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Abstract—Over the past few years, hybrid storage architec-
tures that use high-performance SSDs in concert with high-
density HDDs have received significant interest from both in-
dustry and academia, due to their capability to improve perfor-
mance while reducing capital and operating costs. These hybrid
architectures differ in their approach to integrating SSDs into

the traditional HDD-based storage stack. Of several such possible
integrations, two have seen widespread adoption: Caching and
Dynamic Storage Tiering.

Although the effectiveness of these architectures under certain
workloads is well understood, a systematic side-by-side analysis
of these approaches remains difficult due to the range of design
alternatives and configuration parameters involved. Such a study
is required now more than ever to be able to design effective hy-
brid storage solutions for deployment in increasingly virtualized
modern storage installations that blend several workloads into a
single stream.

In this paper, we first present our extensions to the Loris
storage stack that transform it into a framework for designing
hybrid storage systems. We then illustrate the flexibility of the
framework by designing several Caching and DST-based hybrid
systems. Following this, we present a systematic side-by-side
analysis of these systems under a range of individual workload
types and offer insights into the advantages and disadvantages
of each architecture. Finally, we discuss the ramifications of our
findings on the design of future hybrid storage systems in the
light of recent changes in hardware landscape and application
workloads.

I. INTRODUCTION

Over the last decade, flash-based SSDs (Solid State Disks)

have revolutionized the storage landscape. Though modern

flash SSDs perform much better than their rotating media

counterparts under both random and sequential workloads,

flash-only storage installations continue to be prohibitively ex-

pensive for most, if not all, enterprises due to the high cost/GB

of SSDs. As a result, storage researchers have proposed im-

plementing systems based on hybrid storage architectures that

use high performance flash SSDs in concert with high-density

HDDs (Hard Disk Drives) to reduce capital and operating

costs, while improving overall performance.
Of all such architectures, two have gained widespread

adoption—Caching [4] and Dynamic Storage Tiering (DST)

[2], [12], [15]. The Caching architecture involves extending

the two-level memory hierarchy to the third level by using

flash devices as intermediate caches that sit between HDDs

and memory. The DST architecture, on the other hand, uses

SSDs for primary data storage by establishing tiers of high-

performance flash storage and high-density disk storage.
Due to their popularity, these two architectures have also

been in the limelight of research over the past few years,

and the effectiveness of Caching and DST under certain

specific workloads is well understood [9], [14]. However,

with the wide spread adoption of storage virtualization, mod-

ern storage installations blend I/O requests from different

workloads together into a single stream. Designing efficient

hybrid architectures for such workloads requires answering

two important questions: 1) how do existing architectures fare

under such workloads?, and 2) should future hybrid systems

support not one, but multiple architectures, and pair workloads

with their ideal architectures?

In order to answer these questions, we need to perform 1) a

side-by-side comparison of existing architectures under such

mixed workloads, and 2) a systematic study of interactions

between architectural design alternatives and workload param-

eters. Unfortunately, due to the wide range of configuration pa-

rameters and design alternatives involved in building Caching

and DST-based systems, performing such a study would be

infeasible in the absence of a hybrid storage framework.

In this paper, we will show how the Loris storage stack,

with a few extensions, can be transformed into a modular

framework for implementing and evaluating hybrid storage

systems. To illustrate the flexibility of the framework, we

will implement several flavors of Caching and DST. We will

then use several macrobenchmarks and file system workload

generators to perform a systematic study of the effectiveness of

these Loris-based hybrid systems under a variety of workloads.

Based on our evaluation, we will offer insights into 1) the

design of current hybrid systems by investigating design

factors that impact performance, and 2) the design of future

systems in light of recent changes in hardware landscape and

application workloads.

The rest of the paper is organized as follows. In Sec. II,

we will present a classification of Caching and DST archi-

tectures based on several design parameters. In Sec. III, we

will introduce the Loris stack and describe the plugin-based

extensions that transform it into a hybrid storage framework.

Following this, we will describe how we used this frame-

work to implement Loris-based Caching and DST systems

in Sec. IV. We will then present our side-by-side evaluation

of these hybrid systems using several benchmarks in Sec. V.

Finally, we will discuss the ramifications of our findings in

Sec. VI, and conclude in Sec. VII.

II. HYBRID STORAGE SYSTEMS

As we mentioned earlier, Caching and DST architectures

differ in the way they integrate SSDs into the HDD-based

traditional storage stack. In this section, we will explore the978-1-4673-1747-4/12/$31.00 c© 2013 IEEE



design space of these hybrid architectures and classify them

based on several design parameters.

A. Caching

Caching architectures use SSDs as a non-volatile, interme-

diate caches between the system memory (RAM) and HDDs.

Thus, in all Caching architectures, SSDs contain only cached

copies of HDD-resident primary data.

Based on when data is cached, Caching architectures can

be classified as On-demand or Interval-driven. While data is

cached as a side effect of a read operation is On-demand

Caching, Interval-driven Caching monitors data blocks and

periodically, once every preconfigured interval, trades old

SSD-resident “cold” data for new HDD-resident “hot” data.

Irrespective of when data is cached, Caching architectures

can be classified as read-only or read-write caches depending

on their behavior with respect to write operations. Read-only

caches maintain only clean data. Thus, writes to uncached data

blocks are not buffered by the SSDs, and updates to cached

data blocks invalidate the cached copies. ZFS’s L2ARC [17]

and NetApp’s FlashCache [4] are examples of read-only

caches used to speed up workloads dominated by random

reads.

Read-write caches, on the other hand, cache both data reads

and writes. They can be further classified into Write-back

and Write-through caches. A Write-back cache eliminates all

foreground HDD writes by buffering them in the SSD and

resynchronizing the primary HDD copy later. Since the cached

SSD copy and primary HDD copy can be out of sync in

a Write-back Caching system, extra bookkeeping is required

to maintain consistency and prevent data loss across power

failures or system reboots. EMC’s FastCache [5] is an example

of a Write-back cache that uses flash drives configured as

RAID1 mirror pairs to guarantee reliability in the face of

system or power failures.

