kernel 10394 3840
viewperf Performance measurement 7003 119
tpc-h Accesses to database 23522 20910
tpcr Accesses to database 21897 18803
multil cscope + gcc 28400 19428

multi2 cscope + gcc + viewperf 35719 20106



Result 1: Total Execution Time of GC
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Reduces the total execution time of garbage
collection on average 58% over HASH

100 Low temporal locality

ORA
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Result 2: The number of copied pages per victim block

Reduces the number of copied pages per victim block
on average 25% over HASH

140.0

125.4 123.4 1238
120.0
1082105 ¢ 1105 109.3
100.0
80.0
60.6
&60.0
40.0 358
25 1 2& &
200
00

= = w = E )

2 § 8 2 & % 2 5 % 2 £ 8 2 ¢

= = E = =

cscope gcc multil multi2 tpe-h tpe-r
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Not as accurate as ORA in predicting update times of data
25



Conclusions

Evaluated the performance of existing hot/cold separator
against ORA

— Updatetimeis a more important factor than update
frequency in separation technique

Proposed a novel program context-aware data separation
technique

— Reduces GC overhead by about 58% over a hot/cold separator

Futureworks

— Improve our technique further to reduce performance gap
with ORA

— Exploit program context to explore efficient wear-leveling
management



	슬라이드1
	슬라이드2
	슬라이드3
	슬라이드4
	슬라이드5
	슬라이드6
	슬라이드7
	슬라이드8
	슬라이드9
	슬라이드10
	슬라이드11
	슬라이드12
	슬라이드13
	슬라이드14
	슬라이드15
	슬라이드16
	슬라이드17
	슬라이드18
	슬라이드19
	슬라이드20
	슬라이드21
	슬라이드22
	슬라이드23
	슬라이드24
	슬라이드25
	슬라이드26

