A Program Context-Aware Data Separation

Technique for Reducing Garbage Collection
Overhead in NAND Flash Memory

KeonsooHa and Jihong Kim

Computer Architecture & Embedded Systems Lab.
School of Computer Science and Engineering
Seoul National University

7th IEEE International Workshop on
Storage Network Architecture and Parallel 1/0
May 25,2011

@

Outline

Introduction

Motivation

A Program Context-Aware Data Separation Technique
Experimental Results

Conclusions

NAND Flash Memory

* NAND flash memory becomes an attractive storage solution

* Flash memory has unique characteristics
— Erase-before-write architecture
— Asymmetric read/write and erase operation

Flash Translation Layer(FTL) is used

Flash Translation Layer

* Main functionsof FTL

Page0
Page1
Page2
Page3

— AddressTranslation

— Garbage Collection (GC)

Write data into logical block address 0

Address Translation

Address Translation Table

Overwrite X
h 4
€

Validpage

. .P 9

> Invalid page

> Free page

Block 0 Block 1

Garbage Collection
(3 copies and 1 erasure)

GCcan decrease the performance of NAND flash
memory (by up to 20%).

Reducing Garbage Collection Overhead

* Keyrequirement for reducing GC overhead
— Gatherina data with similar undate tfimes< intn the same hlack

In order to gather data with similar update times into the
same block, efficient data separation technique is necessary

T Tl e AW T et

U.pda te
Time
-
—>
Block 0 Block 0
(15)
(16)
(17)
(18)
Block 1 Block 1

Valid page Invalid page Free page

Existing Data Separation Technique

* Hot/cold Data Separation Technique
— KeyAssumption
» Temporal locality of data updates

— Classification based-on data update frequency

* Hot: frequently updated data (9
¢ Cold:infrequently updated data gt

Frequently
updated data?

Hot block Cold block

Yes No

Problems of Hot/cold Separator

Wide variations on future update times

Timeline

Hot/cold Separator Hot data maybe
invalidated in

different times
Page3

because of different
updatelocalities
Hot block

Ifthere is no clear temporal locality, hot/cold separator does not work

Page0
Page1
Page 2

7

Contributions

 Evaluate performance gap of existing hot/cold

separator with oracle predictor on future update
times

— Knowing future update time is a more important
factor than update frequency

* Propose a new data separation technique based
on update times of data

— Predicts update times of data based on program
contexts

®

Outline

Introduction

Motivation

A Program Context-Aware Data Separation Technique
Experimental Results

Conclusions

ORA: Oracle Predictor on future Update Time

Perfect knowledge on future update times of data

Cansort data based on the future update times of data

An FTL with ORA can gather data with similar
update times into the same block

Can be used as lower bound of GC overhead

Motivation Example

o (][] (] (%) L] [[

Updatetime

N

i

Hot/cold Separator

FTL with Hat-

R,

R;

Block0
(Hotblock)

Id Separator writes
according to the request order

B,

Bs

R

Block1
{Hot block)

R, is updated JETL with

timme 1 3

h

ORA

DRA gathers data
with simifar update times

.-

R.(13)

R:(14)

R.(15)

Rs(16)

Block0

If a GC process was triggered at time 10,

4 copies + 2 erasures

Block1

1 erasure

Hot/cold Separator vs. ORA

* ORAcanreduce GC overhead significantly

S os
E
=
(=3
Tt 06
a = Hot/cold
E = ORA
TEn 0.4
S
=
0.2

O
Total excuetion time of GC Copied pages per victim block

Updatetimeis a more important factor in data separation
technique than frequency of updates

12

®

Outline

Introduction
Motivation

A Program Context-Aware Data Separation Technique
— Basic idea

— Program Context and Update Behavior

— Program Context-Based Heuristic

Experimental Results

Conclusions

Basic Idea

Predicts update times of data based on program
behavior

A program behaves similarly when the same
program context is executed

A program contextis used to predict update
times of data

Overview of Program Context

* A program context represents an execution path which
generates write requests

main()
- " [a0] [e0] [e0]| [g0
Fu nc!:lons n o J/ \L \L PC:Program Context
execution paths b " o o LI
Systemcall write()

* |dentification

* Each program context is identified by summing program counter
values of each execution path of function calls

Reference

Chris Gniady, and Ali R. Butt, and Y. Charlie Hu, "Program Counter Based
Pattern Classification in Buffer Caching,” 0SDI, 2004

15

Program Context-Based Update Time Prediction

* We can indirectly predict future update times of data by exploiting program

contexts
PC1 PC2 PC3 PC4 /F"C'l PC2 Pf;\ PC4 /.F-'C'I PCZ PC;\
program [© 30 <0 e) a0 | a0 <0 e0l g0| a0 <) e
Context == W W W W W W W N \ W W
PO L by d) F) hOlbO do fol holb
0) hi % () () {L () 1 0 di F{L‘
System call write()
Logical 4 e " @ P
Pl ® rc
) PG
. . PG
@ () update
/ >
Time