A Write-through cache, on the other hand, forwards writes

to both the cached SSD copy and the primary disk copy. By

maintaining all data copies in sync, Write-through caching

avoids additional (potentially synchronous) metadata updates

at the expense of foreground write performance. One could

further classify a Write-through cache into a Write-through-

all cache or Write-through-update cache depending on how

writes to uncached blocks are handled. While a Write-through-

all cache admits uncached data blocks, a Write-through-update

cache sieves new data by admitting only cached data writes.

Azor [14] is an example of a Write-through Caching system

that supports both Write-through-all and Write-through-update

Caching.

B. Dynamic Storage Tiering

Dynamic Storage Tiering architectures (DST) organize

high-performance, flash-based SSDs and high-density, mag-

netic HDDs into multitier systems and partition data between

tiers depending on several price, performance, or reliability

factors. Thus, unlike Caching architectures, each data item in

a DST system is stored in only one location.

Based on the initial allocation policy used, DST architec-

tures can be classified into Hot-DST and Cold-DST types.

With Hot-DST architectures, data is initially allocated on the

HDD tier. Periodically, “hot” data are migrated to the SSD

tier. With “Cold-DST” architectures, data are initially allocated

on the SSD tier and “cold” data are periodically demoted

to the HDD tier. IBM’s EasyTier [19], Compellent’s tiering

systems [3], EDT [9] and HyStor [8] are a few examples

of Hot-DST systems. Hot-DST architectures can be further

classified depending on the time at which “hot” data are

migrated. In Dynamic Hot-DST systems, “hot” data from the

HDD tier are migrated on demand, while in Interval-driven

Hot-DST systems, data are migrated at predefined intervals.

Almost all Hot-DST systems we are aware of are interval

driven.

At a very high level, Hot-DST and Caching architectures

appear to be identical with respect to their mode of operation.

Both Interval-driven architectures migrate/cache data at peri-

odic intervals. Both On-demand architectures migrate/cache

data as a side effect of a read operation. Furthermore, in

order to be able to map data to their ideal storage tar-

gets, both Caching and DST architectures observe access

patterns and classify data as “hot” or “cold.” For instance,

all Caching architectures use a second-level caching algorithm

(like L2ARC [17]) and all DST architectures use some “hot”

data identification mechanism (like inverse bitmaps [8]), to

identify “hot” data that must be serviced by the SSDs. This

raises two questions: 1) can popular DST algorithms be used

for implementing efficient Caching architectures and vice

versa?, and 2) all other factors considered identical, is there a

performance impact associated with the most important design

difference—presence or absence of a data copy?

Later, in Sec. IV, we will address the first question by

showing how we use a popular DST algorithm to implement

efficient Caching systems. Then, in Sec. V, we will evaluate

the Caching and DST implementations side by side to answer

the second question. Having described several hybrid archi-

tectures, we will now give a brief overview of the Loris stack

and show how we use it as framework to implement hybrid

systems.

III. BACKGROUND: THE LORIS STORAGE STACK

In prior work, we proposed Loris [6], a redesign of the

storage stack. Loris is made up of four layers as shown in

Figure 1. The interface between these layers is a standardized

file interface consisting of operations such as create, delete,

read, write, and truncate. Every Loris file is uniquely identified

using a <volume identifier, file identifier> pair. Each Loris

file is also associated with several attributes, and the interface

supports two attribute manipulation operations—getattribute

and setattribute. Attributes enable information sharing between

layers, and are also used to store out-of-band file metadata. We

will now briefly outline the responsibilities of each layer in a

bottom-up fashion.



A. Physical layer

The physical layer is tasked with providing 1) device-

specific layout schemes, and persistent storage of files and

their attributes, 2) end-to-end data verification using parental

checksumming, and 3) fine-grained data sharing and indi-

vidual file snapshotting. Thus, the physical layer exports a

snapshotable physical file abstraction to the logical layer.

Each storage device is managed by a separate instance of the

physical layer, and we call each instance a physical module.

B. Logical layer

The logical layer provides both device and file management

functionalities. It is made up of two sublayers, namely the

file pool sublayer at the bottom, and the volume management

sublayer at the top. The logical layer exports a logical file

abstraction to the cache layer. A logical file is a virtualized file

that appears to be a single, flat file to the cache layer. Details

such as the physical files that constitute a logical file, the RAID

levels used, etc. are confined within the two sublayers. We will

now briefly describe the functionalities of each sublayer.

The volume management sublayer is responsible for provid-

ing both file volume virtualization and per-file RAID services.

It maintains data structures that track the membership of files

in file volumes and mapping between physical files and logical

files. It also provides file management operations that enable

snapshoting and cloning of files or file volumes. In prior work,

Loris has been used to design a new storage model [7]. File

pools simplify storage administration and enable thin provi-

sioning of file volumes [7]. The file pool sublayer maintains

data structures necessary for tracking device memberships in

file pools, and provides device management operations for

online addition, removal and hot swapping of devices.

Each file volume is represented by a volume index file that

tracks logical files belonging to that volume. The volume

index is created during volume creation, and it stores an array

of entries containing the configuration information for each

logical file in that volume. This configuration information is

1) the RAID level used, 2) the stripe size used, and 3) the

set of physical files that make up the logical file. Similar

to the way files are tracked by the volume index file, file

volumes themselves are tracked using the meta index file. This

file also contains an array of entries, one per file volume,

containing file volume metadata. Thus, using these two data

structures, the volume management sublayer supports file

volume virtualization. Multiple file volumes can be created

in a single file pool in Loris which makes thin provisioning

of file volumes possible.

C. Cache and Naming layers

The cache layer provides data caching. As the cache layer

is file-aware, it can provide different data staging and eviction

policies for different files or types of files.

The naming layer acts as the interface layer. Our prototype

naming layer implements the traditional POSIX interface.

The naming layer uses Loris files to store data blocks of

directories that contain directory entries. It also uses the

file

system

VFS

physical

naming

VFS

cache

logical

disk driverdisk driver

software

RAID

(a) (b)
Figure 1: This figure depicts (a) the arrangement of layers in the traditional
stack, and (b) the new layering in Loris. The layers above the dotted line are
file aware; the layers below are not.

attribute infrastructure in Loris to store POSIX attributes of

each file as Loris attributes. All POSIX semantics are confined

to the naming layer. For instance, as far as the logical layer is

concerned, directories are just regular files.

