
Active Flash: Out-of-core Data Analytics
on Flash Storage

Simona Boboila∗‡, Youngjae Kim†, Sudharshan S. Vazhkudai†, Peter Desnoyers∗ and Galen M. Shipman†

∗Northeastern University, †Oak Ridge National Laboratory
∗{simona, pjd}@ccs.neu.edu, †{kimy1, vazhkudaiss, gshipman}@ornl.gov

Abstract—Next generation science will increasingly come to
rely on the ability to perform efficient, on-the-fly analytics of data
generated by high-performance computing (HPC) simulations,
modeling complex physical phenomena. Scientific computing
workflows are stymied by the traditional chaining of simulation
and data analysis, creating multiple rounds of redundant reads
and writes to the storage system, which grows in cost with the
ever-increasing gap between compute and storage speeds in HPC
clusters. Recent HPC acquisitions have introduced compute node-
local flash storage as a means to alleviate this I/O bottleneck.

We propose a novel approach, Active Flash, to expedite data
analysis pipelines by migrating to the location of the data, the
flash device itself. We argue that Active Flash has the potential
to enable true out-of-core data analytics by freeing up both the
compute core and the associated main memory. By performing
analysis locally, dependence on limited bandwidth to a central
storage system is reduced, while allowing this analysis to proceed
in parallel with the main application. In addition, offloading work
from the host to the more power-efficient controller reduces peak
system power usage, which is already in the megawatt range and
poses a major barrier to HPC system scalability.

We propose an architecture for Active Flash, explore energy
and performance trade-offs in moving computation from host
to storage, demonstrate the ability of appropriate embedded
controllers to perform data analysis and reduction tasks at speeds
sufficient for this application, and present a simulation study of
Active Flash scheduling policies. These results show the viability
of the Active Flash model, and its capability to potentially have
a transformative impact on scientific data analysis.

I. INTRODUCTION

Scientific discovery today is becoming increasingly driven

by extreme-scale computer simulations—a class of application

characterized by long-running computations across a large

cluster of compute nodes, generating huge amounts of data.

As an example, a single 100,000-core run of the Gyrokinetic

Tokamak Simulation (GTS) [49] fusion application on the

Jaguar system at Oak Ridge National Laboratory (ORNL)

produces roughly 50TB of output data over a single 10 to 12-

hour run. As these systems scale, however, I/O performance

has failed to keep pace: the Jaguar system, currently number

3 on the Top500 list [47], incorporates over 250,000 cores

and 1.2GB of memory per core, but with a 240GB/s parallel

storage system has a peak I/O rate of less than 1MB/s per core.

With current scaling trends, as systems grow to larger numbers

‡ The author was an intern at Oak Ridge National Laboratory during the
summer of 2011.

of more powerful cores, less and less storage bandwidth will

be available for the computational output of these cores.

Massively parallel simulations such as GTS are only part

of the scientific workflow, however. To derive knowledge

from the volumes of data created in such simulations, it is

necessary to analyze this data, performing varied tasks such

as data reduction, feature extraction, statistical processing, and

visualization. Current workflows typically involve repeated

steps of reading and writing data stored on a shared data

store (in this case the ORNL Spider [2] system, a center-

wide Lustre [1] parallel file system), further straining the I/O

capacity of the system.

As the scale of computational science continues to increase

to peta-scale systems with millions of cores, I/O demands of

both the front-end simulation and the resulting data analysis

workflow are unlikely to be achievable by further scaling of the

architectures in use today. Recent systems have incorporated

node-local storage as a complement to limited-bandwidth

central file systems; such systems include Tsubame2 at the

Tokyo Institute of Technology [19] and Gordon [3] at the San

Diego Supercomputing Center (SDSC). The Gordon system,

as an example, is composed of 1024 16-core nodes, each with

64GB DRAM and paired with a high-end 256GB solid-state

drive (SSD) capable of 200MB/s streaming I/O.

Architectures such as this allow for in situ process-

ing of simulation output, where applications schedule post-

processing tasks such as feature extraction (e.g. for remote

visualization) alongside simulation [30], [53]. By doing so,

simulation output may be accessed locally on the nodes where

it is produced, reducing the vast amounts of data generated on

many-core nodes before any centralized collection steps. The

advantage gained by avoiding multiple rounds of redundant

I/O can only increase as storage subsystem performance

continues to lag behind computation in large HPC systems.

Current approaches to in-situ data analysis in extreme-scale

systems either use some fraction of the cores on the compute

nodes to execute analysis routines, or utilize some partition of

nodes that is part of the compute allocation of the simulation

job [53]. For example, prior work at ORNL has dedicated a

percentage of compute nodes to storing and analyzing output

of the simulation application before storage of final results to

the parallel file system [5], [27], [40].

978–1–4673–1747–4/12/$31.00 c©2013 IEEE

Although such in-core in-situ analysis is able to avoid

bottlenecks associated with central storage, it may adversely

impact the main simulation. It competes with the main appli-

cation not only for compute cycles, but for DRAM as well.

Memory is becoming a critical resource in HPC systems,

responsible for a significant portion of the cost and power

budget today even as the memory-to-FLOP ratio has been

steadily declining, from 0.85 for the No. 1 machine on Top500

in 1997 to 0.13 for Jaguar and 0.01 for the projected exaflop

machine in 2018 [36], [47]. In addition, for a substantial

class of HPC applications characterized by close, fine-grained

synchronization between computation on different nodes, non-

determinacy resulting from competing CPU usage can result

in severe performance impairment [48], as such jitter causes

additional waiting for “stragglers” at each communication step.
In addition to competing with the main application for time,

this sort of in-situ analysis also consumes additional energy

during a simulation. Power is rapidly becoming a limiting

factor in the scaling of today’s HPC systems—the average

power consumption of the top 10 HPC systems today is

4.56MW [47], with the No. 1 system drawing 12.66MW. If

peak power has become a constraint, then feasible solutions

for addressing other system shortcomings must fit within that

power constraint.
Rather than combining primary and post-processing com-

putation on the same compute nodes, an alternate approach

is what might be termed true out-of-core1 data analysis, per-

formed within the storage system rather than on the compute

node. Earlier attempts to combine computation and storage

have focused on adding application programmability on disk-

resident CPUs [42] and parallel file system storage nodes [21].

This Active Storage approach has drawn renewed interest in

recent years with the commercial success of Netezza [34], a

specialized “data warehouse” system for analyzing data from

business applications. In HPC contexts, however, an isolated

analysis cluster such as Netezza poses many of the same

scalability problems as centralized storage systems.
The recent availability of high-capacity solid-state storage,

however, opens the possibility of a new architecture for

combining storage and computation, which we term Active

Flash. This approach takes advantage of the low latency and

architectural flexibility of flash-based storage devices to enable

highly distributed, scalable data analysis and post-processing

in HPC environments. It does so by implementing, within the

storage system, a toolbox of analysis and reduction algorithms

for scientific data. This functionality is in turn made available

to applications via both a tightly-coupled API as well as more

loosely-coupled mechanisms based on shared access to files.
The contributions of this work include:

• A proposed architecture for Active Flash,

• Exploration of energy and performance trade-offs in moving

computation from host systems to Active Flash,

1Typically the term “out-of-core” refers to the use of external storage as part
of an algorithm processing data sets larger than memory. In the case described
here, however, not only data but computation is shifted from memory and main
CPU to the storage system.

• Demonstration of the ability of representative embedded

controllers to perform data analysis and reduction tasks

at competitive performance levels relative to modern node

hardware, as evidence of the feasibility of this approach,

• A simulation study of Active Flash scheduling policies,

examining the possibilities of scheduling controller-based

computation both between and during host I/O.

In particular, we begin by describing SSD architecture and

proposed Active Flash extensions, and then investigating dif-

ferent aspects of its feasibility, focusing on (a) energy savings

and related performance trade-offs inherent in off-loading

computation onto lower-power but lower-performance storage

CPUs (Section III), (b) feasibility of realistic data analysis

and reduction algorithms on such CPUs (Section IV), and (c)

a simulation-based study (Section V) examining the degree to

which storage and computation tasks compete for resources

on the SSD. We finally survey prior work in Section VI and

conclude.

