Argonne°

NATIONAL LABORATORY

Reliable MPI-IO through Layout-Aware
Replication

Seung Woo Son, Samuel Lang, Robert Latham, Robert Ross, Rajeev Thakur
Mathematics and Computer Science Division
Argonne National Laboratory

g\ U.S. DEPARTMENT OF
.4/ ENERGY

7™ |EEE International Workshop on Storage Network Architecture and Parallel I/O (SNAPI'11)
eSS

Potential exascale system architecture: everything
must scale with compute!

Systems 2000|2018

System Peak 2 Pflop/sec 1 Eflop/sec 0(1000)
Power 6 Mwatt 20 Mwatt
System Memory 0.3 Pbytes 32-64 Pbytes 0O(100)
Node Compute 125 Gflop/sec 1-15 Tflop/sec 0O(10-100)
Node Memory BW 25 Gbytes/sec 2-4 Tbytes/sec 0(100)
Node Concurrency 12 O(1-10K) O(100-1000)
Total Node Interconnect BW 3.5 Gbytes/sec 200-400 Gbytes/sec 0(100)
System Size (Nodes) 18,700 0(100,000-1M) 0(10-100)
Total Concurrency 225,000 O(1 billion) 0O(10,000)

(

MTTI Days O(1 day)

Source: J. Dongarra, “Impact of Architecture and Technology for Extreme Scale on Software and Algorithm Design,” Cross-cutting
Technologies for Computing at the Exascale, February 2-5, 2010.

o 2

Extreme scale storage systems will be operating in
a faulty environment

Checkpoint/restart is key component to achieve fault tolerance in HPC systems

Meeting rapidly growing need for disk
bandwidth requires more number of disks
(at 65% AGR) because disk bandwidth is

growing at 20% AGR

Hard disk failure rate is much higher (by a Component failures (MTTF) across several
factor of about 15 times higher) than that Google cells (Ford et al. [OSDI"10])
expected based on MTTF information

supplied by manufactures. (Schroeder and -

Gibson [FAST’07]) 10~50 years} 4.3 months 10.2 yrs

Outline

= Motivation

— Exascale systems and reliability concern
= Prior work

— Erasure codes vs. Replication

— HDFS
= Block replication in MPI-IO

— Overview

— Layout-aware MPI Datatypes

— Client-driven block replication
= Experimental evaluation

— Microbenchmark and real application benchmark
= Discussion

— limitations and possible solutions
= Related work

= Conclusion

Erasure codes vs. replication

RAID 5

-

Disk O

o

Disk 1

At

Disk 2

B

Disk 3

Node

Disks

B
B
B
B

Node

Disks

Node

Disks

Node

Disks

Typically underneath the parallel file
systems

Works at a fine block granularity

High cost to purchase hardware disk arrays

Needs to read two or more of the
remaining blocks for rebuilding

Recently used in distributed file systems
for MapReduce/Hadoop, e.g., HDFS, GFS

Coarse block granularity, 64MB in HDFS

Requires only one copy for rebuilding

High storage overhead, e.g., 200%

We want to emulate replication within MPI-IO!

Block replication in a single file across stripe
boundaries

original block

copy 1
copy 2
copy 3

replicated block

I copyl
file layout B copy?2
[1 copy3

We use MPI datatypes for representing each replica

S |

original block

copy 1
copy 2
copy 3

D, ={(s,.d,),(8,,d,),,(8,.d,,)}
D, .=1(s,.d,),(s,,d,+3S),--,(s _,,d _,+35*(n-1))}

replicated block

copyl
D.,,., =1(sy,dy+S),(s;,d, +§+38),---,(s5,,d, +§+35*(n—-1))}
D.,,;=1(s0.dy +28),(s,,d, + 28 +3§8),-+-,(s,_,,d,, + 25§ + 3§ *(n-1))}

MPI derived dataypes and fileview

‘ copy 1

copy 2
copy 3

MPI-10 allows users to access several noncontiguous pieces of data by
defining file views with derived datatypes.

D, = {(s0,d,),(s,,d, +3S5),-++,(s,_,d _ +3S*(n-1))}

ncount = 4;
blocklens[ncount] = {S, S, S, S};
offsets[ncount] = {0, 3S, 6S, 9S};

MPI Type create_hindexed (ncount, blocklens[], offsets][],
old type, &newtype);
MPI Type commit (&newtype);

MPI File set view (fh, 0, old type, newtype, ..);
MPI File write (fh, buf, count, old type, &status);

Replication is done transparently

MPI-10 Applications MPI_Info_set (info, “RF”, “37);
/ / MPI File write(fh, buf, count,
\ MPI INT, &status);
Normal Shim layer
MPI-10 calls| | (~400 LOC of PMPI module)
y
\ \
MPI-10 Library
$ MPI File write(..)
. {
Parallel File Systems create 3 derived datatypes;
(PVFS or Lustre) for (i=0; i<RF; i++)

{
MPI File set view(..);
PMPI File write(..);
}
}

Example

Assuming stripe size = 200 bytes,
Rank 0 (PO) writes 100 bytes at offset 0, and
Rank 1 (P1) writes 200 bytes at offset 150

PO P1
[A \
{0..99}

7
7

offset: ©

0]0)%
009
008
000T
00¢T

10

Example - cont’d

Assuming stripe size = 200 bytes,
Rank 0 (P0O) writes 100 bytes at offset 0, and
Rank 1 (P1) writes 200 bytes at offset 150