D. Tiering Framework

All hybrid storage systems, irrespective of how they inte-

grate flash into the storage stack, essentially attempt to pair

data with their ideal storage device to maximize performance.

In order to do so, all these systems have to 1) collect and

maintain access statistics to classify data, and 2) implement

background migration to transparently relocate data to their

designated target. We had to extend Loris to support these

two functionalities in order to transform it into a framework.

We did this by extending Loris’ logical layer. There were

three main reasons for extending the logical layer compared

to other layers. First, the logical layer uses the logical file

abstraction to implement per-file RAID algorithms by multi-

plexing requests across physical files. We can exploit the same

abstraction to support transparent migration of files between

devices/physical modules. Second, the logical layer has infor-

mation about both file access patterns and device performance

characteristics, making it the ideal spot for implementing

algorithms that take into account both these factors. Third,

access statistics collected at the logical layer reflect the real

storage workload after caching effects have been filtered out.

Thus, by confining changes to the logical layer, we modularly

extend the Loris stack to implement hybrid systems without

affecting algorithms in any of the other layers.

1) Data collection plugin: Several DST and Caching sys-

tems have proposed collecting different access statistics for

classifying data. For instance, EDT [9] is a DST system

designed for installations that consist of SSD, SAS (Serial

Attached SCSI) and HDD tiers. For achieving optimal per-

formance under such multitier installation, EDT classifies

hot extents into IOPS-heavy and bandwidth-heavy types, and

stores IOPS-heavy extents on the SSD tier and bandwidth-

heavy extents on the SAS tier. Thus for implementing an EDT-

style DST system, one must collect and maintain IOPS and



bandwidth requirements for each file. Azor [14], on the other

hand, is an SSD-based Caching system that maintains access

frequencies for each cached SSD block and uses it to perform

cache admission control. Thus for implementing an Azor-style

Caching system, one must maintain access counts for each file.

To support multiple such design alternatives, we extended

the logical layer using a generic plugin model. The data

collection plugin is responsible for collecting and maintaining

access statistics for each file. Each plugin implementation

is required to support a standard set of callback routines.

During the startup phase, depending on the type of hybrid

configuration to be deployed, the appropriate data collector

is registered with the logical layer, which then invokes the

callback routines at strategic points during execution.

We implemented a data collection plugin that uses inverse

bitmaps [8] to identify performance-critical files that should be

cached or migrated. During every read and write operation, the

inverse bitmap b is calculated as shown below.

b = 26−⌊log2(N)⌋ (1)

In the equation, N refers to the number of 4-KB pages

read/written from the file. The value 6 is an implementation-

specific constant chosen based on the maximum number of

4-KB file pages read or written by the cache layer in a single

operation (64). The computed value is then added to a 32-

bit counter associated with that file. Thus, the inverse bitmap

assigns a large weight to files read/written in small chunks,

which could either be small files or large files randomly

read/written in small chunks, thereby prioritizing random

accesses over sequential ones.

Our current prototype maintains an in-memory array of

counters, one per tier. When queried for the “hottest” file in the

disk tier, the plugin picks the most recently used file with the

highest counter value. When queried for the “coldest” file in

the SSD tier, the plugin picks the least recently used file with

the lowest counter value. Thus, we extend the original inverse

bitmap design [8] by using recency as a tiebreaker among

files with identical counter values. The in-memory approach

is probably not scalable as modern installations consist of

millions of files, so we are currently considering using priority

dequeues using external heap variants or dynamic histograms

with delayed updates for scalable maintenance of access

statistics.
Our data collection plugin also explicitly keeps track of

the counter value of the last file that has been evicted from

the SSD tier during cleanup. It uses this value to perform

admission control. A file is qualified for migration to the SSD

tier only if its counter value is higher than that of the last

evicted file.
We would like to point out here that all hybrid architectures

we present in Sec. IV use the inverse bitmap plugin as their

data collector. Thus, although inverse bitmaps were originally

introduced and used in Hystor [8] for DST, we show how it

can also used to implement high performance Caching archi-

tectures. Thus, as we mentioned earlier, most data collection

algorithms are architecture neutral.

We would also like to point out that although we do

not consider multitier installations (such as ones including

SAS drives) as a part of this work, extending Loris to such

configurations only requires replacing relevant plugins.

2) File migration: As we mentioned earlier, we exploited

the logical file abstraction of the logical layer to support

transparent file migration between physical modules. Our

current implementation locks each file during migration to

prevent foreground requests from accessing the source during

migration. We are also working on implementing transparent,

incremental migration of file data. The incremental migration

implementation would first take a snapshot of the target file

using the individual file snapshoting functionality present in

Loris, following which it would copy the snapshot’s data and

attributes to the designated target. After successfully copying

the snapshot, the migration plugin would then, if need be,

perform an incremental transfer of data modified since the

snapshot.

E. Loris as a platform for storage tiering - The Pros

There are several advantages in using Loris as the basis

for implementing DST solutions. First, most DST solutions

exploit device heterogeneity to improve performance. For

instance, Avere’s DST system [2] stores all write-only files on

the SAS tier using a log-structured layout to optimize write

throughput. Since the Loris stack provides the capability to

pair devices with their ideal layout algorithms, it can be used

to exploit heterogeneity inherent in tiered systems.

Second, several DST systems use semantic information

to identify crucial data (like file system metadata). As we

mentioned earlier, semantic information is exchanged between

layers in the Loris stack using the attribute infrastructure. In

the Loris stack, each file create carries with it a file type

attribute that informs the logical layer if the file is a metadata

file (directory) or a data file. Thus, the logical layer can use this

semantic information to assign different policies to files or file

types. We will show later how we use semantic information to

implement 1) type-aware sieving of large files, and 2) per-file

tiering policy later in the paper.

Third, administrative operations like hot-swapping and on-

line addition and removal of devices are mandatory features

in any enterprise DST system. The file pool model in Loris

simplifies storage administration and is capable of supporting

all these features.

