Flashy Prefetching for High-Performance Flash Drives

Ahsen J. Uppal, Ron C. Chiang, and H. Howie Huang

Department of Electrical and Computer Engineering
George Washington University
{auppal, rclc, howie} @gwu.edu

Abstract—While hard drives hold on to the capacity advantage,
flash-based solid-state drives (SSD) with high bandwidth and
low latency have become good alternatives for I/O-intensive
applications. Traditional data prefetching has been primarily
designed to improve I/O performance on hard drives. The same
techniques, if applied unchanged on flash drives, are likely to
either fail to fully utilize SSDs, or interfere with application I/0
requests, both of which could result in undesirable application
performance. In this work, we demonstrate that data prefetching,
when effectively harnessing the high performance of SSDs, can
provide significant performance benefits for a wide range of
data-intensive applications. The new technique, flashy prefetching,
consists of accurate prediction of application needs in runtime
and adaptive feedback-directed prefetching that scales with
application needs, while being considerate to underlying storage
devices. We have implemented a real system in Linux and
evaluated it on four different SSDs. The results show 65-70%
prefetching accuracy and an average 20% speedup on LFS, web
search engine traces, BLAST, and TPC-H like benchmarks across
various storage drives.

I. INTRODUCTION

The spectrum of storage devices has expanded drastically in
the last several years, thanks to the emergence of solid-state
drives (SSDs) that are built upon NAND flash memory [6],
[13]. As scientific and enterprise data usage continues to grow
exponentially, new storage systems that leverage both high
performance from SSDs and large capacity from hard drives
(HDDs) will likely be in high demand to reduce the I/O
performance gap. While for many data-intensive applications
moving, “hot” data from HDDs to SSDs (disk swapping and
data migration) can easily bring good speedups, in this paper
we aim to achieve additional performance benefits from SSDs
beyond the simple practice of disk replacement.

Data prefetching [37], [19] is one of, if not the most,
widely-used techniques to reduce access latency, because it
can load the data that are likely to soon be accessed from
storage devices into main memory. Traditional prefetching
techniques have been focused on rotational hard drives and
are conservative with the amount of data prefetched for good
reasons — because data prefetching consumes shared system
resources, it is likely that aggressive data prefetching would in-
terfere with normal access and subsequently hinder application
performance. As a result, current techniques often leverage the
low cost of sequential access on hard drives to read data that
resides on the same and nearby tracks. Aggressive prefetching
has been considered too risky by many researchers (given long

978-1-4673-1747-4/12/$31.00 © 2013 IEEE

seek penalties, limited HDD bandwidth, and limited system
RAM), with one notable exception [36].

For flash-based SSDs, we believe that aggressive prefetch-
ing could potentially expedite data requests for many ap-
plications. However, as we will demonstrate shortly, simply
prefetching as much data as possible does not provide the
desired benefits for three main reasons. First, data prefetching
on faster devices such as SSDs, if uncontrolled, will take
shared I/O bandwidth from existing data accesses (more easily
than on slower hard drives). As a side effect, useful cached
data may become evicted while main memory would be filled
with mispredicted (and unneeded) data while applications were
waiting for useful data.

Second, not every device is the same, and this is especially
true for SSDs. The performance of an SSD can vary depending
on flash type (SLC/MLC), internal organization, memory
management, etc. A prefetching algorithm, while reasonably
aggressive for a faster drive, could become too aggressive for
another drive, slowing down normal execution. Last, not every
application is the same — two applications often possess differ-
ent I/O requirements. A single application can also go through
multiple stages, each of which has different I/O requirements.
Clearly, care should be taken to avoid adverse effects from
both too-conservative and too-aggressive prefetching.

In this work, we propose the technique of flashy prefetch-
ing'for emerging flash devices, which is aware of the runtime
environment and can adapt to the changing requirements of
both devices and applications as well as its own run-time
performance.