PO

——

{0..99}

T
ey
A

offset: ©

P1

o] R, s
PO) o .
) i Y

;;;;;;;;;

A

;;;;;;;;;

s,

PO+P1 o

Gt

How to deal with reads?

replicated block

copy 1
copy 2
copy 3 0 1 2 3

MPI File read(...)
{

/* try copy 1 */

MPI File set view(fh shadow, 0, ..., hindextype[0], ...);
PMPI File read(fh_shadow, buf, nints, MPI_ INT, &status);
if (status == ERROR)

{
/* try copy 2 */

MPI File set view(fh shadow, 0, ..., hindextype[l], ...);
PMPI File read(fh_shadow, buf, nints, MPI INT, &status);
if (status == ERROR) {

/* try copy 3 (last) */

MPI File set view(fh_shadow, 0, ..., hindextype[2], ...);

PMPI File read(fh_shadow, buf, nints, MPI_ INT, &status);
}

12

Experimental Methodology

= Evaluation platform

— A cluster of 24 nodes

e Each node: Dual Intel Xeon Quad core 2.66 GHz, 16 GB main memory, 50 GB local storage
space

— All nodes run the Linux 2.6.22 kernel, connected thorough 1GE
— MPI library: MPICH2-1.3.1

— Parallel file systems: PVFS-2.8.1 and Lustre 1.6.4.2
e Configured to use 4 storage nodes
e Default stripe size: 1 MB

= Evaluated schemes
— Normal: without replication
— Replication: our MPI triplication scheme

= Evaluation metric
— Write completion time: micro and application benchmark

13

Replication overhead increases w.r.t replication

factor

Write completion time (sec)

16

14

12

10

PVFS (replication) o | | | A
Lustre (replication) -G
~PVFS (normal) D T 7
Lustre (normal) A
/S P
1 2 4 8 16 32 64 128 256 512

File size (MB)

write completion time o replication factor (3)

14

Our replication scheme is scalable w.r.t number of
clients (writers)

200

P\I/FSI(repIIicaltion)I JEEVEEEEEE é
180 | Lustre (replication) S . RS
PVFS (normal) - pE

160 | Lustre (normal)

140 |
120 |
100
80
60

Write completion time (sec)

40 +
20 o

Number of Clients

Real applications

100

20

120
)
(]
Q
o
£
-
S
kT
o
£
o
@)
0

67.7% and 115.6% performance penalty for BTIO and MADbench2,

respectively

80

60 -

40 +

normal
replication

BTIO

MADbench2

16

Discussion

= Collective I/O
— Current implementation works only with independent calls
e MPI_File_write(), MPI_File_write_at(), etc.
— Fileview conflict
e Fileview for describing different block location # Fileview for a particular process
= Storage overhead

— Higher storage overhead than RAID
e 25%in 8+2 RAID 6 vs. 200 %

— Selective replication or async/delayed encoding can be used in conjunction with
= Non-blocking writes for replicas
— Currently ROMIO does not support nonblocking I/O for strided writes

= Placing replicas in separate files
— Replication can be done in a single file or multiple files

17

Example: file layouts using three files with
different first data servers

original block _

)) G

B Filel - - - -

Sfiles mm rile2 BN (0| 1] 2]
[1 File3 2 3 0 1

It achieves the same reliability level, i.e., tolerating two disk (node) failures.

Each file stripe should start at a different file server (disk).
It does not require complex data layouts for read/write calls.

It creates 3x more files than single-file approach.

18

Related work

= MPI extensions for fault tolerance
— Most are focused on providing capability of checkpointing/restart

— FT-MPI, VolpexMPI, XOR-based double erasure codes [Wang et al.], transparent
redundancy [Brightwell et al.]

— Not providing redundancy to data stored on the storage systems
= Redundancy in MPI-IO and parallel file systems

— Fault tolerance in MPI applications on PVFS [Calderon et al.], Data structure for
continuous snapshot [Brinkmann et al.], SSpiRAL [Amer et al.]

= Data-intensive computing workloads, e.g., MapReduce/Hadoop

— HDFS uses triplication for fault tolerance

— Our approach is similar, but provides replication within the context of MPI-10
= Lazy redundancy [Gropp et al.]

— It also uses MPI datatypes to calculate parity blocks

— It requires a modification to the ROMIO MPI-IO implementation

19

N
We provide a block replication within MPI-IO
transparently

We use MPI derived datatypes to represent replicated file layouts.

Block replication is implemented within shim layer.

Our scheme can be used with any existing parallel file systems.

1

20

Acknowledgements

= DOE Office of Advanced Scientific Computing Research (ASCR)

= Wei-keng Liao (NU)

21

Questions?

22

Backup slides

..
HDFS replicates block in a rack-aware manner

Block Replication

/
Namenode (Filename, numReplicas, block-ids, ...)
/users/sameerp/data/part-0, r:2, {1,3}, ...
/users/sameerp/data/part-1, r:3, {2,4,5}, ...

-

Datanodes

Source: http://hadoop.apache.org/common/docs/r0.18.0/hdfs_design.pdf
° 24

Application Benchmarks

BTIO

MADbench?2

|/O version of BT (block 16
tridiagonal)

“simple” subtype with Class A

problem size (64 x 64 x 64 grid

size)

419.43 MB data to a shared file

every 5" timestep out of 200

iterations

MADspec data analysis code 16
Out-of-core matric operations

Built to generate unique

(individual) file type using MPI-10

Each process writes about 303 MB

69.9 sec

21.9 sec

419.43 MB

4,848 MB

25