F. Loris as a platform for storage tiering - The Cons

Since Loris’ logical layer maintains mapping information

at the granularity of whole files, implementing Caching or

DST systems that operate on a sub-file basis is not possible.

Consider an append write to an uncached file for instance.

In order to implement Write-back Caching, Loris would have

to buffer this write in the SSD. Doing so would require the

logical layer to map two sets of logical file offsets to two

different physical files (offset range <0, old file size −1> to

physical file stored in HDD, and range <old file size, new file

size −1> to a physical file on the SSD). The current mapping



infrastructure only supports mapping a whole logical file to

one or more physical files.

However, we would like to emphasize the fact that this is a

limitation of just the current implementation. We are working

on designing a new mapping format for the logical layer that

supports sub-file mapping. With the new infrastructure, Loris

would select the mapping type on a per-file basis. For instance,

while all small files and files read/written in their entirety could

be stored in a mapping file based on the old format, a file that

is read/written in 4-KB chunk could use the new format that

could potentially map each 4-KB logical block to a different

physical file. By using this extension mapping infrastructure,

we intend to evaluate block, extent and file-level tiering and

Caching implementations side by side as a part of future work.

We would also like to point out that despite the lack of

subfile mapping capability in Loris, all the results we present

in this work are equally applicable to block or extent-level

implementations. As all Caching and DST architectures are

implemented using a single framework, and as all of them

share the same data collection plugin (which maintains access

statistics at the granularity of whole files), we believe that a

block or extent-based realization of these architectures, under

similar workloads, using the same access statistics would

produce comparative results identical to our study.

IV. LORIS-BASED HYBRID SYSTEMS

Having described the plugins, we will now show how we

use these plugins to implement several Caching and DST

systems for a two-tier (SSD/disk) installation. Common to all

these systems is the type-aware sieving of large files. During

preliminary evaluation of these hybrid systems, we found out

that certain benchmarks (Web Server) create large, append-

only log files that were never read. As these files received

a lot of writes, their bitmap counter values were high. As a

result all hybrid systems pinned these log files to the SSD

tier, thereby wasting valuable space that could be used for

housing other “genuinely hot” files. To prevent this, we added

type-aware sieving to Loris. With sieving, any file larger than

a configurable threshold, which in our current prototype is

1-MB, will not be cached or migrated to the SSD. Similar,

any SSD-resident file is explicitly demoted (in the case of

DST) or invalidated (in the case of Caching) when it grows

beyond 1-MB. Type-aware sieving is an example of how we

use semantic awareness of the Loris stack to improve the

performance of all hybrid systems.

Also common to all these systems is the cleaner imple-

mentation. A cleanup of the SSD tier is triggered when a

write operation to the SSD tier cannot be completed due to

lack of space. This can happen either during a foreground

write operation to a file in the SSD tier, or during background

migration/caching of a file from the disk tier. In both cases,

the cleaner consults the data collection plugin to determine the

set of cold files to evict from the SSD tier. The action taken

by the cleaner depends on the architecture being implemented.

For Caching architectures, the cleaner simply invalidates the

cached file copy by deleting it from the SSD. For DST

implementations, the cleaner invokes the migration plugin,

demoting those files back to the disk tier. This cold migration

continues until enough space has been cleared to finish the

write operation. In addition to such foreground cleaning, we

also run the cleaner in the context of a background thread, to

proactively clean the SSD tier, under certain hybrid configu-

rations as we will show later.

We will now describe how we implemented several hybrid

storage systems using the Loris stack.

A. Loris-based Hot-DST systems

We will now describe the Loris-based implementation of

two Hot-DST architectures. As explained in Sec. II, all Hot-

DST architectures allocate data on the HDD tier. They differ

based on when they migrate “hot” data to the SSD tier.

1) Dynamic Hot-DST: Our Dynamic Hot-DST implementa-

tion migrates “hot” files as a side effect of a read operation that

is serviced by the HDD tier. It first queries the data collection

plugin to determine if the file is a valid migration candidate.

As we mentioned earlier, our data collection plugin considers

a file to be a valid candidate if its counter value is higher than

that of the file last evicted from the SSD tier. In such a case,

the DST implementation queues the file for migration with the

migration plugin.

2) Interval-driven Hot-DST: We also implemented a system

based on the Interval-driven Hot-DST architecture. Every pre-

configured number of seconds, our Hot-DST implementation

runs in the context of a background thread and migrates “hot”

files identified by the data collection plugin to the SSD tier.

Hot file migration continues until all potential candidates have

been migrated or the “hottest” file in the disk is colder (has

a lower counter value) than the “coldest” file in the SSD

tier. The data collection plugin verifies the latter condition by

comparing the next candidate file’s access counter with that

of the file last evicted from the SSD.

As the interval of migration is a configuration parameter, we

will use two versions (five and eighty seconds) of our Interval-

driven Hot-DST system to evaluate the impact of migration

interval on overall performance.

B. Loris-based Cold-DST architectures

We will now describe the Loris-based implementation of

three Cold-DST architectures. As explained in Sec. II, all

Cold-DST architectures allocate data on the SSD tier.

1) Plain Cold-DST: This is conceptually the simplest of

all DST implementations. This system does not perform any

form of “hot” file migration. Foreground write requests to files

in the SSD tier that are unable to complete due to lack of

space automatically trigger tier cleanup. Files that are demoted

during cleaning are never migrated back to the SSD tier, not

even if they become “hotter” at a later point in time. Thus,

this implementation uses the data collection plugin only to

determine which files to evict from the SSD tier.

2) Dynamic Cold-DST: While the Plain Cold-DST system

would work well with workloads where newly created data

accounts for a significant fraction of accesses, it would perform



poorly under workloads with shifting locality. This is because

any access to data that has been “cold” migrated will be

serviced by the disk tier.

We solve this problem by adding on-demand “hot”-file mi-

gration to the Plain Cold-DST system. Similar to the Dynamic

Hot-DST system, data-collector-approved files are migrated

in the background as a side effect of a read operation that

finds the file in the HDD tier. However, unlike the Hot-DST

counterpart, new files continue to be allocated on the SSD tier

in the Dynamic Cold-DST system.