II. BACKGROUND

A. General SSD architecture

An SSD as shown in Figure 1 is a small general-purpose

computer, based on a 32-bit CPU and typically 64-128MB of

DRAM, or more for high-end PCI-based devices. In addition

it contains Host Interface Logic, implementing e.g. a SATA or

PCIe target, a Flash Controller handling internal data transfers

and error correction (ECC), and an array of NAND flash

devices comprising the storage itself.

Fig. 1: Active Flash: the HPC simulation (main computation) is
running on the compute node (host CPU), the simulation data is sent
to the storage device (SSD) and the data analysis is carried out on
the embedded processor (SSD controller). The general architecture
of an SSD [23] is illustrated.

The internal architecture is designed around the operational

characteristics of NAND flash. Storage on these chips is

organized in pages which are read or written as units; these

operations consist of a command, a busy period, and a data

transfer phase. When reading a page, the busy period is fairly

short (e.g. 50 µs per page, which is typically 4KB) and is

followed by the data transfer phase, which at today’s flash

chip speeds will typically take 40-100µS for a 4KB page

at a flash bus speed of 40-100MB/s. Writes are preceded by

the data transfer phase, at the same speed, but require a busy

period of 200-300µs or more. Pages are organized in erase

blocks of 64-256 pages (typically 128) which must be erased

as a unit before pages may be re-written; this operation is time-

consuming (2ms or more) but rare in comparison to writes.

Write bandwidth to a single flash chip is limited by opera-

tion latency; e.g. a 300 µs latency for writing 4KB page results

in a maximum throughput (i.e. with infinite bus speed) of less

than 14MB/s. High bandwidth is obtained by performing write

operations on many chips simultaneously, across multiple

chips sharing the same bus or channel (multi-way interleaving),

as the bus is only needed by a particular chip during the

data transfer phase, and across multiple buses (multi-channel

interleaving).

The page write / block erase mechanism provided by NAND

flash is fundamentally different from the re-writable sectors

supported by hard disk drives (HDDs). It is hidden by flash

management firmware termed the Flash Translation Layer

(FTL), which performs out-of-place writes with re-mapping

in order to present an HDD-like re-writable sector interface

to the host. These tasks may be performed by a relatively

low-end controller in inexpensive consumer devices (e.g. the

Indilinx Barefoot incorporates an 80MHz ARM CPU), while

higher-end SSDs use speedier CPUs to reduce latency, such

as the 4 780MHz Tensilica cores in the OCZ RevoDrive X2.

B. Active Flash feasibility and architecture

These higher-end CPUs are what enable Active Flash, the

architecture of which is shown in Figure 1. We assume that

the HPC simulation—i.e. the main application—runs on the

compute node or host CPU, generating large volumes of data

which are sent to the storage device (SSD). By carrying out

data analysis on the SSD itself, we avoid multiple rounds of

redundant I/Os between the compute node and the storage

device, and the overhead of these I/Os. In order to offload such

processing, we take advantage of the following characteristics

of today’s SSDs:

• High I/O bandwidth: SSDs offer high I/O bandwidth due

to interleaving techniques over multiple channels and flash

chips; this bandwidth may be increased by using more chan-

nels (typically 8 on consumer devices to 16 or more on high-

end ones) or flash chips with higher-speed interfaces. Typ-

ical read/write throughput values for contemporary SSDs

are 150–250 MB/s, and up to 400-500 MB/s for PCIe-based

devices such as the OCZ RevoDrive PCI-Express SSD [35].

• Availability of idle times in workloads: Although NAND

flash management uses some CPU time on the embedded

CPU, processor utilization on SSDs is highly dependent on

workloads. The processor is idle between I/O accesses, and

as higher and higher-speed CPUs are used to reduce per-

request latency, may even be substantially idle in the middle

of requests as well. These idle periods may in turn be used

to run tasks that are offloaded from the host.

• High-performance embedded processors: a number of fairly

high-performance CPUs have been used in SSDs, as men-

tioned previously; however there are also many other

‘mobile-class’ processors which fit the cost and power

budgets of mid-to-high end SSDs. (e.g. the ARM Cortex-

A9 [11] dual-core and quad-core CPUs, capable of operating

at 2000MHz) The comparatively low investment to develop

a new SSD platform would make feasible an Active Flash

device targeted to the HPC market.

We assume an active flash storage device based on the SSD

architecture we have described, with significant computational

power (although much less than that of the compute nodes)

and low-latency high-bandwidth access to on-board flash. An

out-of-band interface over the storage channel (e.g. using

operations to a secondary LUN [9]) is provided for the host

to send requests to the active flash device. These requests

specify operations to be performed, but not data transfer,

which is carried out by normal block write operations. The

active flash commands indicate which logical block addresses

(LBAs) correspond to the input and output of an operation;

these would typically correspond to files within the host file

system containing data in a standard self-describing scientific

data format such as NetCDF [41] or HDF5 [20].

III. PERFORMANCE–ENERGY TRADEOFFS

We analyze the performance–energy tradeoffs of the Active

Flash model. We generalize the study to a hybrid model, in

which the SSD controller is used in conjunction with the host

CPU to perform the data analysis. A fraction f of the data

analysis is carried out on controller, and the rest on the host

CPU. Moving the entire analysis on the controller is a specific

case of the hybrid model, when f = 1. The two scenarios

compared are:

• baseline: the entire data analysis is performed on the host

CPU.

• hybrid: a part of the data analysis is carried out on the SSD

controller; the rest, if any, is running on the host CPU.

We consider two HPC scenarios, which may occur in the

baseline model and the host-side of the hybrid model:

• alternate: data analysis alternates with other jobs (e.g.

HPC simulation). When data analysis is performed, it fully

utilizes the CPU.

• concurrent: data analysis runs concurrently with other jobs

(e.g. HPC simulation). It utilizes only a fraction of the CPU

compute power.

Performance and energy consumption of the data analysis

task are determined chiefly by data transfer and computation.

Assuming data transfer takes place over a low-powered bus

such as SATA/SAS (developed with mobile use in mind) the

contribution of data transfer to energy consumption should be

negligible, and will be ignored. This data transfer, however,

plays a significant role in performance, giving the hybrid

model a significant advantage over the baseline model, as

TABLE I: List of variables.

Data analysis parameters:

baseline:
tb total computation time (CPU time)
ub host CPU utilization

∆Eb host CPU energy consumption

hybrid:

tc computation time on controller (CPU time)
uc,uh controller and host CPU utilization

f fraction of data analysis carried out on controller
Se effective slowdown (CPU time ratio)
S visible slowdown (wall clock time ratio)

∆Ec,∆Eh controller, host CPU energy consumption
∆E energy savings

Device parameters:

sh, sc host CPU speed, controller speed
s sh/sc

Hidle, Hload host CPU idle and load power consumption
Cidle, Cload controller idle and load power consumption

∆Ph Hload −Hidle

∆Pc Cload −Cidle

p ∆Pc/∆Ph

fewer transfers occur, with no data ever being transferred from

the controller back to the host CPU.

A. Performance study

Table I gives a complete list of variables used in this study.

They address time, speed, energy, and CPU utilization.

Working alone (i.e. the baseline model), the host CPU takes

time tb to finish the entire computation. The controller is s

times slower than the host CPU. Thus it finishes its share f

of the data analysis in:

tc = f · s · tb (1)

The effective slowdown of the computation in the hybrid

model compared to the baseline model is:

Se =
tc

tb
= f · s (2)

For alternate data analysis, the effective slowdown (CPU

time ratio) equals the visible slowdown (wall clock time ratio).

For concurrent data analysis, the visible slowdown may be

smaller than the effective slowdown (due to task parallelism

on the host CPU), and depends on ub, the fraction of time the

data analysis job uses the CPU (i.e. the CPU utilization due

to data analysis):

S =
tc

tb/ub
= f · s ·ub (3)

The fraction f of data analysis performed on the controller

determines the visible slowdown. Moreover, for every ub we

can determine the fraction f to move on the controller such

that the data analysis job incurs no visible slowdown cost, or

can finish even faster than in the baseline approach.

