Scalable Distributed Directory Implementation on Orange File System

Shuangyang Yang Walter B. Ligon III Elaine C. Quarles Clemson University

Outline

- Orange File System
- Motivation for Distributed Directory
- Design and Implementation
- Micro-benchmark Performance
- Summary and Conclusion
- Future Work

What is OrangeFS?

- High performance, parallel file system
- Continuation of PVFS
- Concentration on production quality features
- Open source, GPL licensed
- More details at http://orangefs.org/

Huge Directories

- Millions of files under the same directory
- Scalability issues
- Needed for:
 - Gene sequencing
 - Image processing
 - Data mining
 - Real-time application monitoring

Motivation for Distributed Directories

- OrangeFS stripes contents of data files among servers, BUT
- All directory entries for any given directory are held on a single server, THUS
- Creating the potential for hot spots

OrangeFS Structure

Terminology:

- Metadata
- Datafile
- Dirdata

Existing Techniques

- Distribute directory entries in multiple blocks or partitions on multiple servers.
- GPFS: multiple disk blocks. Extensible hashing to lookup and grow.
- GIGA+: multiple fixed-size partitions. Partition bitmap to maintain status. Extensible hashing and incremental growth.

Goals of Current Work

- Distributed directory implementation based on GIGA+. Utilizing extensible hashing and partition bitmap representation.
- Different design decisions in order to be integrated into OrangeFS seamlessly.
- Evaluate performance of initial implementation

Modified Structure

- Multiple dirdata objects represented by handles.
- Dirdata bitmap
- Stored on both metadata object and dirdata object.

Lookup

Map a directory entry to a dirdata object.

```
R=ceil(log_2(N));
                     key=Hash(name) mod 2<sup>R</sup>;
index = ... 7 6 5 4 3 2 1 0
dirdata
bitmap
while(bitmap[key] != 1)
                                   found!
  R--:
  key = key mod 2^{R};
                                              DISTRIBUTED DIRECTORIES
```

Split Operation

 Overloaded dirdata object can send half of its hash space to another dirdata object.

Design Decisions

- One dirdata object on one metadata server, entries indexed by Berkeley DB
- Initial number of active dirdata objects is configurable
- Metadata object holds most up-to-date copy of dirdata bitmap

Implementation on OrangeFS

- Directory entries are distributed among multiple metadata servers.
- Dynamic splitting is close to completion.
- The scalable distributed directory feature is available as an experimental release at

http://www.orangefs.org/download/

Micro-benchmark performances

- Modified version of UCAR metarates benchmark*.
- Measure throughput of file creation and removal under one directory concurrently.
- Conducted on the Palmetto Cluster housed by Clemson University.

Palmetto Cluster

- 1541 nodes, 8 cores.
- 12/16 GB memory.
- Myrinet 10G interconnect.
- High throughput storage.
- More at

http://citi.clemson.edu/p almetto

File Creation

 Average throughput can reach 8000+ creations/second with 64 servers, 128 clients.

File Removal

 Average throughput can reach 11000+ removals/second with 64 servers, 128 clients.

Creation with Variable Clients

 Maintain high throughput when saturated on 64 servers.

Removal with Variable Clients

 Maintain high throughput when saturated on 64 servers.

Summary and Conclusion

- The distributed directory implementation shows great scalability in creating and removing large numbers of files by multiple clients concurrently.
- Can reach 8000+ file creations/second and 11000+ file removals/second with 64 servers on Palmetto Cluster.

Future Work

- Finish implementation of splitting functionality and get ready for public release.
- Optimize performance, particularly using collective communication.
- Thoroughly evaluate performance of throughput, scalability, overheads and etc.

Acknowledgement