3) Dynamic Cold-DST with background cleaning: When

operating with a full SSD, dynamic migration and foreground

write requests trigger tier cleanup. As cleaning requires mi-

grating “cold” files off the SSD tier, these writes blocks until

sufficient free space has been generated. To avoid stalling write

requests, we added a proactive background cleaner to our Dy-

namic Cold-DST implementation. The cleaner implementation

maintains a running counter of the total amount of “cold” data

evicted from a full SSD tier as a side effect of foreground or

dynamic migration writes. It uses this counter as an estimate

of the amount of space to recover for speeding up future write

operations. The cleaner runs in the context of a background

thread and starts evicting “cold” files as a side effect of the

first blocking write request.

C. Loris-based Caching

As we explained earlier, the whole-file mapping infrastruc-

ture of our current prototype makes it impossible to implement

Write-back or Write-through-all Caching systems. We will

now describe the implementation of two Write-through-update

Caching architectures.

1) On-demand Caching: On-demand Caching, for most

part, works similar to Dynamic Hot-DST system. with the only

difference being the fact that files are cached rather than being

migrated. As the primary file copy continues to reside in the

HDD, unlike the Hot-DST counterpart, cleaning the SSD only

requires deleting “cold” files to invalidate them. As cleaning

can happen as a side-effect of foreground write operation, and

as On-demand Caching is identical to Dynamic Hot-DST in

every other aspect, we can compare the two implementations

head-to-head to measure the SSD cleaning overhead.

2) Interval-driven Caching: Interval-driven Caching works

identical to the Interval-driven Hot-DST implementation with

the exception that files are copied rather than migrated. Similar

to its Hot-DST counterpart, all files are initially allocated on

the HDD. Periodically, at a configurable interval (five seconds

in our current prototype), the statistics accumulated by the data

collector are used to cache “hot” files in the SSD tier. Similar

to the Dynamic Hot-DST—Caching comparison, we can also

compare the two Interval-driven architectures to measure the

impact of cleaning on overall performance.

V. EVALUATION

Having described how we implemented various hybrid

architectures, we will now present a systematic analysis of

the effectiveness of these architectures under a wide range

of workloads. We will first describe the hardware setup and

benchmarking tools we used for our evaluations. We will then

present a side-by-side evaluation of these architectures and

offer insights into the interaction between design alternatives

and workload parameters.

A. Test Setup

All tests were conducted on an Intel Core 2 Duo E8600

PC, with 4-GB RAM, using a 500-GB 7200-RPM Western

Digital Caviar Blue SATA hard disk (WD5000AAKS), and a

OCZ Vertex3 Max IOPS SSD. Table I lists the performance

characteristics of these devices. We ran all tests on 8-GB test

partitions at the beginning of the devices.

Device BB/s Random 4K IOPS

WD5000AAKS 126/126 112/91
OCZ Vertex 3 MAX IOPS 550/500 35000/75000

Table I: Device properties: The table lists the read/write performance
characteristics of the two SATA devices we use for evaluating various hybrid
architectures.

The Loris prototype has been implemented on the MINIX 3

multiserver operating system [13]. We deliberately configured

Loris to run with a 64-MB data cache to ensure that the

working set generated by benchmarks is at least an order of

magnitude larger than the in-memory cache. Thus, using a low

cache size, we heavily stress the I/O subsystem.

To estimate the effect that SSD size has on the effectiveness

of various DST models, we modified the Loris stack to keep

track of the amount of user data written to the SSD and

used it to artificially limit the available SSD size. We used

this to evaluate the effectiveness of various architectures at

three different SSD sizes, namely, 25%, 50%, and 75% of the

total working set size. We determined the working set size by

running each workload using a disk-only configuration.

We are aware of the fact that certain consumer grade SSDs

exhibit performance deterioration when occupied at 100%

capacity. Although our artificial approximation of available

SSD size sidesteps this issue, we believe that the results we

derive are still applicable as we target enterprise installations

that are likely to use enterprise-grade SSDs. Unlike consumer-

grade SSDs, these high-end SSDs are known to overprovision

large amounts of scratch space to avoid the write-cliff phe-

nomenon [11].

B. Benchmarks and Workload Generators

Since we wanted to systematically analyze the interactions

between architectural design alternatives and workload pa-

rameters, we used Postmark and FileBench to generate four

different classes of server workloads. Postmark is a widely

used, configurable file system benchmark that simulates a

Mail Server workload. It performs a specified number of

transactions, where each transaction pairs a whole-file read

or append operation with a create or delete operation. We

report the transaction time, which excludes the initial file

preallocation phase, for all hybrid systems.



FileBench is an application-level workload simulator that

can be used to model workloads using a flexible workload

modeling language (WML). We used two predefined workload

models to generate File Server and Web Server workloads. We

ran each workload for half an hour and we present the IOPS

reported by FileBench for all hybrid systems. Preliminary

evaluation revealed wide variations in results across different

FileBench runs (even with the same hybrid architecture). We

traced this back to the variation in random seed selection

between runs. In order to reliably compare different hybrid

architectures, we modified FileBench to use a fixed random

seed across all runs. With this patch, all the results we obtained

were reproducible.

C. Workload Categories

Using Postmark and FileBench, we were able to vary a

variety of workload parameters like file size distribution, read-

write ratios, access patterns (sequential vs. random) and access

locality (random vs Zipf). We will now detail the properties

and configuration parameters of each workload.

1) Mail Server: We configured Postmark to perform 80,000

transactions on 40,000 files, spread over 10 subdirectories,

with file sizes ranging from 4-KB to 28-KB, and read/write

granularities of 4-KB. The resulting workload is dominated

by small file accesses, has a 1:2 read-write ratio, and exhibits

random access pattern with very little locality.

2) File Server: We configured FileBench to generate

10,000 files, using a mean directory width of 20 files. The

median file size used is 128-KB, which results in files an

order of magnitude larger than the rest of the workloads.

The workload generator performs a sequence of create, write,

read, append (using a fixed I/O size of 1-MB), delete and stat

operations, resulting in a write-biased workload. As all files

are read in their entirety, and as append operations are large,

the access pattern is sequential. The workload lacks locality

as file access distribution is uniform.