A fraction f of the data analysis job running on an s

times slower processor uses: uc = f · s · ub. We consider that

the controller invests all its computation cycles in the data

analysis: uc = 1. Thus f = 1/(s ·ub). The entire work is done

on the controller (f = 1) at ub = 1/s.
To summarize, if ub ≤ 1/s (e.g. due to competing load on

the host CPU from the data-generating application), we can

move the entire data analysis on the controller with no visible

slowdown. (If ub < 1/s there is actually a speedup). If ub >
1/s, we can move a fraction f = 1/(s ·ub) of the data analysis
on the controller with no visible slowdown.

f =

{

1, for ub ∈ [0,1/s)

1/(s ·ub), for ub ∈ [1/s,1]
(4)

In addition, a few host CPU cycles have become available

for other jobs. The remaining host CPU utilization due to data

analysis is:

uh = (1− f) ·ub =

{

0, for ub ∈ [0,1/s)

ub−1/s, for ub ∈ [1/s,1]
(5)

B. Energy study

The energy savings in the hybrid model compared to the

baseline model are:

∆E = 1−
∆Eh +∆Ec

∆Eb

(6)

The energy consumption of the host CPU in the hybrid

model decreases with the fraction of work transferred to the

controller: ∆Eh = (1− f) ·∆Eb. Thus ∆E = f −∆Ec/∆Eb.

The energy consumption over a time interval ∆t at a power

rate P is: E = ∆t × P. Considering a ∆P increase in power

consumption between the idle and load processor states, the

equation becomes:

∆E = f −
tc

tb
·

∆Pc

∆Ph
(7)

Finally, using the tc formula determined in Equation (1), the

energy savings are:

∆E = (1− sp) · f (8)

C. Experimental study

In this section, we present a concrete estimation of energy

savings compared to job slowdown. We conducted power

usage and timing measurements on the following platforms

to obtain realistic results:

• Embedded CPU (controller): We measured an example of

a high-end 32-bit controller, the 1GHz ARM Cortex-A9

MPCore dual-core CPU running on the Pandaboard [37]

development system.

• Host CPU: The Intel Core 2 Quad CPU Q6600 at 2.4GHz.

We benchmarked the speed of the two processors for a

single internal core, with Dhrystone [13]. Although Dhrys-

tone is not necessarily an accurate predictor of application

performance, results in later sections show that it gives a fairly

good approximation for the ones we will look at (Section IV).

We measured whole-system idle and load power consumption

in each case. Table II presents the measured values and the

resulting parameters s and p.

TABLE II: Measured parameters for speed and power consumption,
and derived parameters s and p.

sh (DMIPS) sc (DMIPS) ∆Ph (W) ∆Pc (W) s p

16215 2200 21 0.8 7.3 0.038

Figure 2 shows the performance-energy tradeoffs of the

hybrid model. Figure 2a illustrates the energy savings and

slowdown depending on the fraction of data analysis carried

 0

 0.2

 0.4

 0.6

 0.8

 0 0.2 0.4 0.6 0.8 1
 0

 2

 4

 6

 8

 10

 12

 14
E

n
er

g
y

 S
av

in
g

s

S
lo

w
d

o
w

n

Fraction of data analysis on controller

∆E (y
 ax

is)

S e
 (y

2 axis)

S for ub
=0.5 (y2 axis)

(a) Energy savings versus slowdown

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
 o

f
d

at
a

an
al

y
si

s

Baseline - Host CPU Utilization

controller
host CPU

(b) Data analysis split without slowdown

 0

 0.2

 0.4

 0.6

 0.8

 0 0.2 0.4 0.6 0.8 1
 0

 0.5

 1

 1.5

 2

E
n

er
g

y
 S

av
in

g
s

S
lo

w
d

o
w

n

Baseline - Host CPU Utilization

∆E (y axis)
S (y2 axis)

(c) Energy savings without slowdown

Fig. 2: Performance-Energy tradeoffs for the Hybrid Model. The controller is used in conjunction with the Host CPU to carry out part of
the computation. No job slowdown occurs for S = 1.

out on the controller. The x-axis shows the fraction f of

data analysis performed on the controller. In the specific case

of f = 1, i.e. the entire data analysis is performed on the

controller, the energy savings reach the peak value of 0.72

at the effective slowdown cost of 7.3 (the Se line at f = 1).

However, if the data analysis job utilizes only half of the CPU

time in the baseline model by sharing it with other concurrent

jobs (the “S for ub = 0.5” line), its visible job slowdown in the

hybrid model is proportionally less (e.g. for f = 1 the visible

slowdown is about 3.6).

Figures 2b and 2c investigate how to split data analysis

in the hybrid model to obtain energy savings without any

visible job slowdown. Figure 2b shows the fraction of data

analysis on each processor in this case. If the baseline host

CPU utilization is smaller than 0.13 (ub < 0.13 on the x-axis),

the entire data analysis can be accommodate on the controller

without a visible slowdown. Moreover, Figure 2c shows that

in this case (ub < 0.13), performing the entire data analysis

on the controller gives a speedup (S < 1, y2-axis) and peak

energy savings of 0.72. Even in the worst case (at ub = 1 on

the x-axis), i.e. full host CPU utilization due to data analysis

(baseline model, alternate), the controller is able to free the

host CPU by about 0.13 (Figure 2b), while saving about 0.1 of

the baseline energy consumption (Figure 2c) without slowing

down the data analysis.

D. Discussion

These results indicate that moving the entire data analysis

on to the controller, or even just a fraction of it, can give

significant energy savings. Moreover, the fraction of data

analysis to be carried out on the controller can be tuned

(based on the baseline host CPU utilization due to the data

analysis job) to control the job slowdown cost. In some cases,

energy savings can be obtained without slowing down the data

analysis.

IV. DATA ANALYSIS APPLICATIONS

To demonstrate the feasibility of the Active Flash model in

real-world cases, we examine four data analysis applications

from representative domains of high performance computing.

The post-processing performed in these examples is driven by

the contrast between the large volumes of high-precision data

which may be needed to represent the state of a simulation

closely enough for it to evolve accurately over time, as

compared to the lesser amount of detail which may be needed

in order to examine the state of the simulated system at a

single point in time. Data reduction encompasses a range

of application-agnostic methods of lossy (e.g. decimation,

precision reduction, etc.) or lossless compression; our anal-

ysis examines simple lossless data compression on scientific

data in several formats. In contrast, feature detection refers

to more application-aware computations, tailored to extract

relevant data in a particular domain. We investigate two

fairly general-purpose feature-detection algorithms—edge and

extrema detection—on meteorological and medical data, as

well as a specialized algorithm for heartbeat detection.

In estimating performance requirements for an Active Flash

implementation, we note that HPC simulations do not neces-

sarily output data at a constant rate. In particular, an alternate

output behavior is that of checkpointing, where the compu-

tational state on all nodes is periodically written to storage,

allowing recovery to the latest such checkpoint in the case

of interruption due to e.g. hardware failure. Although trans-

parent mechanisms for performing checkpointing exist [6],

application-implemented checkpoints using files which may

serve as the final output of the simulation are in fact common.

We consider the case where an application writes a checkpoint

to local SSD at regular intervals; the checkpoint is then post-

processed on the Active Flash device for e.g. central collection

and visualization. In this scenario we have a deadline for

Active Storage computation; this processing must complete in

the window before the next checkpoint is written. The size of

these checkpoints is bounded by the node memory size, and

their frequency is limited by the duration of the checkpoint

write process, and the desire to minimize the overhead of these

periodic halts on the progress of the main computation.

A. Description of applications

Edge detection: Edge detection is an example of feature

extraction applied to image processing, in which specific

portions (i.e. the edges) of a digital image are detected and

isolated by identifying sudden changes in image brightness.