The salient features of flashy prefetching include not only
taking advantage of the high bandwidth and low latency of
SSDs, but also providing inherent support for parallel data
accesses and feedback-controlled aggressiveness. To demon-
strate its feasibility and benefits, we have implemented a real
system called prefetchd in Linux that dynamically controls
its prefetching aggressiveness at runtime to maximize per-
formance benefits, by making good tradeoffs between data
prefetching and resource consumption. Note that we use flashy
prefetching and prefetchd interchangeably in this paper. We
evaluate prefetchd on four different SSDs with a wide range
of data-intensive applications and benchmarks. The prototype

”Flashy: momentarily dazzling.” (source: Merriam-Webster) Flashy
prefetching aims to effectively harness “flashy”, high-performance SSDs.

achieves average 20% speedups on LFS, web search engine
traces, BLAST, and TPC-H like benchmarks across various
storage drives, which we believe largely comes from the 65-
70% prefetching accuracy.

The main contributions of this paper are threefold:

« We conduct a comprehensive study of the effects of
conservative and aggressive prefetching in the context
of heterogeneous devices and applications. The results
show that adaptive prefetching is essential for taking
advantage of high-performance storage devices like solid-
state drives.

o We design the architecture of flashy prefetching such that
it self-tunes to prefetch data in a manner that matches
application needs without being so aggressive that useful
pages are evicted from the cache. Measuring performance
metrics in real-time and adjusting the aggressiveness
accordingly significantly improves the effectiveness of
this approach.

« We develop a Linux-based prototype, prefetchd, that
monitors application read requests, predicts which pages
are likely to be read in the near future, loads those pages
into the system page cache while attempting to not evict
other useful pages, monitors its success rate in time and
across pages, and adjusts its aggressiveness accordingly.

Note that data prefetching on SSDs has drawn a lot of
interest. For example, [46], [9] show that prefetching can be
used to improve energy efficiency. Our positive results also
demonstrate the performance potential of data prefetching.
Another notable work, FAST [25], focuses on shortening
application launch times and utilizes prefetching on SSDs
for the quick start of various applications. Our approach ex-
pands on previous work along multiple dimensions, including
employing a feedback-driven control mechanism, handling
multiple simultaneous requests across processes, and requiring
no application modifications. With a wider range of data-
intensive applications in mind, the proposed prefetchd aims
to improve the overall performance of generic applications.

The rest of the paper is organized as follows: Section
IT presents the challenges the prefetching must address and
Section III describes our design principles to address those
challenges. Section IV presents the architecture of prefetchd
and describes each individual component. Section V discusses
the implementation in detail. The evaluation is presented in
Section VI and related work is discussed in Section VII. We
conclude in Section VIIIL.

II. THREE CHALLENGES
A. Challenge #1: SSDs are different

SSDs are clearly different from HDDs in many ways. To
name a few: no seek latency, excellent random read and write
performance, inherent support for parallel I/O, expensive small
writes, and limited erase cycles. At a high level, modern SSDs
consist of several components such as NAND flash packages,
controllers, and buffers. In this study, we use four different

TABLE I
SPECIFICATION AND MEASURED PERFORMANCE

SSDT [34] SSD2[35] SSD3 [23] SSD4 [24]

Capacity 120 GB 120 GB 80 GB 120 GB
Flash MLC MLC MLC MLC
Type 34nm 34nm 25nm
Controller Indilinx SandForce Intel Marvell
Read BW 250 MB/s 285 MB/s 250 MB/s 450 MB/s
(Bandwidth) (max) (max) (seq) (seq)
Write BW 180 MB/s 275 MB/s 100 MB/s 210 MB/s
(max) (max) (seq) (seq)
Latency 100 us 100 us 65 us 65 us
read read
Measured 170 MB/s 170 MB/s 265 MB/s 215 MB/s
Read BW
Measured 180 MB/s 203 MB/s 81 MB/s 212 MB/s
Write BW

SSDs from two manufacturers (roughly covering two recent
generations of SSDs): OCZ Vertex (SSD1) [34] and Vertex2
(SSD2) [35], and Intel X-25M (SSD3) [23] and 510 (SSD4)
[24]. We also use a Samsung Spinpoint M7 (HDD) hard drive
[39]. If we look at the specifications in the top half of Table I,
the specification numbers for SSDs are close, except for the
Intel 510 SSD (which comes with the SATA III support, but
is limited by the SATA II interface in our test machines).