3) Web Server: The Web Server configuration generates

25,000 files, using a mean directory width of 20 files. The

median file size used is 32-KB, which results in a workload

dominated by small file accesses, with the only exception

being an append-only log file. The workload generator per-

forms a sequence of ten whole-file read operations, simulating

reading web pages, followed by an append operation (with

an I/O size of 16-KB) to a single log file. This results in a

10:1 read-write ratio unlike other benchmarks. Though files

are read in their entirety, the small file size results in the file

access pattern being essentially random. Similar to the File

Server workload, this workload also lacks locality due to the

uniform file access distribution.

4) Web Server (Zipf Distribution): All the workloads de-

scribed above lack locality which is present in several real-

life workloads. For instance, while the Web Server workload

generated by FileBench lacks locality, it is well known that file

accesses in web servers tend to follow a Zipf distribution [10].

Thus, we modified FileBench to generate a Zipf-based file

access distribution. In addition, we also wanted to evaluate

the effectiveness of Dynamic Cold-DST architecture under

workloads with shifting locality. To do so, we modified the

default Web Server workload to generate two sets of 25,000

files instead of one. As a result, the first fileset get flushed out

to the HDD tier as a part of cleaning up the SSD tier to accom-

modate the second one. We then ran the workload generator

on the first set, thereby simulating shifting workload locality

- the adversarial case for the Plain Cold-DST architecture.

D. Comparative evaluation

Having described the workload parameters, we will now

present our evaluation of various hybrid systems. We will

first analyze Loris-based DST systems to identify the im-

pact of architecture-specific design alternatives (Sec. V-D1,

Sec. V-D2). We will then compare DST systems with their

Caching counterparts to identify top performers under various

workloads (Sec. V-D3). Finally, we will present the side-

by-side comparison of these top performers under a mixed

workload that simulates a virtualized workload (Sec. V-E).

1) Hot-DST Architectures: Figures 2, 3, 4, 5 show the

performance of various Hot-DST configurations. There are a

number of interesting observations to be made from the results.

First, as can be seen in Figure 5, locality plays a major role

in deciding the effectiveness of Hot-DST architectures. Even

at SSD sizes covering as little as 25% of the total working

set, all Hot-DST configurations show significant performance

improvement compared to the HDD-only case.

Second, under all workloads, the migration interval has

a significant impact on overall performance. For instance,

under the Web Server workload (Figure 4), the five-second,

Interval-driven Hot-DST system delivers lower IOPS than even

the HDD-only case. The eighty-second Hot-DST system, on

the other hand, improves performance significantly. As we

mentioned earlier, the Web Server and File Server workloads

access files uniformly in sequence without any locality. As a

result, when we traced migration patterns at the logical layer,

we found quite a large number of files shuttling back and

forth between tiers, with the number of such files increasing

as the migration interval decreases. Thus, the thrashing of

files caused by the workload’s uniform access pattern destroys

performance by interfering with foreground reads and writes

serviced by the HDD tier.

Third, unlike other workloads, the eighty-second, Interval-

driven Hot-DST performs poorly under Postmark. At low SSD

sizes, it takes longer than the HDD-only configuration to finish

the transactions. Even at high SSD sizes covering as much

75% of the working set, it performs only slightly (12%) faster.

Analysis revealed that this was due to two factors. First, as

we mentioned earlier, the workload generated by Postmark

lacks locality. Thus, it is adversarial in nature for locality-

dependent algorithms like Interval-driven Hot-DST. Second,

unlike FileBench, Postmark is transaction-bound rather than

time-bound (the termination condition is a limit on the number

of transactions). Although we perform 80,000 transactions,

analysis revealed that the total transaction time was not long

enough for Interval-driven Hot-DST to stabilize.
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Figure 2: Transaction time (seconds) under Postmark for various Hot-DST
architectures

Fourth, while Dynamic Hot-DST performs similar to other

Hot-DST architectures under File Server (Fig. 3) and Web

Server (Fig. 4) workloads, it provides significant improvement

under Postmark (Fig. 2). This is unexpected, especially given

the fact that the aforementioned reasons that slow down

Interval-driven Hot-DST also apply to Dynamic Hot-DST. By

profiling the system, we found the source of this performance

improvement to be a counterintuitive increase in the number

of writes serviced by the SSD tier under Dynamic Hot-

DST. As we mentioned earlier, Postmark pairs creates/deletes

with reads/writes. Writes issued by Postmark append data to

existing files. As these append operations are typically not

block aligned, they trigger an “append-read” operation to fetch

the append target (the file’s last data block). The ensuing

“append write” is then buffered by the data cache (caching

layer). As a side effect of this read operation, the target file’s

access counter gets updated by a large increment (due to the

small amount of data being read), which results in the file

being migrated to the SSD. When the data is flushed from the

cache at a later time, it gets serviced by the SSD (which now

hosts the “hot” file) resulting in the performance improvement.

Interval-driven DST architectures do not benefit from these

“append-reads” as they miss the window of opportunity due

to not performing on-demand migration. We verified that this

was indeed the case by not updating access statistics on append

reads. Under such circumstances, the Interval-driven Hot-DST

outperformed Dynamic Hot-DST.

2) Cold-DST Architectures: Figures 6, 7, 8, 9 show the

performance of various Cold-DST configurations. As can be

seen in Figure 9, the adversarial workload with locality results

in Plain Cold-DST performing poorly when compared to the

Dynamic Cold-DST architecture. An interesting observation is

that the Plain Cold-DST architecture still performs noticeably

better than the HDD-only case. On investigating this, we found

that during the preallocation phase, directories receive quite a

lot of read/write accesses. These accessess cause directories

to possess high counter values in comparison to other files.

As a result, despite the barrage of creates and writes during

the preallocation phase, directories remain pinned to the SSD

tier. Thus, all directory accesses during the workload run
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Figure 3: IOPS delivered under FileBench’s File Server workload by various
Hot-DST architectures
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Figure 4: IOPS delivered under FileBench’s Web Server workload by various
Hot-DST architectures
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Figure 5: IOPS delivered under FileBench’s Web Server (with Zipf) workload
by various Hot-DST architectures

are serviced by the SSD causing a noticeable performance

improvement over the HDD-only case.