We use SUSAN, an open source, low-level image processing

application [45] examined in earlier studies of active stor-

(a) Original image (b) Detected edges

-1

-0.5

 0

 0.5

 1

 0 1 2 3 4 5

E
C

G
 (

m
V

)

Elapsed time (s)

signal
peak

(c) Local extrema

-1

-0.5

 0

 0.5

 1

 0 1 2 3 4 5

E
C

G
 (

m
V

)

Elapsed time (s)

signal
beat

(d) Detected heartbeats

Fig. 3: (a), (b) – Edge detection applied to an image rendering weather information from June 11, 2011, provided by GMS-5 (Japan
Meteorological Agency) and the Kochi University Weather Home. The edges were detected with a brightness threshold of 40. (c) – Finding
local maxima and minima (peaks) in a wave signal with the threshold distance set to 0.1. (d) – Detecting heartbeats in an electrocardiogram
(ECG). For (c) and (d), the input data represents an ECG recording from the MIT-BIH Arrhythmia Database over a 5 seconds interval of
recorded data.

age [43], to detect edges in a set of weather images collected

with GMS (Japan’s Geostationary Meteorological Satellite

system), which are publicly available on the Weather Home,

Kochi University website [17]. Detecting useful patterns in

meteorological data is clearly of practical value, in both

forecasting and longer term climate analysis; edge detection

has been used to identify region outliers associated with severe

weather events [28], as well as to detect clouds and air

flows. In Figure 3 we see a sample image, as well as the

corresponding detected edges.

Finding local extrema: Finding the local maxima and

minima in a noisy signal is a problem which appears in

several fields, typically as one of the steps in peak detection

algorithms, along with signal smoothing, baseline correction,

and others. A comprehensive study of public peak detection

algorithms on simulation and real data can be found in [52].

We use the open source implementation available at [51]

to detect local extrema in a wave signal, using a method [7]

which looks for peaks above their surroundings on both sides

by some threshold distance, and valleys below by a corre-

sponding threshold. We apply this application to a set of ECG

(electrocardiogram) signals from the MIT-BIH Arrhythmia

Database [33]; example results may be seen in Figure 3c, using

a threshold distance (delta) of 0.1.

Heartbeat detection: Heartbeat detection is a signal pro-

cessing application with great impact in medical fields; al-

though typically used with real patient data, the rise of compu-

tational science in medical fields [39] leads to applications of

such algorithms in the HPC simulation environments targeted

by Active Flash. We evaluate the performance of the SQRS

heartbeat detection algorithm [15], which approximates the

slope of an ECG signal by applying a convolution filter

on a window of 10 values. It then compares this filtered

signal against a variable threshold to decide whether a normal

beat was identified; sample output is shown in Figure 3d.

We evaluate an open source implementation of the SQRS

algorithm from PhysioNet [18], applied to ECG signals from

the MIT-BIH Arrhythmia Database.

Data compression: Data compression is used in many

scientific domains to reduce the storage footprint and in-

crease the effective network bandwidth. In a recent study,

Welton et al. [50] point out the advantages of decoupling

data compression from the HPC software to provide portable

and transparent data compression services. With Active Flash,

we propose to take the decoupling idea one step further,

and harness the idle controller resources to carry out data

compression on the SSD.

We use the LZO (Lempel-Ziv-Oberhumer) lossless com-

pression method which favors speed over compression ra-

tio [29]. Experiments were conducted using two common HPC

data formats encountered in scientific fields: NetCDF (binary)

data and text-encoded data. The data sets are extracted from

freely available scientific data sources for atmospheric and

geosciences research (NetCDF format) [10], and bioinformat-

ics (text format) [16].

B. Experimental setup

The experimental platforms used are the same as in Sec-

tion III-C: the Pandaboard development system featuring a

dual-core 1 GHz ARM Cortex-A9 MPCore CPU (controller),

1GB of DDR2 SDRAM, and running Linux kernel 3.0, and

a host machine featuring an Intel Core 2 Quad CPU Q6600

at 2.4GHz, 4GB of DDR2 SDRAM, and running Linux

kernel 2.6.32. The applications chosen were all platform-

independent C language programs; to reduce the effect of

compiler differences GCC 4.6.1 was used on both platforms

for all tests. Measurements were made of the computation

phase of each program (i.e. excluding any time taken by

input or output) running on a single core with no competing

processes; measurements were made on both the host CPU

and the controller.

C. Results

A summary of measured timings and data reduction values

is given in Tabel III.

Figure 4a gives a comparative view of computation speeds

on controller and host CPU for the four data analysis ap-

plications. Edge detection and heartbeat detection are more

computation intensive, compared to the other two applications.

We used the detailed log-scale to display these speed values

 1

 10

 50
 100

edges
extrema

heartbeats

compression

C
o
m

p
u
ta

ti
o
n
 t

h
ro

u
g
h
p
u
t

(M
B

/s
)

 200

 350

 1000

 2300

lo
g

 s
ca

le

controller
host cpu

(a) Computation throughput

 0.1

 1

 10

edges
extrema

heartbeats

compression

C
o
m

p
u
ta

ti
o
n
 t

im
e

(m
in

u
te

s)

 20

 40

 60

 80
input data size = 30 GB

lo
g

 s
ca

le

controller
host cpu

(b) Computation time for 30GB data processed

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

edges
extrema

heartbeats

compression

S
lo

w
d
o
w

n

 0

 0.2

 0.4

 0.6

 0.8

 1

edges
extrema

heartbeats

compression

E
n
er

g
y
 s

av
in

g
s

(c) Slowdown versus energy savings

Fig. 4: (a) – Computation throughput, and (b) – computation time for 30GB input data on the controller and on the host CPU. The bottom
part of each figure uses a log-scale to observe low y-axis values in detail. (c) – Slowdown and energy savings estimated with Equation (7)
using f = 1, and the measured times and power values.

TABLE III: Data analysis applications. Measured timings and data
reduction.

Application Computation throughput (MB/s) Data reduction

controller host CPU (%)

Edge detection 7.5 53.5 97
Local extrema 339 2375 96
Heartbeat detection 6.3 38 99
Compression

average bin&txt 41 358 49
binary (netcdf) 49.5 495 33
text 32.5 222 65

of about 7MB/s on the controller. Data compression is next

in terms of computation speed, averaging at about 41MB/s.

Unlike the previous applications, local extrema detection is

less computationally intensive. Current interfaces commonly

transfer data at about 200MB/s. Thus this application is I/O

bound instead of computation speed limited.

Figure 4b illustrates the time needed to process 30GB of

data (half the memory size per node of the Gordon system) at

the measured speeds. Compression and local extrema detection

are very fast even on the controller (under 15 minutes). Edge

and heartbeat detection are slower, but still deliver acceptable

timings (70-80 minutes) for a realistic scientific computation.

We note that these measurements use fairly compact input data

formats; it is likely that actual simulation data will be less

dense due to the need for higher precision for each data point.

Since the runtime of these algorithms is typically a function

of the input size in data points, throughput in practice is likely

to be higher.

Figure 4c shows how many times longer it takes to run

these applications on controller, instead of the host CPU.

On average, the slowdown is about 7.2, which confirms the

benchmarking results from Section III. The same figure shows

energy savings of about 0.75. The measured computation

speeds for each application, and the measured power values

of each test platform (Section III-C) are used in Equation (7)

to derive the fraction of saved energy.

In all cases, the output can be represented much more

compactly than the original data (it contains less information).

The feature extraction applications delivered a substantial data

reduction of over 90%, while compression averaged at about

50% for the two input data formats studied. We observe that

compressing binary data is faster than compressing text, at the

expense of a smaller compression ratio (the text format is more

compressible than binary NetCDF). The input and output are

in binary format for heartbeats and edge detection, and text

format for local extrema.

