
Towards Simulation of Parallel File 
System Scheduling Algorithms with 

PFSsim

Dulcardo Clavijo, Yiqi Xu,

Ming Zhao

Florida International University

Miami, FL

Yonggang Liu, Renato Figueiredo

University of Florida

Gainesville, FL



Introduction
Parallel File Systems (PFSs) based storage

Widely used in high-performance computing systems
Examples: Lustre, PVFS2, PanFS, GPFS
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Challenge
How to provide application-desired quality of service when 
the system has:

Many applications with large amount of I/O traffic
Diverse application access patterns
Diverse application QoS requirements
Examples: WRF, mpiBLAST, S3D

This problem will only become even more serious as the 
scale HPC systems further increases
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Virtualization-based Storage Management
Creation of per-application virtual PFS*

Ability to schedule I/Os on a per-application basis
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*Y. Xu, et al., “Virtualization-based Bandwidth Management for 
Parallel Storage Systems”, PDSW’10.



PFSsim
Motivation

The need of evaluating parallel I/O scheduling algorithms
The need of a general-purpose parallel file system simulation 
framework

Design goals
Easy-to-use
Flexible
Accurate
Scalable
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Related Work
IMPIOUS* by E. Molina-Estolano, et al.

Capable of fast evaluations of PFS designs
No simulation of metadata server and metadata operations

The simulator developed by P. Carns, et al. **

Capable of evaluating the performance of I/O communications
Detailed simulation of network models

SIMCAN*** by Alberto Núñez, et al.
Modulated design and statistical models
Complex system architecture

No support for I/O scheduling simulations
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* “Building a Parallel File System Simulator”, SciDAC'09.
** “Using Server-to-server Communication in Parallel File System”, SC’08.
*** “SIMCAN: A Simulator Framework for Computer Architectures and Storage Networks”,  OMNeT++’08.
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Metadata Servers
Map the PFS file 
paths to storage 
object IDs
Manage the object 
placement and 
metadata operations

Clients
Provide the PFS 
interface
Communicate with 
the servers
May also cache data 
and metadata

PFSsim: Abstraction of PFSs
Essential components and their functionalities 

Data Servers
Built based on the 
local file systems 
/block devices
Store application 
data in fixed-sized 
objects
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Object Mapping
The client maps 
{file_path, off, size} 
to a set of objects, by 
communicating with 
the metadata server.

Locating the object
The client locates 
the objects on the 
data servers that 
store them

Data Transmission
The client sends out 
data I/O requests 
{op, object_ID, off} 
to the corresponding 
data servers

Abstraction of PFSs
A typical file data access (read/write) operation

Application I/O 
request

{op, file_path, off, 
size} to the client
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Four Important Aspects
Metadata management

Can significantly impact application performance*

Data placement strategy
Determine server load balance and I/O parallelism

Data replication model
Writes can be slower due to updating multiple copies

Data caching policy
Generally speed up data access, but consistency management 
also incurs overhead

10 * R. Oldfield, et al. “Modeling the Impact of Checkpoints on Next-Generation Systems”, MSST’07.



Abstraction of PFS Schedulers
Schedulers in storage systems are deployed in different ways:

On the gateways/proxies/data servers
Centralized/decentralized

In PFSsim, the schedulers can be modeled flexibily:
Stand-alone/coupled with the network entities
Inter-scheduler communications are supported
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Architecture of a Simulated System
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Scheduler Implementation
The schedulers are implemented by inheriting a base class 
with several essential methods:

JOB * jobArrival();

JOB * jobFinish();

bool dispatchJob(JOB * job);

bool sendbackJob(JOB * job);

bool sendSchInfo(Message * msg); Message * getSchInfo();
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Network Implementation
Network links are simulated by the channel components in 
OMNeT++

Configurable bandwidth/latency/bit error rate

Detailed real-world network protocols are omitted
Can be extended with the INET framework*

Basic wired network devices are simulated
Such as switches, routers
Can be customized or extended by users
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* “http://inet.omnetpp.org”



Local File System Implementation
Memory component is simulated for data caching/buffering

Configurable memory size and page replacement policies

Files are mapped to disk blocks in a contiguous manner
Real-world disk block management schemes are hard to 
simulate, dependent on many factors (file system, file size and 
disk usage)*

Possible simulation using statistical models in future work
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* A. Nunez, “New Techniques for Modeling File Data Distribution on Storage Nodes”
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PFSsim Validation
Validate the I/O throughput and latency under different 
workloads
Benchmark system

PVFS2: 4 data servers/1 metadata server/varying number of 
clients
Each client/server has one 2.4GHz CPU/1GB RAM
PVFS2, stripe size set to 256KB, round-robin distribution

Traces
Each client sequentially writes 400MB, 1MB per write
Each client sequentially reads 400MB, 1MB per read
Reads are conducted on the same files right after write
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Read Throughput
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Write Throughput
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Response Time
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Scheduler Validation
Validate SFQ(D)* algorithm with different proportional 
sharing ratios

Benchmark system and traces
PVFS2: 4 data servers/1 metadata server
16 clients in Group1(G1) / 16 clients in Group2(G2)
SFQ(D) is deployed on each scheduler (D=4)
One scheduler per data server
Each client sequentially writes to 400MB, 1MB per write

Varying sharing ratio between G1 and G2
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* W. Jin, et al., “Interposed Proportional Sharing For A Storage Service Utility”, SIGMETRICS’04. 



Scheduler Validation

G2’s share
Average: 50.17%
Standard Deviation: 0.024

G2’s share
Average: 67.50%
Standard Deviation: 0.094

G2’s share
Average: 73.67%
Standard Deviation: 0.101

G2’s share
Average: 50.06%
Standard Deviation: 0.011

G2’s share
Average: 65.26%
Standard Deviation: 0.019

G2’s share
Average: 76.63%
Standard Deviation: 0.038

Real System Results Simulated Results

G1:G2
=1:1

G1:G2
=1:2

G1:G2
=1:4
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Conclusion
Progress towards the four basic design goals

Easy-to-use
Modular system design, object-oriented code 

Flexible
Highly tunable parallel file system configuration, scheduler parameters, 
and network topology

Accurate
Good simulation accuracy shown in the validation results

Scalable
Able to simulate 512 clients and 32 servers in half an hour on a PC with 
2.13GHz Intel i3 CPU and 2GB RAM
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Future Work
Validate PFSsim against more realistic benchmarks

Integrate a synthetic trace generator 

Simulate disk block management using statistical models

Explore ways to support the simulation of very large scale 
systems
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