
Towards Simulation of Parallel File
System Scheduling Algorithms with

PFSsim

Dulcardo Clavijo, Yiqi Xu,

Ming Zhao

Florida International University

Miami, FL

Yonggang Liu, Renato Figueiredo

University of Florida

Gainesville, FL

Introduction
Parallel File Systems (PFSs) based storage

Widely used in high-performance computing systems
Examples: Lustre, PVFS2, PanFS, GPFS

Compute
nodes

APP1

APP2

APPn

APPn

APPn

Storage
nodes

PFS-based
parallel I/Os

2

Challenge
How to provide application-desired quality of service when
the system has:

Many applications with large amount of I/O traffic
Diverse application access patterns
Diverse application QoS requirements
Examples: WRF, mpiBLAST, S3D

This problem will only become even more serious as the
scale HPC systems further increases

3

Virtualization-based Storage Management
Creation of per-application virtual PFS*

Ability to schedule I/Os on a per-application basis

4

App

Compute
nodes

Data servers

App

App

PFS

Virtual PFS1

Virtual PFS2

Application 1

Application 2

Proxy

*Y. Xu, et al., “Virtualization-based Bandwidth Management for
Parallel Storage Systems”, PDSW’10.

PFSsim
Motivation

The need of evaluating parallel I/O scheduling algorithms
The need of a general-purpose parallel file system simulation
framework

Design goals
Easy-to-use
Flexible
Accurate
Scalable

5

Related Work
IMPIOUS* by E. Molina-Estolano, et al.

Capable of fast evaluations of PFS designs
No simulation of metadata server and metadata operations

The simulator developed by P. Carns, et al. **

Capable of evaluating the performance of I/O communications
Detailed simulation of network models

SIMCAN*** by Alberto Núñez, et al.
Modulated design and statistical models
Complex system architecture

No support for I/O scheduling simulations

6

* “Building a Parallel File System Simulator”, SciDAC'09.
** “Using Server-to-server Communication in Parallel File System”, SC’08.
*** “SIMCAN: A Simulator Framework for Computer Architectures and Storage Networks”, OMNeT++’08.

Outline
Introduction

Related Work

Design and Implementation

Validation and Evaluation

Conclusion

Future Work

7

Metadata Servers
Map the PFS file
paths to storage
object IDs
Manage the object
placement and
metadata operations

Clients
Provide the PFS
interface
Communicate with
the servers
May also cache data
and metadata

PFSsim: Abstraction of PFSs
Essential components and their functionalities

Data Servers
Built based on the
local file systems
/block devices
Store application
data in fixed-sized
objects

8

Object Mapping
The client maps
{file_path, off, size}
to a set of objects, by
communicating with
the metadata server.

Locating the object
The client locates
the objects on the
data servers that
store them

Data Transmission
The client sends out
data I/O requests
{op, object_ID, off}
to the corresponding
data servers

Abstraction of PFSs
A typical file data access (read/write) operation

Application I/O
request

{op, file_path, off,
size} to the client

9

Four Important Aspects
Metadata management

Can significantly impact application performance*

Data placement strategy
Determine server load balance and I/O parallelism

Data replication model
Writes can be slower due to updating multiple copies

Data caching policy
Generally speed up data access, but consistency management
also incurs overhead

10 * R. Oldfield, et al. “Modeling the Impact of Checkpoints on Next-Generation Systems”, MSST’07.

Abstraction of PFS Schedulers
Schedulers in storage systems are deployed in different ways:

On the gateways/proxies/data servers
Centralized/decentralized

In PFSsim, the schedulers can be modeled flexibily:
Stand-alone/coupled with the network entities
Inter-scheduler communications are supported

11

Architecture of a Simulated System

12

Scheduler Implementation
The schedulers are implemented by inheriting a base class
with several essential methods:

JOB * jobArrival();

JOB * jobFinish();

bool dispatchJob(JOB * job);

bool sendbackJob(JOB * job);

bool sendSchInfo(Message * msg); Message * getSchInfo();

13

Network Implementation
Network links are simulated by the channel components in
OMNeT++

Configurable bandwidth/latency/bit error rate

Detailed real-world network protocols are omitted
Can be extended with the INET framework*

Basic wired network devices are simulated
Such as switches, routers
Can be customized or extended by users

14
* “http://inet.omnetpp.org”

Local File System Implementation
Memory component is simulated for data caching/buffering

Configurable memory size and page replacement policies

Files are mapped to disk blocks in a contiguous manner
Real-world disk block management schemes are hard to
simulate, dependent on many factors (file system, file size and
disk usage)*

Possible simulation using statistical models in future work

15
* A. Nunez, “New Techniques for Modeling File Data Distribution on Storage Nodes”

Outline
Introduction

Related Work

Design and Implementation

Validation and Evaluation

Conclusion

Future Work

16

PFSsim Validation
Validate the I/O throughput and latency under different
workloads
Benchmark system

PVFS2: 4 data servers/1 metadata server/varying number of
clients
Each client/server has one 2.4GHz CPU/1GB RAM
PVFS2, stripe size set to 256KB, round-robin distribution

Traces
Each client sequentially writes 400MB, 1MB per write
Each client sequentially reads 400MB, 1MB per read
Reads are conducted on the same files right after write

17

Read Throughput

18

Write Throughput

19

Response Time

20

Scheduler Validation
Validate SFQ(D)* algorithm with different proportional
sharing ratios

Benchmark system and traces
PVFS2: 4 data servers/1 metadata server
16 clients in Group1(G1) / 16 clients in Group2(G2)
SFQ(D) is deployed on each scheduler (D=4)
One scheduler per data server
Each client sequentially writes to 400MB, 1MB per write

Varying sharing ratio between G1 and G2

21
* W. Jin, et al., “Interposed Proportional Sharing For A Storage Service Utility”, SIGMETRICS’04.

Scheduler Validation

G2’s share
Average: 50.17%
Standard Deviation: 0.024

G2’s share
Average: 67.50%
Standard Deviation: 0.094

G2’s share
Average: 73.67%
Standard Deviation: 0.101

G2’s share
Average: 50.06%
Standard Deviation: 0.011

G2’s share
Average: 65.26%
Standard Deviation: 0.019

G2’s share
Average: 76.63%
Standard Deviation: 0.038

Real System Results Simulated Results

G1:G2
=1:1

G1:G2
=1:2

G1:G2
=1:4

22

Outline
Introduction

Related Work

System Modeling

Simulator Implementation

Validation and Evaluation

Conclusion

Future Work

23

Conclusion
Progress towards the four basic design goals

Easy-to-use
Modular system design, object-oriented code

Flexible
Highly tunable parallel file system configuration, scheduler parameters,
and network topology

Accurate
Good simulation accuracy shown in the validation results

Scalable
Able to simulate 512 clients and 32 servers in half an hour on a PC with
2.13GHz Intel i3 CPU and 2GB RAM

24

Outline
Introduction

Related Work

Design and Implementation

Validation and Evaluation

Conclusion

Future Work

25

Future Work
Validate PFSsim against more realistic benchmarks

Integrate a synthetic trace generator

Simulate disk block management using statistical models

Explore ways to support the simulation of very large scale
systems

26

Acknowledgement
Research team

VISA lab at FIU
Yiqi Xu, Dulcardo Clavijo, LixiWang, Dr. Ming Zhao

ACIS lab at UF
Yonggang Liu, Dr. Renato Figueiredo

Sponsor: NSF HECURA CCF-0937973/CCF-0938045
More information:

http://visa.cis.fiu.edu/hecura
https://github.com/myidpt/PFSsim

Thank You!
27