D. Discussion

These results indicate that off-loading data analysis to a

storage device based on a high-end controller has the potential

to deliver acceptable performance in a high performance

scientific computing environment. Using heartbeat detection as

an example, the rate at which the ECGSYN electrocardiogram

signal simulator [14] generates output data on our Intel host

CPU is 3.2MB/s of text data, equivalent to 0.26MB/s in the

binary format assumed in Figure 4. Even assuming 16 cores

per host node, each producing simulation output at this rate,

the total output is comfortably less than the 6.3MB/s which

could be handled on the controller. Alternately, assuming a

checkpoint post-processing model, we see that the worst-case

time for processing a volume of data equal to a realistic

node checkpoint size is roughly an hour, making it realistic

to consider flash-based processing of checkpoints in parallel

with the main computation. Best suited for Active Flash are

applications with minimal to no data dependencies, such as the

ones illustrated here. Subsets of weather/ECG simulation data

can be analyzed independently, without the need to exchange

partial results among the compute and storage nodes. Also, we

assume that jobs run without contention, as nodes are typically

dedicated for an HPC application at a time.

V. SCHEDULING DATA ANALYSIS ON FLASH

In this section, we propose several policies to schedule both

data analysis on the flash device and flash management tasks,

i.e. garbage collection (GC). GC is typically triggered when

the number of free blocks drops below a pre-defined threshold,

suspending host I/O requests until completion; it is therefore

important to schedule analysis and GC in a way that optimizes

both analysis as well as overall device I/O performance.

A. Scheduling policies

The scheduling policies examined are as follows:

On-the-fly data analysis – Data written to the flash device

is analyzed while it is still in the controller’s DRAM, before

being written to flash. The primary advantage of this approach

is that it has the potential to significantly reduce the I/O traffic

within the device by obviating the need to re-read (and thus

re-write) data from the SSD flash. However, the success of this

approach is dependent on factors such as the rate at which data

is output by the main application, the computation throughput

on the controller and the size of the controller DRAM. If data

cannot be analyzed as fast as it is produced by the host-resident

application, then the application must be throttled until the

analysis can catch up.

Data analysis during idle times – In idle-time data anal-

ysis, controller-resident computation is scheduled only during

idle times, when the main application is not performing I/O.

Most HPC I/O workloads are bursty, with distinct periods

of intense I/O and computation [24]; for these workloads, it

is possible to accurately predict idle times [31], [32], and

we exploit these idle times to schedule data analysis on

the controller. This increases the I/O traffic inside the flash

device, as data must be read from flash back into DRAM,

and after computation written back to flash. However, our

results indicate that, in many cases (i.e. computation bound

data analysis), the additional background I/O does not hurt

overall I/O performance.

Idle-time data analysis plus GC management – With

idle-time-GC scheduling, optimistic garbage collection tasks as

well as data analysis are controlled by the scheduler. Since GC

will occur when absolutely necessary regardless of scheduling,

data analysis is given priority: if an idle time is detected, but

there is no data to be processed for data analysis, then, GC

is scheduled to run instead. This complements the default GC

policy, where GC is invoked when the amount of available

space drops below a minimum threshold. Pushing GC earlier

during idle times may incur additional write amplification than

if GC were triggered later, because fewer pages are stale by

the time GC is invoked. However, this early GC does not affect

perfomance since it happens only when the device is idle.

B. Simulator implementation and setup

We have used the Microsoft Research SSD simulator [4],

which is based on DiskSim [8] and has been used in several

other studies [25], [26], [44]. We have simulated a NAND flash

SSD, with the parameters described in Table IV. We have

extended the event-driven SSD simulator to evaluate the three

scheduling policies. In addition to the default parameters for

SSD simulation, the Active Flash simulator needs additional

parameters, which are shown in Table V.

The MSR SSD implementation captures the I/O traffic

parallelism over flash chip elements. However, the controller is

a resource shared by all of the flash chips. While I/O requests

to different flash chips may be scheduled simultaneously,

computation (i.e. processing a new data unit on the controller)

can only start after the previous one has ended. Our extension

to the simulator accounts for this fundamental difference

between handling I/O streams and computation.

TABLE IV: SSD Parameters.

Parameter Value

Total capacity 64 GB
Flash chip elements 16
Planes per element 8
Blocks per plane 2048
Pages per block 64
Page size 4 KB
Reserved free blocks 15 %
Minimum free blocks 5 %
FTL mapping scheme Page-level
Cleaning policy Greedy

Page read latency 0.025 ms
Page write latency 0.2 ms
Block erase latency 1.5 ms
Chip transfer latency per byte 25 ns

TABLE V: Data analysis-related parameters in the SSD simulator.

Parameter Value

Computation time per page of input application-specific
Data reduction ratio application-specific
GC-idle threshold 0.9
(fraction of reserved space)

We implemented the idle-time scheduling policy, wherein

data analysis is triggered when the I/O queue is empty and

there are no incoming requests. A typical GC policy such

as that implemented in this simulator will invoke GC when

the amount of free space drops below a minimum threshold

(Table IV - 5% of the storage space, equivalent to 0.33 of the

reserved space). In order to implement the idle-time-GC data

analysis policy, we introduced an additional GC threshold, the

GC-idle threshold, set to a high value (0.9 of the reserved

space, equivalent to 13.5% of the storage space) to allow

additional dirty space to be reclaimed during idle times.
While we expect a high degree of sequentiality in HPC

data, we have experimented with worst-case conditions. We

have simulated a synthetic write workload, consisting of small

random writes, to represent the data generated by the main

application on the host CPU. The request lengths are exponen-

tially distributed, with a 4K mean value, and the inter-arrival

rate (modeled by a uniform distribution) is set accordingly in

each experiment to simulate different data generation rates of

the scientific application running on the host CPU. The volume

of write requests issued is 1 GB in every test.

Fig. 5: Limiting factors in Active Flash.

C. Results

Figure 5 illustrates the potential bottlenecks in the Active

Flash model: the computation throughput of the analysis on

the controller, the flash management activity, in particular GC,

and the I/O bandwidth of flash. In our results, we evaluated the

scheduling policies by studying the effects of these limiting

factors.

 0

 50

 100

 150

 200

 250

 300

 350

 400

r=0, free

r=0.5, free

r=0.9, free

all r, full

M
ax

im
u
m

 s
u
st

ai
n
ed

d
at

a
g
en

er
at

io
n
 r

at
e

(M
B

/s
)

on-the-fly
idle

Fig. 6: I/O bound data analysis. Maximum sustained data generation
rate of the scientific application for ‘on-the-fly’ and ‘idle-time’ data
analysis running entirely on the controller, for cases ‘free’ (no GC),
and ‘full’ (intensive GC). r = data reduction ratio (values of r
experimented with: 0, 0.5, 0.9).

To ensure high internal activity, the entire logical space of

the SSD is initially filled with valid data. As the state of the

reserved block list plays a critical role in SSD performance,

we considered the following two experimental conditions for

free block list:

• free: All reserved blocks are initially free. A previous GC

process has already reclaimed the space.

• full: The reserved blocks are initially filled with invalid

data, resulting from previous write requests (updates). We

maintained only a very small number of free blocks in

order for the GC process to work. Victim blocks selected

for cleaning contain mostly invalid pages, and possibly a

few valid pages. Before the block is erased, the valid pages

are moved in a new free block. A minimal number of free

blocks (in our experiments, 5 blocks per flash chip) ensures

that there is space to save the valid data during cleaning.

In the following experiments, we refer to the data generation

rate of the main application running on the host CPU as data

generation rate, and to the computation throughput of the

data analysis running on the SSD controller as computation

throughput.

I/O bound data analysis: We evaluated an I/O bound data

analysis, in which the I/O bandwith of flash represents the

main bottleneck (bottleneck 3 in Figure 5). With contemporary

SSDs, featuring high I/O bandwidth of 150-250MB/s, and

even higher for some PCIe-based SSDs (400-500MB/s), the

case of I/O bound data analysis is expected to be less common.

In these experiments, we compare on-the-fly and idle-

time data analysis scheduling policies, when all analysis was

performed on the controller (case f = 1 in the hybrid model

from Section III). A very high throughput (390MB/s) was set

for controller-based data analysis, so that the maximum write

bandwith (145MB/s) of the flash array in our simulated SSD

would be the bottleneck; results are presented in Figure 6.