These data are updated in a similar period when PC1, PC2, and PC3 are executed ‘

Program Context and Update Behavior

Observation

— Asmallnumber of PCs repeatedly generate a large number of update requests

"

g
=
S
E
=
o
&

Dominating PC

140

120

Data generated by each dominating PCare likely tobe
updatedin a similar period

100

80

&0

&0

20

li]

=
4

<
%

Updated data by dominating PCs *s oo

YRR

& &

e 99

&

i ~

2000 4000 &£000 BOOOD 10000 12000 14000 16000

Update time

:
- E-)
. ’ s : b R0 1

y
, el EalRala] 5 2 4

-« e

18000

17

Program Context and Update Behavior

Observation 2

Data generated by non-dominating PCs and dominating PCs form sequential
update patterns

¢ | Data generated by dominating PCs and non-dominating PCsare
updatedin a similar period
. ' _ T T T I gy o=

h
100 @ ® ‘
> L E E
g0 time |

120

=
el
=
e
g
= 60 D Updated data by dominating PCs ik
D Updated data by non-deminating PCs
&0 I
20 & & -
e L L
o .
o 2000 4000 6000 8000 10000 12000 14000 16000 18000

Update time

18

Program Context Based Data Separation Heuristic

* Clustersdata with similar update times
— Clusters data generated by a dominating PC

— Clusters data generated by a non-dominating PC and
adjacent dominating PC if update patterns of the
data are sequential

Separating Data using Program Contexts

#ofupdates > threshold

Logical
Block
Address

tes > threshold _
F " @ Pomdorhingfifd PC1

U Bomderhing f162 PC2
@ Non-dominating PC3

Sequential
Update
>
Time
Simultaneously updated group 1 Slmultaneeusly updated group 2
Data generated by PC1 Data generated by PC2 and PC3

FTL with our proposed data separator stores data based on simultaneously updated group

|

\ Block 0 Block 1] 1 Block 2 Block 3 [

i
Data generated by PC1 Data generated by PC2 and PC3 20

@

®

Outline

Introduction
Motivation

A Program Context-Aware Data Separation
Technique

Experimental Results

Conclusions

Experimental Environments (1)

* Usedatrace-driven NAND flash memory simulator

— Parameters

Flash Translation Layer

Flash memory

* Techniquesfor comparison
— HASH: Hash-based hot/cold separation technique
— ORA:Oracle predictor on future update times of data

Mapping Scheme
GCTriggering
Read Time (1 page)
WriteTime (1 page)

Erase Time (1 block)

Page-level mapping
5%
25usec
200usec

1200usec

Experimental Environments (2)

e Benchmarks characteristics

The number of writes The number of updates

Benchmarks Scenario . :
(unit: page) (unit: page)
cscope Linux source code examination 17575 15398
gcc Building Linux Kernel 10394 3840
viewperf Performance measurement 7003 119
tpc-h Accesses to database 23522 20910
tpcr Accesses to database 21897 18803
multil cscope + gcc 28400 19428

multi2 cscope + gcc + viewperf 35719 20106

Result 1: Total Execution Time of GC

m READ = WRITE = ERASE

90
80
70
60
50
£0

Total execution times for copies
(READ+WRITE) are reduced

30
20
10

Total execution time of garbage collection (Sec.)

= o = == o =L = @ =L = @ =L = @ =T == a

v s o v i o= A = ec v R o v — o v H

= c = % ©o = 8% o© = % c | = S = 2

= % = E - E = = E x E

w wr o s s

o a a a a a
cscope gcc multil multi2 tpc-h tpc-r

Reduces the total execution time of garbage
collection on average 58% over HASH

100 Low temporal locality

ORA

24

Result 2: The number of copied pages per victim block

Reduces the number of copied pages per victim block
on average 25% over HASH

140.0

125.4 123.4 1238
120.0
1082105 ¢ 1105 109.3
100.0
80.0
60.6
&60.0
40.0 358
25 1 2& &
200
00

= = w = E)

2 § 8 2 & % 2 5 % 2 £ 8 2 ¢

= = E = =

cscope gcc multil multi2 tpe-h tpe-r

m Average copied pages per victim block

Not as accurate as ORA in predicting update times of data
25

Conclusions

Evaluated the performance of existing hot/cold separator
against ORA

— Updatetimeis a more important factor than update
frequency in separation technique

Proposed a novel program context-aware data separation
technique

— Reduces GC overhead by about 58% over a hot/cold separator

Futureworks

— Improve our technique further to reduce performance gap
with ORA

— Exploit program context to explore efficient wear-leveling
management

	슬라이드1
	슬라이드2
	슬라이드3
	슬라이드4
	슬라이드5
	슬라이드6
	슬라이드7
	슬라이드8
	슬라이드9
	슬라이드10
	슬라이드11
	슬라이드12
	슬라이드13
	슬라이드14
	슬라이드15
	슬라이드16
	슬라이드17
	슬라이드18
	슬라이드19
	슬라이드20
	슬라이드21
	슬라이드22
	슬라이드23
	슬라이드24
	슬라이드25
	슬라이드26