Howeyver, the differences between different SSDs tend to
be subtle, mostly in architectural designs. Note that the same
manufacturer may choose to adopt different controllers across
two models, which coincidentally was the case for the SSDs
chosen in this study. As shown in the bottom half in Table I,
when measured under Linux, the four SSDs clearly have
higher bandwidth than the hard drive (measured read band-
width at about 90 MB/s), that is, the four SSDs outperform
the hard drive by 189%, 189%, 294%, and 239%, respectively.
More importantly, the four SSDs differ noticeably, especially,
their measured write bandwidths range from 80 MB/s and 200
MB/s.

7000

6000

u
(=]
(=1
o

4000

3000

N
[=]
[=3
o

Throughput (IOPS)

1000

Ifs wsl ws2 dbl db2 db3 db4 db5 db6 db7

Benchmarks

Fig. 1. Application I/O Throughputs

B. Challenge #2: Applications are different

Although data-intensive applications are in dire need of
high-performance data access, they tend to have different
I/O requirements. Fig. 1 presents the average application
throughput in I/O operations per second (IOPS) for ten appli-
cations ranging from large file operations, search engine traces,

1.8

3 Normal

5 1)

3 Aggressive
% H Flashy

1.6
1.4
1.2
0.8
0.6
0.4
0.2

0

HDD SSD

(a) Prefetching speedup
Fig. 2.

and decision support / database workloads. We will describe
these benchmarks in detail in Section VI. The two replayed
WebSearch traces reach the highest throughput at about 6,000
IOPS, while at the same time LFS needs an order of magnitude
less throughput at 400 IOPS. Furthermore, chances are that
each application will likely go through multiple stages, each
of which has different I/O requirements.

C. Challenge #3: Prefetching for HDDs and SSDs is Different

Traditional disk drives can read sequential blocks quickly
because the head can be stationary while the platter rotates
underneath. A read from flash can be completed quickly in
a few microseconds, compared to several millisecond seek
latencies on hard drives. Note that data saved in SSDs does not
necessarily present the same spatial locality as on hard drives.
On the other hand, multiple simultaneous access requests for
data on an SSD that address different flash chips can be
satisfied simultaneously— a challenging task for a hard disk.
The internal controllers of SSDs have already taken advantage
of this inherent parallelism for high performance 1/O [6], and
in this work we will show that this parallelism can also be
exploited from a higher system level.

Suppose that two applications simultaneously issue sequen-
tial read patterns to a hard disk; such patterns are likely to
interfere with each other. To satisfy the simultaneous requests,
the access patterns must occur on different platters, otherwise
the disk heads might move back and forth to different tracks.
An I/O scheduler will try to minimize head movements, but
this movement overhead still limits the number of simultane-
ous prefetch operations that can occur on a traditional hard
drive. In contrast, parallel I/Os in SSDs can benefit greatly
from better hardware structure and organization. Nevertheless,
aggressive prefetching on SSDs may not necessarily be opti-
mal even for sequential access because SSDs cannot simply
continue to read at the same track or cylinder.

To illustrate the need for going beyond traditional prefetch-
ing, we present the performance results in Fig. 2 from two
different static prefetching techniques: normal and aggressive;
and the proposed flashy prefetching. Here we run a database
benchmark on both a HDD and SSDs, where the speedup is
measured using elapsed wall-clock time and cost is defined
as the ratio of the amount of prefetched data to the amount

2.5
2
- Normal
§ 1.5 Aggressive
B Flashy
1
0.5

HDD SSD

(b) Prefetching cost

The Need for Flashy Prefetching for Benchmark dbt3-3 on SSD2

of data read by the application. The details of our evaluation
environment can be found in Section VI. Note that it is easier
to achieve higher speedups on a slower hard drive, given the
larger performance gap between the drive and main memory.