Case ‘free’ (no GC): If the entire reserved space of the

emulated SSD is initially free, the SSD can accommodate

1GB of write requests without the need to invoke GC. In this

case, the controller-resident data analysis can keep up with a

maximum data generation rate which highly depends on the

data reduction resulting from analysis.

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

M
ax

im
u
m

 s
u
st

ai
n
ed

d
at

a
g
en

er
at

io
n
 r

at
e

(M
B

/s
)

Computation throughput
of data analysis on controller (MB/s)

feature
extraction
apps

compression
on-the-fly, free
on-the-fly, full

idle, free
idle, full

Fig. 7: Computation bound data analysis. Maximum sustained data
generation rate of the scientific application depending on the com-
putation throughput of in-storage data analysis for cases ‘free’ (no
GC), and ‘full’ (intensive GC).

First we present the results for the on-the-fly policy. If no

data reduction was obtained after data analysis (r= 0), then the

same volume of data is written to the SSD, and the maximum

sustained data rate is limited by the I/O bandwidth of the

SSD (145MB/s). If the data analysis resulted in r = 0.5 data

reduction, then only half of the input data size is written to

the SSD, resulting in a higher data generation rate of about

260MB/s which can be sustained. If the data analysis reduced

the data considerably, by r = 0.9, the I/O traffic is much

decreased, and the computation part of the data analysis on the

SSD becomes the limiting factor (bottleneck 1 in Figure 5), at

390MB/s (i.e. the computation throughput of the data analysis

job running on the controller).

For the idle-time data analysis policy, the maximum sus-

tained data generation rate ranges from 75MB/s to 123MB/s,

increasing with data reduction (Figure 6). However, with this

scheduling policy, the entire data is first written to the SSD,

which reduces the maximum sustained rate below the I/O

bandwidth of the SSD. Other factors that contribute to the

smaller sustained data generation rate of the idle-time policy

compared to the on-the-fly policy (for I/O bound data analysis)

are: additional background I/O traffic necessary to read the

data back to the controller and then write the results of data

analysis, and restricting data analysis to idle times only.

Case ‘full’ (intensive GC): If we start without any free

space (Figure 6), intensive space cleaning is required to bring

the minimum number of free blocks above the minimum

limit. Due to garbage collection, the maximum sustained data

generation rate for 1 GB of data drops to 25MB/s regardless

of the value of data reduction ratio (bottleneck 2 in Figure 5).

Computation bound data analysis: We studied the maxi-

mum sustained data generation rate of the scientific application

of computation bound analysis (bottleneck 1 in Figure 5), for

on-the-fly and idle-time scheduling policies. The entire data

analysis was performed on the SSD controller (f = 1 in the

hybrid model discussed in Section III) by the time the host-

resident application finished generating data. Since in this case

the computation was the limiting factor, data reduction did not

have a significant effect on the results and was set to 0.5.

Figure 7 shows the maximum sustained data generation

rate depending on the computation throughput of controller-

0

20

40

60

80

0
10

20
30

40
50

0

0.2

0.4

0.6

0.8

1

Data generatio
n

rate (M
B/s)

Computation throughput
of data analysis on controller (MB/s)

F
ra

c
ti
o
n
 o

f
d
a
ta

 a
n
a
ly

s
is

o
n
 c

o
n
tr

o
lle

r

feature
extraction

compression

(a) Fraction of data analysis run on controller,
‘free’ start state (no GC)

0

20

40

60

80

0
10

20
30

40
50

0

0.2

0.4

0.6

0.8

1

Data generatio
n

rate (M
B/s)

Computation throughput
of data analysis on controller (MB/s)

F
ra

c
ti
o
n
 o

f
d
a
ta

 a
n
a
ly

s
is

o
n
 c

o
n
tr

o
lle

r

feature
extraction

compression

(b) Fraction of data analysis run on controller,
‘full’ start state (intensive GC)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 7 20 40

F
re

e
b

lo
ck

s
(f

ra
ct

io
n

 o
f

re
se

rv
ed

 s
p

ac
e)

Computation throughput
of data analysis on controller (MB/s)

0.
97

0.
2

0.
1

0.
05

1.
0

1.
0

0.
6

0.
3

1.
0

1.
0

1.
0

0.
95

1.
0

1.
0

1.
0

1.
0

s = 1 MB/s
s = 5 MB/s

s = 10 MB/s
s = 20 MB/s

(c) Data analysis with Garbage Collection man-
agement, ‘full’ start state (intensive GC)

Fig. 8: (a), (b) - In-situ data analysis during idle times in hybrid schemes. Fraction of the data analysis which can be accommodated on
the controller, while being able to sustain a specific data generation rate. In (b), intensive GC saturates the SSD at about 25MB/s. (c) -
Garbage collection is pushed earlier during extra available idle times. The bar labels represent the fraction of data analysis accommodated
on the controller. The y-axis shows fraction of reserved blocks that were clean at the end of each experiment (which started with no reserved
blocks free), for different data generation rates ‘s’.

resident data analysis. As concrete examples, we pinpoint on

the figure the computation bound data analysis applications

whose performance was measured in Section IV (feature

extraction, i.e. edge/heartbeat detection running at 7MB/s, and

compression running at about 41MB/s on the controller).

Case ‘free’ (no GC): When data analysis has the entire

reserved space free initially, no garbage collection is required

to process the 1 GB of data. The maximum data generation rate

is dictated by the computation throughput of the data analysis.

Both on-the-fly and idle-time strategies show a linear increase

with the computation throughput on the controller.

Case ‘full’ (intensive GC): High GC activity was required

when data analysis was started with no free reserved space.

The maximum data generation rate increased linearly with

the computation throughput of in-storage data analysis up

to 20MB/s, after which the background GC and related I/O

activity become the limiting factor (bottleneck 2 in Figure 5).

Data analysis in hybrid schemes: In the results above, we

investigated the maximum sustained data generation rate of the

scientific application to accomplish the entire data analysis on

the controller (f = 1 in the hybrid model from Section III).

Here we examine the case where only a fraction f < 1 of the

data analysis is offloaded to the storage controller with the rest

carried out on the host CPU.

The hybrid model works best with the idle-time scheduling

policy, based on the following considerations. For the on-the-

fly policy, generated data is stored in the DRAM residing on

the SSD and the data analysis job running on the controller

reads the data from DRAM for processing. The size of the

DRAM incorporated in the SSD restricts the amount of data

that can be stored for analysis. Once the DRAM becomes full,

the data analysis needs to keep up with the main application.

With the idle-times policy, the generated data is stored on the

SSD, and, depending on the availability of idle times, a portion

of the data is processed by the data analysis job running on

the controller. Thus, higher data generation rates (having fewer

idle time periods) can also be sustained, however, in that case,

only a part of the data analysis can be accommodated on the

controller, and the rest will be carried out on the host CPU.

Scheduling analysis during idle times allows for trading part

of the active data analysis for a higher data generation rate.

Figures 8a and 8b examine this tradeoff—the fraction of

data analysis possible on the controller versus the host-resident

application data generation rate— for different data analysis

speeds, ranging from 2MB/s up to 43MB/s. Since these values

are smaller than the maximum sustained data generation rate

for I/O bound data analysis (‘idle’) illustrated in Figure 6 (i.e.

75-125MB/s depending on data reduction), the data analysis

in these experiments is computation bound (bottleneck 1 in

Figure 5). Next we discuss the results illustrated in Figures 8a

and 8b for the data analysis examples described in Section IV,

i.e. compression and feature extraction applications.

Case ‘free’ (no GC): The entire data analysis can be carried

out on the controller at data generation rates smaller or equal

to the data analysis computation throughput on controller

(i.e. 41MB/s for compression and about 7MB/s for feature

extraction), as was previously discussed (see the computation

bound data analysis section). For feature extraction, when the

data generation rate is increased from 7MB/s to 25MB/s, the

controller can still handle 0.3 of the entire data analysis during

idle times, and a further increase to 60MB/s of data generation

rate drops this fraction to 0.1. For compression, when the

data generation rate is increased from 41MB/s to 60MB/s,

the controller can still handle 0.7 of the data analysis.