If we consider workloads without locality, we see that

the Dynamic Cold-DST architecture deteriorates performance

compared to Plain Cold-DST. Due to the lack of locality, the

performance gained by servicing reads from the SSD tier does

not match the overhead of migrating “hot” data from the HDD

tier. However, an interesting observation is how, despite similar

access patterns (uniform without locality), File Server and Web
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Figure 7: IOPS delivered under FileBench’s File Server workload by various
Cold-DST architectures

 0

 500

 1000

 1500

 2000

 2500

 20  30  40  50  60  70  80

IO
P

S

SSD Size

None
Dynamic Cold-DST

Dynamic Cold-DST+Cleaner
SSDOnly
DiskOnly

Figure 8: IOPS delivered under FileBench’s Web Server workload by various
Cold-DST architectures

Server workloads produce different comparative results. While

Dynamic Cold-DST catches up with Plain Cold-DST under the

File Server workload (Figure 7), it continues to lag behind by

a huge margin under the Web Server workload (Figure 8).

On investigating this further, we found that the delete opera-

tions performed by the File Server workload play an indirect,

albeit crucial, role in improving the overall performance of

Cold-DST architectures. Logically speaking, creating new files

in an already full SSD tier should have an adverse impact
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Figure 9: IOPS delivered under FileBench’s Web Server (with Zipf) workload
by various Cold-DST architectures

on performance as these writes cannot be completed without

evicting “cold” data. However, in reality, newly written data

is first buffered by Loris’ data cache (cache layer) before

being flushed out to the SSD. Unlike write operations, file

deletes propagate down through the layers immediately. These

delete operations free up space in the SSD tier indirectly

accelerating both delayed foreground writes and background

dynamic migrations. As the performance gained by allocating

new files on the SSD tier offsets the performance drop caused

by migrating “hot” files, Dynamic Cold-DST catches up with

Plain Cold-DST under the File Server workload.

We saw only marginal improvement (at best) from adding

background cleaning to the Dynamic Cold-DST architecture.

We believe that this is due to our cleaner being overly

conservative in freeing up space. During experimentation, we

found out that aggressive cleaning had a negative impact on

performance under most workloads we used in this study.

However, recent analysis of network file system traces indicate

that over 90% of newly created files are opened less than

five times [16]. Under such conditions, a Dynamic Cold-

DST implementation would definitely benefit from aggressive

cleaning. We intend to perform a reevaluation of our Cold-

DST implementations under trace-driven workloads as a part

of future work.

3) DST vs Caching: Figures 10, 11, 12, 13 show the

performance of the two Caching architectures. In addition,

we also include the top performers from other architecture

types (Dynamic Hot-DST, Interval-Driven Hot-DST (eighty-

second), and Plain or Dynamic Cold-DST depending on the

workload) so that we can perform a side-by-side comparison

of Caching and DST architectures. Several interesting obser-

vations can be made from these figures.

First, as the Web Server workload with Zipf locality reveals

(Figure 13), all hybrid configurations perform significantly

better than the HDD-only case at all SSD sizes, thus, proving

the effectiveness of hybrid architectures.

Second, On-demand Caching consistently outperforms

Interval-driven Caching under all workloads. The same rea-

soning behind Dynamic Hot-DST being faster than its

Interval-driven counterpart applies here as well—Interval-



 0

 200

 400

 600

 800

 1000

 1200

 20  30  40  50  60  70  80

T
ra

n
s
a
c
ti
o
n
 t
im

e
 (

s
e
c
)

SSD Size

On-demand Caching
Interval Caching

Dynamic Hot-DST
Interval Hot-DST(80s)

Plain Cold-DST
SSDOnly
DiskOnly

Figure 10: Transaction time (seconds) under Postmark for Caching and DST
architectures

driven Caching suffers from the same thrashing issues as its

DST counterpart.

Third, Postmark and File Server workloads (Figures 10, 11)

reveal the impact of an important design parameter—the

presence or absence of a data copy. As we mentioned earlier,

the DST and Caching implementations are identical in all

aspects except for the fact that Caching implementation copies

files while the DST implementation migrates them. Since

we implemented Write-through-update Caching, any writes to

these cached copies are also written through to their primary

disk replica. Since Postmark and File Server workloads consist

of append operations, all Caching architectures suffer due

to the necessity to keep the two copies in sync. Thus, they

perform consistently worse than their DST counterparts. This

shows how Hot-DST architectures are preferable over their

Caching counterparts under workloads with a low read:write

ratio.

Fourth, the Web Server workload (Figures 12, 13) reveals a

drawback inherent to DST. Unlike Postmark and File Server,

we see that the Caching architectures outperform their DST

counterparts at low SSD sizes. As we mentioned earlier,

under the Web Server workload, the only write operations

issued are those that append data to the log file. Since our

implementation pins the log file to the HDD tier, SSDs are

used for serving only reads. As a result, Caching architectures

incur no consistency-related overhead. Furthermore, SSD tier

cleaning under Caching architectures involves invalidating the

cached copy by just deleting it. DST architectures, on the

other hand, have to migrate “cold” data back to the HDD tier

incurring an additional overhead. This shows how Caching

architectures are preferable over their Hot-DST counterparts

under workloads with a high read:write ratio.

Fifth, Cold-DST architectures meet or exceed the perfor-

mance achieved by other architectures under all workloads

except the Web Server workload with locality (Figure 13). We

believe that this oddity is in large part due to the preallocation

phase. As we explained earlier, FileBench first preallocates

files before starting the workload generators. As Cold-DST

architectures allocate files on the SSD tier, they start operating

with a full SSD tier. Hot-DST and Caching architectures,
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workload by Caching and DST architectures

on the other hand, start with a near-empty SSD tier as they

perform initial allocation on the HDD tier. Thus, “hot” file

migration under Hot-DST and Caching architectures incurs

no cleaning overhead until the SSD tier gets full. However,

dynamic migration under Cold-DST architectures incurs clean-

ing overhead from the very beginning causing a noticeable

performance drop.