It is clear that although normal prefetching (a static setting
of low aggressiveness) provides a reasonable speedup for
a traditional hard drive, it achieves few benefits for SSDs.
While aggressive prefetching (a high static setting) helps
on both devices, its cost is very low. On SSDs, aggressive
prefetching loads nearly twice amount of data compared
to other approaches. In contrast, normal prefetching is too
conservative on SSDs, which contributes to low performance.
On both devices, flashy prefetching (dynamic setting with
the feedback mechanism) is able to strike a good balance
between prefetching cost and speedup — it achieves over 10%
performance gain while reading a modestly greater amount of
data compared to the application itself.

In summary, for data prefetching, a one-size-fits-all ap-
proach cannot effectively deal with the heterogeneity and
complexity that are inherent from storage devices to software
applications. Simply put, without considering the architectural
differences between SSDs and hard disks, data prefetching
algorithms that work well on hard disks are not likely to excel
on SSDs.

III. DESIGN PRINCIPLES

Designed with flash drives in mind, flashy prefetching aims
to take advantage of: 1) the high I/O performance (bandwidth
and throughput) and parallel I/O support that are available in
solid-state drives, 2) temporal locality of the applications, and
3) the diversity of both devices and applications. Note that
existing prefetching algorithms for hard drives mostly focus
on application locality. We have designed flashy prefetching
around three major principles.

Control prefetching based on drive performance: Since
the total available throughput from a disk drive is limited and
different disk drives have different latency and throughput
characteristics, prefetching must be carefully managed to
prevent two problems from occurring. The first is that the
entire throughput to the disk may become saturated by prefetch
traffic, which is very likely to happen on SSDs since the
available throughput is higher for the same amount of disk

cache in main memory. Even if such traffic is entirely useful
for a particular application, reads from other applications may
starve because their access patterns may not be predictable.
The second problem with too much prefetching is that it can
evict useful data from the cache and actually hurt performance,
which also can happen easily on SSDs.

Our approach to these device-specific issues is to control
the amount of prefetching by periodically (with a small time
period) evaluating whether and how much to prefetch and
then prefetching based upon a function of an application’s
measured read request throughput, up to a maximum based
on the total available read throughput to the disk. This means
that prefetching is always done with respect to an application’s
measured rate instead of as fast as possible. The duration of
the polling interval timer can be varied based on the latency
of the underlying disk and the throughput varied in the same
way.

Control prefetching based on prefetching performance:
Prefetchd controls the amount of prefetching by monitoring its
own performance over certain time intervals. When a perfor-
mance benefit is observed, prefetchd will gradually increase
the aggressiveness of the prefetching, that is, read data at
a faster speed, in order to further improve the performance.
This process will be reversed when prefetchd determines that
aggressive prefetching hurts (or does not help) current data
accesses.

Enable prefetching for multiple simultaneous accesses:
The popularity of solid-state drives comes from high demand
for I/O throughput from many data-intensive applications.
However, supporting parallel prefetch operations has its own
difficulties. Each simultaneous access pattern issued by an
application must be detected individually. We achieve this goal
by letting the prefetcher become aware of the program context
in which accesses occur. The context includes the information
about the execution environment, e.g., process id, drive id,
and block id. In flashy prefetching, the process context also
means how much data an application accesses at a given
time, and whether a particular access pattern exists, stops, and
changes. This knowledge is used to guide the intensity of data
prefetching.

IV. THE ARCHITECTURE OF FLASHY PREFETCHING

At a high level, flashy prefetching consists of four stages:
trace collecting that accumulates information for each ap-
plication I/O request, pattern recognition that aims to un-
derstand the access patterns for a series of requests, block
prefetching that moves data from the drive to the cache in the
background, and feedback monitoring that compares previous
prefetch operations against actual application requests, and
adjusts the prefetching rate accordingly. Fig. 3 shows the flashy
prefetching architecture.

A. Trace Collection

Flashy prefetching collects the I/O events with the help of
the operating system. Typically, this information includes a

| Trace Collection

l State Machine 1]
| Pattern iecognition N

| Data Prefetching

State Machine N |

Controller

Feedback

Fig. 3. Flashy Prefetching Architecture

timestamp, the process name and process identifier, the request
type (read or write), and amount. The trace collection facility
accumulates a record for every I/O request that the application
asks the operating system to perform, as well as for every
I/O request that actually reaches the disk and stores them
for the prefetchd pattern recognizer. Not every request by the
application will actually reach the disk because some of them
may be satisfied by the system cache, but prefetchd traces both
application requests and those that that actually reach the disk.