Case ‘full’ (intensive GC): The impact of intensive GC is

shown in Figure 8b. At 25MB/s data generation rates, the

controller can handle a fraction of 0.28 for feature extraction

analysis, while compression is able to run to completion. For

data generation rates higher than 25MB/s, intensive cleaning

eventually saturates the SSD (bottleneck 2 in Figure 5).

Data analysis with Garbage Collection management:

Previous results showed the high impact of GC on SSD perfor-

mance. The third scheduling policy proposed here addresses

this concern by tuning GC to take advantage of idle time

availability in application workloads.

The default GC mechanism implemented in the SSD sim-

ulator triggers GC when the number of free reserved blocks

drops under a hard (low) threshold (Table IV). We introduced

an additional soft (high) threshold (Table V) to coordinate the

idle-time GC activity. Thus, when the number of free blocks

is between the two thresholds, we push the GC earlier during

idle times, given that there is no data to be processed on the

controller at that moment.

The experiments started without any free space (Case ‘full’),

to trigger intensive GC (bottleneck 2 in Figure 5), and Fig-

ure 8c shows the fraction of reserved blocks that are clean at

the end of the experiments. The bars in the figure are labeled

with the fraction of data analysis that the controller was able

to accommodate during idle times. The results are illustrated

for different computation throughputs of data analysis, and

various application data generation rates.

In all cases, GC needs to raise the number of free blocks

at least up to the low threshold (cleaning 0.33 of the entire

reserved space). For slow data analysis (1MB/s), this is the

most it can do. Since the computation takes long, data analysis

on the controller monopolizes idle times. For faster data anal-

ysis, such as 7MB/s in case of feature extraction applications,

and small data generation rates (1MB/s, 5MB/s), GC is able

to raise the number of free blocks up to the high threshold

(cleaning 0.9 of the reserved space), while performing the

entire data analysis on the controller. Sustaining higher data

generation rates is possible with faster data analysis/reduction,

e.g. GC cleans 0.9 of the reserved blocks during compression

(running at 41MB/s) of data generated at a rate of 20MB/s.

D. Discussion

These results indicate that the on-the-fly policy offers the

advantage of significantly reducing the I/O traffic, while the

idle-time policy maximizes storage resource utilization by

carrying out data analysis during low-activity periods. Also,

idle-time scheduling offers flexibility: it permits sustaining the

desired (high) application data generation rate, when only part

of the data analysis is performed on the controller, and the rest

on the host CPU (the hybrid Active Flash model).

Multiple factors affect the maximum sustained data gener-

ation rate, depending on the type of data analysis. For I/O

bound data analysis, the data reduction size obtained from

running the analysis has a major impact. This is not the case

for computation bound data analysis, where the computation

throughput of data analysis determines the maximum sustained

data generation rate.

Garbage collection activity significantly affects perfor-

mance. GC tuning during idle times proposed in the third

policy can be a valuable resource. Consider a sequence of

application workloads that generate data at different rates.

We can take advantage of the extra idle times in slower

applications, to clean the invalid blocks on the SSD and thus

be able to accommodate the other faster applications in the

workload as well.

VI. RELATED WORK

Active storage techniques that move computation closer

to data have a history dating back to the Gamma database

machine [12], but the first proposals for shifting computa-

tion to the controller for the storage device itself—Active

Disk [43], IDISK [22], and others—were prompted by the

shift to 32-bit controllers for disk drive electronics in the

1990s. Although data computation tasks such as filtering,

image processing, etc. were demonstrated in this environment,

the computational power of disk-resident controllers has not

increased significantly since then, while the real-time demands

of mechanical control make for a poor environment for user

programming. More recently, active storage concepts have also

been pursued in the context of parallel file systems [38], [46],

harnessing the computing power of the storage nodes, or hosts

dedicated to disk management and data transfer (e.g. Jaguar’s

Lustre parallel file system at ORNL uses 192 dual-socket,

quad-core, 16GB RAM I/O servers [2]).

In contrast to hard disk drives (HDDs), semiconductor-based

devices such as NAND flash SSDs show far more promise

as platforms for computation as well as I/O. While flash

translation layer algorithms are often complex, they have no

real-time requirements—unlike e.g. disk head control, there is

no risk of failure if an operation completes too late or too

early. Unlike HDDs, with a single I/O channel to the media,

internal I/O bandwidth inside SSDs continues to increase

as channel counts increase and new interface standards are

developed [4], [23], [44]. High-performance control processors

are used in order to handle bursty I/O interrupts and reduce

I/O latency [23], but these latency-sensitive operations account

for only a small amount of total time, especially if handled

quickly, leaving resources available to run other tasks such as

post-processing, data conversion and analysis.

Recent work by Kim et al. [23] has studied the feasibility

of SSD-resident processing on flash in terms of performance-

power tradeoffs and showed that off-loading index scanning

operations to an SSD can provide both higher performance

and lower energy cost than performing the same operations on

the host CPU. Our research extends this work with a general

analytical model for performance-power and computation-I/O

trade-offs, as well as experimental verification of performance

and energy figures. In addition, simulation of the SSD and

I/O traffic is used to explore I/O scheduling policies in detail,

examining contention between I/O and computation and its

result on application throughput.

VII. CONCLUDING REMARKS

As HPC clusters continue to grow, relative performance of

centralized storage subsystems has fallen behind, with state-

of-the-art computers providing an aggregate I/O bandwidth of

1MB/s per CPU core. By moving solid-state storage to the

cluster nodes themselves, and utilizing energy-efficient stor-

age controllers to perform selected out-of-core data analysis

applications, Active Flash addresses both I/O bandwidth and

system power constraints which limit the scalability of today’s

HPC systems. We examine the energy-performance trade-offs

of the Active Flash approach, deriving models that describe the

regimes in which Active Flash may provide improvements in

energy, performance, or both. Measurements of data analysis

throughput and corresponding power consumption for actual

HPC algorithms show that out-of-core computation using

Active Flash could significantly reduce total energy with little

performance degradation, while simulation of I/O-compute

trade-offs demonstrates that internal scheduling may be used

to allow Active Flash to perform data analysis without impact

on I/O performance.

ACKNOWLEDGEMENTS

This work was sponsored in part by ORNL, managed by

UT Battelle, LLC for the U.S. DOE (Contract No. DE-AC05-

00OR22725), and in part by an IBM Faculty Award.

REFERENCES

[1] “Lustre DDN tuning,” http://wiki.lustre.org/index.php/Lustre DDN Tuning.
[2] “Spider,” http://www.nccs.gov/2008/06/30/nccs-launches-new-file-

management-system/, 2008.
[3] “Supercomputer uses flash to solve data-intensive problems 10

times faster,” http://www.sdsc.edu/News%20Items/PR110409 gordon.
html, 2009.

[4] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and
R. Panigrahy, “Design tradeoffs for SSD performance,” in USENIX ATC,
2008, pp. 57–70.

[5] S. Al-Kiswany, M. Ripeanu, and S. S. Vazhkudai, “Aggregate memory
as an intermediate checkpoint storage device,” Oak Ridge National
Laboratory, Oak Ridge, TN, Technical Report 013521, Nov. 2008.

[6] J. Ansel, K. Arya, and G. Cooperman, “DMTCP: Transparent check-
pointing for cluster computations and the desktop,” in IPDPS, 2009.

[7] E. Billauer, “Peak detection,” http://billauer.co.il/peakdet.html, 2011.
[8] J. S. Bucy, J. Schindler, S. W. S. G. R. Ganger, and Contributors, “The

DiskSim Simulation Environment Version 4.0 Reference Manual,” Tech.
Rep., 2008.

[9] E. Budilovsky, S. Toledo, and A. Zuck, “Prototyping a high-performance
low-cost solid-state disk,” in SYSTOR, 2011, pp. 13:1–13:10.

[10] “CISL Research Data Archive. CORE.2 Global Air-Sea Flux Dataset,”
http://dss.ucar.edu/dsszone/ds260.2.

[11] “Cortex-A9 Processor,” http://www.arm.com/products/processors/
cortex-a/cortex-a9.php.