E. Mixed Workloads and Hybrid Architectures

In order to analyze the effect of storage virtualization on

the performance of various hybrid architectures, we wrote

a FileBench workload model that blends File Server and

Web Server workloads into a single stream. We used the

same configuration parameters as the individual workloads.

In addition, we also preallocated a dummy fileset to simulate

shifting locality by flushing valid data off the SSD.

1) Type-aware DST: In order to understand if pairing work-

loads with ideal architectures is better than adopting a “one-

architecture-for-all” approach, we modified the Loris stack to

support Type-aware DST. Our Type-aware DST implementa-

tion associates a tiering policy with each file volume (a rooted

hierarchy of files and directories). We created two file volumes,

one per workload, and tag volumes with policies that directed

the logical layer to pair On-demand Caching with the Web

Server workload and Dynamic Hot-DST with the File Server

workload. Thus, our Type-aware DST implementation caches

or migrates “hot” files depending on whether they belong to

the Web Server or File Server volume.

Figure 14 shows the performance of individual Caching

and DST architectures side-by-side with our Type-aware DST

architecture under the mixed workload. There are three im-

portant observations to be made. First, Dynamic Cold-DST

meets the performance of type-aware tiering at low SSD

sizes, and exceeds it at higher sizes. Contrasting this with the

performance of Dynamic Cold-DST under just the Web Server

workload (Figure 8), we clearly see that the performance

improvement achieved by allocating new files in the SSD tier

overshadows the adverse effect of dynamic migration.

Second, the Caching configuration suffers under the mixed

workload. This can be attributed to the synchronization over-

head caused by append operations in the File Server workload.

Third, the Type-aware DST outperforms both individual

architectures at all SSD sizes as it possesses the advantages

of both Caching and Dynamic Hot-DST architectures without

any of their disadvantages. By migrating files created by

the File Server workload, and caching files created by the

Web Server workload, Type-aware DST reduces the clean-

ing overhead without incurring the expensive synchronization

overhead. This illustrates the benefit of pairing workloads with

their ideal architectures. The Type-aware DST architecture

we implemented is only one of many possible alternatives.

For instance, one could also pair Cold-DST architecture with

the File Server workload and Dynamic Hot-DST architecture

with the Web Server workload. We intend to implement such

architectures and evaluate them using file system traces as a

part of future work.

VI. DISCUSSION

Based on our experience designing and evaluating various

hybrid architectures, we will now present a few open research

problems that need to be solved in order to be able to design

efficient hybrid storage architectures.
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A. Analyzing Cold-DST

While Hot-DST systems have received a lot of attention

over the past years, we believe Cold-DST architectures have

been ignored due to two main reasons, namely, poor write

performance, and inferior reliability. The design of early

hybrid systems that used first generation SSDs focused on

improving the overall system performance by pairing read-

only data with SSD tier and write-only data with the HDD tier.

Researchers have pointed out that the limited lifetime (erasure

cycles) of NAND-flash-based SSDs must be considered as a

critical factor in the design of hybrid storage systems, and

have even proposed using HDD-based logging to improve

the longevity of SSDs [18]. As Cold-DST architectures write

significantly more data to the SSD tier than other architectures,

they will most certainly wear out these SSDs faster.

However, unlike first generation SSDs, which suffered from

poor random write performance due to inefficient Flash Trans-

lation Layer (FTL) designs (among several other reasons),

modern SSDs have exceptionally high write performance,

sometimes even exceeding read performance [1]. Similarly,

modern enterprise-grade, SLC flash-based SSDs have reason-

ably high reliability. For instance, OCZ Vertex2 EX SLC

SSD [1] has an MTBF rating of 10 million hours.

In light of these recent changes in the storage hardware

landscape, modern DST systems (like Hystor [8]) have started

allocating dedicated write-back areas in SSDs to improve write

performance. Cold-DST architectures are capable of meeting

the performance offered by Write-back Caching without any

of the synchronization-related performance issues. However,

there are several important design factors that require further

research. Should a Cold-DST implementation partition the

SSD space into read and write areas, and if so, can it dynam-

ically determine partition sizes? Recent analysis of network

file system traces indicate that over 90% of newly created

files are opened less than five times [16]. Can we utilize

SSD parallelism to perform aggressive cold migration without

affecting foreground accesses under such workloads?



B. Other hybrid architectures

In addition to DST and Caching architectures, there are

several other ways SSDs could be integrated into the storage

stack. For instance, SSDs could be used as dedicated data

stores for housing specific data types. One such example

is using SSDs for exclusively storing file system metadata,

executables and shared libraries, as suggested by the Conquest

file system [21]. Researchers have shown how MEMS-based

storage can be used in several capacities to accelerate per-

formance of disk arrays [20]. Similarly, SSDs could also be

used in heterogeneous disk arrays to eliminate redundancy-

related performance bottlenecks. To our knowledge, such

configurations have not been compared side-by-side with DST

or Caching architectures, and such a systematic study would

help determine the best possible way to integrate SSDs into

the storage stack.

C. Caching vs Tiering Algorithms

Earlier in this paper, we showed how inverse bitmaps,

a “hot” data identification mechanism originally used to

implement a DST system, can also be used to implement

effective Caching architectures. The cross-architecture appli-

cability of several data collection algorithms raises several

research questions like 1) how effective are second-level buffer

cache management algorithms when used to implement DST

architectures?, 2) does the relative performance of various

architectures remain unaffected across different data collection

algorithms?

We intend to use the Loris stack to implement several hybrid

architectures and answer these research questions as a part of

future work.

VII. CONCLUSION

We showed how our plugin-based extensions to the Loris

stack transform it into a framework for implementing hybrid

storage solutions. Using the Loris framework, we illustrated

the effectiveness of DST and Caching by showing how these

hybrid architectures can outperform a disk-only configuration

even with SSD sizes covering as little as 25% of the working

set. Based on our evaluation, we offered several insights into

interactions between architecture-specific design alternatives

and workload parameters. We also discussed the ramifications

of our work by highlighting a few areas that deserve more

attention from storage researchers.
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