The stored requests may come from several different ap-
plications running on multiple CPUs, and come before any
I/O scheduling has occurred. A received I/O request has an
associated request-type, process id, CPU number, timestamp,
starting block number, and block size. The requests collected
from each CPU, are sorted by time, and stored in a buffer for
the later use.

B. Pattern Recognition

Internally, pattern recognition of prefetchd is designed
around the idea of a polling interval. When a timer expires,
prefetchd wakes up, looks at the accumulated I/O events, de-
cides whether, where, and how much to prefetch, performs the
prefetch request, optionally adjusts its aggressiveness based on
recent prefetch performance, and sleeps for the remainder of
the interval. The polling interval determines how long events
accumulate in the I/O request buffer before prefetchd analyzes
them. It is set once at start up and should be based on the
latency of the underlying disk. If it is too small, there will
not be enough accumulated events to discern a pattern. If it is
too big, a pattern of accesses may already be over. This value
is 0.50 seconds by default. Occasionally, large numbers of
accumulated events can cause processing to take longer than
the polling interval. In this case, prefetchd is careful to use
the actual elapsed time since processing previously stopped to
perform its calculations, but will still attempt to sleep for the
same interval in the future.

A single I/O event contains several pieces of information,
but prefetchd is primarily interested in the type of request
(read or write), the starting block number, number of blocks
in the request, and the process id of the application making
the request. If a particular application makes a recognizable
pattern of read accesses within a specific period of time,
prefetchd begins to prefetch extrapolating the same pattern.
Currently, prefetchd recognizes four major types of accesses:

sequential forward reads, sequential backward reads, strided
forward reads, and strided backward reads. In this discussion
a strided pattern is simply a recurring pattern with a number
of blocks read and a gap where no blocks are read.

In order to perform access pattern recognition, prefetchd
maintains several state machines with a front-end hash table
indexed by process id, and block location on disk. The distance
between subsequent block access events is compared with
the previous distance. If the current request’s start block is
immediately where the previous request ended, the consecutive
block counter is updated with the length of the current request.
Similarly, if the current request’s end block is immediately
where the previous request started, the reverse block counter
is updated. The current request may also be part of a strided
pattern when the amount of jump is the same as between
the previous two requests in both direction and size. In this
case, the strided block counter is updated. By incrementing a
counter by the request size, larger request sizes are weighted
more heavily than smaller ones.

When the fraction of blocks that occurred in consecutive,
reverse, or strided requests divided by the overall count of
blocks read exceeds a certain threshold over the previous
time interval, the state machine for that hash entry is ready
to perform a prefetch during the remainder of the current
time interval. Pattern match threshold determines which per-
centage of the application blocks must fit a usable pattern
(sequential, reverse, or strided) before prefetchd will attempt
to start prefetching. For example, the default value of 0.60
indicates that if 60 percent of the requests during a polling
interval are sequential, prefetchd guesses that a sequential
access is occurring and will fetch a sequential series of blocks
for the next interval. When prefetchd begins prefetching on
behalf of an application, it simply begins with the next block
contiguous to the most recent request. The stop block is set
by extrapolating into the future from the end of the last read
operation.

C. Block Prefetching

The amount of data to prefetch once a pattern has been
recognized is determined with the goal of reading data from
an SSD into the system cache, but only those blocks that
the application will actually request in the near future. For
simplicity, we describe the logic for consecutive prefetching.
The logic for strided and reverse prefetching is similar. In
flashy prefetching, we utilize two key parameters that control
how much data will be prefetched:

Application throughput scale factor is a measure of
how aggressive prefetching is compared to the application’s
measured request rate. While we can measure the application’s
rate to tailor prefetching based on the application’s needs, we
have found that using a fixed, static scale factor does not work
well.