[12] D. J. DeWitt and P. B. Hawthorn, “A Performance Evaluation of Data
Base Machine Architectures,” in VLDB, 1981, pp. 199–214.

[13] “ECL Dhrystone Benchmark,” www.johnloomis.org/NiosII/dhrystone/
ECLDhrystoneWhitePaper.pdf, White Paper.

[14] “ECGSYN: A realistic ECG waveform generator,” http://www.
physionet.org/physiotools/ecgsyn/.

[15] W. A. H. Englese and C. Zeelenberg, “A single scan algorithm for QRS
detection and feature extraction,” in IEEE Computers in Cardiology,
1979, p. 3742.

[16] “European Bioinformatics Institute. Unigene Database,” ftp://ftp.ebi.ac.
uk/pub/databases/Unigene/.

[17] “GMS/GOES9/MTSAT Data Archive for Research and Education,” http:
//weather.is.kochi-u.ac.jp/archive-e.html.

[18] A. L. Goldberger, L. A. N. Amaral et al., “PhysioBank, PhysioToolkit,
and PhysioNet: Components of a new research resource for complex
physiologic signals,” Circulation, vol. 101, no. 23, pp. e215–e220, 2000.

[19] T. Hatazaki, “Tsubame-2 - a 2.4 PFLOPS peak performance system,” in
Optical Fiber Communication Conference, 2011.

[20] HDF Group, “Hierarchical data format, version 5,”
http://hdf.ncsa.uiuc.edu/HDF5.

[21] T. M. John, A. T. Ramani, and J. A. Chandy, “Active storage using
Object-Based devices,” in HiperIO, Tsukuba, Japan, 2008.

[22] K. Keeton, D. A. Patterson, and J. M. Hellerstein, “A Case for Intelligent
Disks (IDISKs),” in SIGMOD Record, vol. 27, 1998, pp. 42–52.

[23] S. Kim, H. Oh, C. Park, S. Cho, and S.-W. Lee, “Fast, Energy Efficient
Scan inside Flash Memory SSDs,” in ADMS, 2011.

[24] Y. Kim, R. Gunasekaran, G. M. Shipman, D. Dillow, Z. Zhang, and B. W.
Settlemyer, “Workload characterization of a leadership class storage,” in
PDSW, 2010.

[25] Y. Kim, S. Oral, G. M. Shipman, J. Lee, D. A. Dillow, and F. Wang,
“Harmonia: A globally coordinated garbage collector for arrays of solid-
state drives,” in MSST, 2011, pp. 1–12.

[26] J. Lee, Y. Kim, G. M. Shipman, S. Oral, F. Wang, and J. Kim, “A semi-
preemptive garbage collector for solid state drives,” in ISPASS, 2011,
pp. 12–21.

[27] M. Li, S. S. Vazhkudai, A. R. Butt, F. Meng, X. Ma, Y. Kim,
C. Engelmann, and G. M. Shipman, “Functional Partitioning to Optimize
End-to-End Performance on Many-core Architectures,” in SC’10, 2010.

[28] C.-T. Lu and L. R. Liang, “Wavelet fuzzy classification for detecting
and tracking region outliers in meteorological data,” in GIS, 2004, pp.
258–265.

[29] “LZO real-time data compression library,” http://www.oberhumer.com/
opensource/lzo/.

[30] K.-L. Ma, “In situ visualization at extreme scale: Challenges and
opportunities,” IEEE Comput. Graph. Appl., vol. 29, no. 6, pp. 14–19,
2009.

[31] N. Mi, A. Riska, X. Li, E. Smirni, and E. Riedel, “Restrained utilization
of idleness for transparent scheduling of background tasks,” in SIGMET-

RICS/Performance, 2009, pp. 205–216.
[32] N. Mi, A. Riska, Q. Zhang, E. Smirni, and E. Riedel, “Efficient

management of idleness in storage systems,” Trans. Storage, vol. 5, pp.
4:1–4:25, 2009.

[33] G. B. Moody and R. G. Mark, “The impact of the MIT-BIH Arrhythmia
Database,” IEEE Eng in Med and Biol, vol. 20, pp. 45–50, 2001.

[34] “The Netezza Data Appliance Architecture: A Platform for High Per-
formance Data Warehousing and Analytics,” White Paper, 2010.

[35] “OCZ RevoDrive PCI-Express SSD Specifications,” http://www.
ocztechnology.com/ocz-revodrive-pci-express-ssd.html.

[36] U. D. of Energy, “DOE exascale initiative technical roadmap,” Decem-
ber 2009, http://extremecomputing.labworks.org/hardware/collaboration/
EI-RoadMapV21-SanDiego.pdf.

[37] “The Pandaboard Development System,” http://pandaboard.org/.
[38] J. Piernas, J. Nieplocha, and E. J. Felix, “Evaluation of active storage

strategies for the Lustre parallel file system,” in SC, 2007, pp. 28:1–
28:10.

[39] B. J. Pope, B. G. Fitch, M. C. Pitman, J. J. Rice, and M. Reumann,
“Performance of hybrid programming models for multiscale cardiac
simulations: Preparing for petascale computation,” IEEE Transactions

on Biomedical Engineering, vol. 58, no. 10, pp. 2965–2969, 2011.
[40] R. Prabhakar, S. S. Vazhkudai, Y. Kim, A. R. Butt, M. Li, and M. Kan-

demir, “Provisioning a Multi-tiered Data Staging Area for Extreme-Scale
Machines,” in ICDCS’11, 2011.

[41] R. Rew and G. Davis, “NetCDF: an interface for scientific data access,”
IEEE Comput. Graph. Appl., vol. 10, no. 4, pp. 76–82, 1990.

[42] E. Riedel, C. Faloutsos, G. A. Gibson, and D. Nagle, “Active disks for
large-scale data processing,” Computer, vol. 34, pp. 68–74, 2001.

[43] E. Riedel, G. A. Gibson, and C. Faloutsos, “Active storage for large-
scale data mining and multimedia,” in VLDB, 1998.

[44] J.-Y. Shin, Z.-L. Xia, N.-Y. Xu, R. Gao, X.-F. Cai, S. Maeng, and F.-H.
Hsu, “FTL design exploration in reconfigurable high-performance SSD
for server applications,” in ICS, 2009, pp. 338–349.

[45] S. Smith and J. Brady, “Susan - a new approach to low level image
processing,” Int’l Journal of Computer Vision, vol. 23, pp. 45–78, 1997.

[46] S. W. Son, S. Lang, P. Carns, R. Ross, R. Thakur, B. Ozisikyilmaz,
P. Kumar, W.-K. Liao, and A. Choudhary, “Enabling active storage on
parallel I/O software stacks,” in MSST, 2010, pp. 1–12.

[47] “Top500 supercomputer sites,” http://www.top500.org/.
[48] D. Tsafrir, Y. Etsion, D. G. Feitelson, and S. Kirkpatrick, “System noise,

OS clock ticks, and fine-grained parallel applications,” in ICS, 2005, pp.
303–312.

[49] W. Wang, Z. L. W. Tang et al., “Gyrokinetic Simulation of Global
Turbulent Transport Properties in Tokamak Experiments,” Physics of

Plasmas, vol. 13, 2006.
[50] B. Welton, D. Kimpe, J. Cope, C. M. Patrick, K. Iskra, and R. B.

Ross, “Improving i/o forwarding throughput with data compression,”
in CLUSTER, 2011, pp. 438–445.

[51] H. Xu, “Peak detection in a wave data, C source code,” https://github.
com/xuphys/peakdetect, 2011.

[52] C. Yang, Z. He, and W. Yu, “Comparison of Public Peak Detection
Algorithms for MALDI Mass Spectrometry Data Analysis,” BMC Bioin-

formatics, vol. 10, 2009.
[53] F. Zheng, H. Abbasi, C. Docan, J. Lofstead, Q. Liu, S. Klasky,

M. Parashar, N. Podhorszki, K. Schwan, and M. Wolf, “Predata -
preparatory data analytics on peta-scale machines,” in IPDPS, 2010.