The optimal value for this scale factor is application-specific
and can be adjusted by feedback (which will be described in
the next section). Our experiments showed that the values near
1.0 typically work well as the starting point for the feedback

mechanism. A value of 1.0 means that prefetchd for the next
polling interval, prefetchd will read exactly the amount of data
it expects the application to use. Intuitively, a higher value
means prefetchd will read extra data that may go to waste,
and a lower value means that some portion of the application’s
read requests will still be expected to go to the SSD.

Maximum disk throughput: This has different optimal
values for each disk. During the time interval when prefetching
is occurring, prefetchd is careful to avoid saturating the
available read bandwidth to the disk with prefetching requests
at the expense of actual application requests that may be
mispredicted and have to go to the disk. If this occurred, the
requested prefetch would take more than the entire allotted
time interval and prefetchd would drift further and behind
real application time. To prevent this, the prefetcher estimates
what amount of application requests will actually reach disk
because they will not be prefetched successfully and sets the
prefetching throughput limit to the maximum disk throughput
minus this value. For this purpose, we use the percentage of
consecutive reads that is already computed in the previous
stage of pattern recognition.

Since the maximum disk throughput depends on the char-
acteristics of each the drive, we measure the raw throughput
from each disk by reading a large, uncached file, and using
this as the maximum.

Putting these two parameters together, the prefetcher uses
the last known (read) stop block as its start block and finds
the stop block as follows. It first tries to determine the linear
throughput of the application by multiplying the total through-
put with the percentage of consecutive reads. We consider
the remainder of the total application throughput to be from
random accesses. Next, the prefetcher uses the scale factor and
total available bandwidth (by subtracting application random
bandwidth from the maximum disk throughput) to determine
the stop block for the next polling interval.

Once the quota of number of blocks to prefetch for one
application during an interval is found, prefetchd simply issues
a system call (e.g., readahead in Linux) with the starting block
number and the number of blocks to read. (For strided access,
there may be multiple readahead calls.) In this work, we decide
to leave the details of the cache management itself to the
underlying operating system. Prefetchd relies on the existence
of such a cache and basically fills it by reading ahead of time
and hoping they remain cached. This limits the amount of
information available to prefetchd and thus requires careful
control over the extent of prefetching.

D. Feedback Monitoring

Feedback monitoring is at the heart of flashy prefetching.
Feedback monitoring classifies the stream of read operations
reaching disk as linear (meaning sequential, reverse, and
strided) similar to the way read requests to the operating
system were classified during pattern recognition. The logic is
that if there are any linear, easily predictable reads that were
not prefetched, and still reached disk, then the prefetching

Algorithm 1: The Pseudocode for Flashy Prefetching

begin
for each time interval T; do

end

/7

for

end

//

for

end

for

end

//

end

Gather the list of read operations that

reached the physical disk (i.e. not

satisfied by cache)

each disk read event ReadDisk; do

if ReadDisk; is issued by the prefetcher then

// Update per-disk linear and total
counters

UpdateCounters(ReadDisk;,

prefetcher_counters);

end

if ReadDisk; is issued by applications then
UpdateCounters(ReadDisk;,

app_counters);

end

Gather the list of read operations that are

partially satisfied by cache

each requested read event ReqRead; do

// Supports multiple processes and
simultaneous reads

h = Hash(process id, starting block number);

// Update the counters for the mapped sate
machine

UpdateCounters(RegRead;,

hash_table[/].app_counters);

each state machine s = hash_table[h] do

// Calculate the percentage of consecutive
requests

consec_pct = s.consec_blocks |

s.total_blocks;

if consec_pct > consec_thres then

// Calculate prefetch throughput

prefetch_throughput =

scale X consec_pct X

s.total_blocks [timer_interval,

// set a prefetch ceiling

prefetch_throughput =

MAX(prefetch_throughput,

max_disk_throughput);

end
Prefetch(startingblock,
PredictEndBlock(pre fetch_throughput, T;));

Adjust prefetching aggressiveness for next

time interval

scale = Feedback(prefetch_cost);

aggressiveness should be increased. On the other hand, if there
are no linear reads reaching the disk and the statistics show
that the prefetching amount is more than what the applications
are requesting, we decrease the aggressiveness accordingly.

In practice, not all linear application reads can be predicted
so we increase the prefetch aggressiveness scale factor when
the percentage of linear reads reaching disk is greater than a
predefined threshold. We decrease the aggressiveness when it
is clear that additional prefetching would not help. When we
see that the number of linear reads reaching disk is zero and
that the number of prefetched blocks reads reaching disk is
greater than the number of linear reads that the application
requested to the operating system, the prefetch aggressiveness
will be reduced.

During each polling interval, the feedback monitor analyzes
the actual performance of the prefetch operations from the last
time interval and adjusts its aggressiveness accordingly. This
monitoring is done by comparing the access pattern of reads
that the application makes to the operating system (entering
the cache) vs. the pattern of reads reaching disk (missed in
the cache). As we will explain shortly in Section V, the
current prototype prefetchd does not have direct access to the
kernel’s page cache data structures. To address this, we use
this heuristic approach to estimate the prefetch accuracy in a
timely manner. Note that we have also tried the alternative
of keeping a history of recently-issued prefetch operations.
Although we use the history to compute the overall accuracy
statistics that we report, this introduced too much latency for
timely feedback.

Algorithm 1 presents the high-level pseudocode of flashy
prefetching.

V. IMPLEMENTATION

We have implemented a prototype prefetchd in Linux sys-
tems that runs in userspace and uses the Linux page cache.
In this implementation, prefetchd performs the reads from
the disks and implicitly relies on the in-kernel page cache
to hold the data. By running in userspace, prefetchd is com-
pletely transparent to user applications, so no recompilation,
or re-linking is required. Another motivation for running in
userspace is to avoid wasting physical memory for a driver-
specific cache, which allows unused memory to be used for
other purposes when not in use as a cache. Currently, the
kernel retains control over the cache eviction policy, which
requires no special handling of prefetched data. As part of
future work, we plan to explore a kernel-based implementation
and compare with the current OS-agnostic prototype.

A. Event Collection

Prefetchd uses the same facility as the blktrace [7] disk
block tracing utility for Linux. Blktrace uses the Linux kernel
debug filesystem to trace filesystem events. Using blktrace
requires calling the BLKTRACESETUP and BLKTRACES-
TART ioctls for a file descriptor associated with a block
device. The blktrace API offers several useful pieces of context
that are not present in a traditional I/O event queue in the

driver; the events have the timestamps, process ids, and names
of the originating process. Prefetchd can use this information
to differentiate requests from multiple applications. Also, by
examining the process id, requests from prefetchd itself can be
ignored when considering applications’ access patterns. Events
can also be automatically filtered (read vs. write) with a mask
before being delivered to prefetchd.

There is a timing disadvantage to the blktrace API, i.e.,
there is some lag between when I/O events are buffered in
the kernel and when prefetchd reads them. Since the event
buffers are maintained per-CPU, the events have to be sorted
by timestamp after reading. But in practice, the event lag is
almost entirely dominated by prefetchd’s reaction time.

In the current implementation, a process context identifies
an application execution environment by using a combination
of drive id and process id, and block region. The block region
is used in the hash to distinguish different threads within a
single process. We plan to add file id in the future.

B. Readahead

The readahead system call in Linux [3] is designed to load
the pages from a particular file into the system page cache.
There is one complication with using the readahead call on a
block device (as opposed to a regular file). While legal, the
actual effect is to populate the system buffer cache designed
for caching blocks at the device driver layer, instead of the
page cache designed to cache parts of files. Our measurements
indicated that although sustained read throughput from the
buffer cache is 3x faster than from the SSD, sustained read
throughput from the page cache is 10x faster. The current
implementation uses a file spanning the entire disk with a
loopback device to take advantage of the faster page cache.

Note that the userspace readahead call should not be con-
fused with the file readahead algorithm in the Linux kernel
[17] which anticipates that a sequential portion of a file will
soon be needed and speculatively reads it. This is very similar
to prefetching, but the amount of data loaded in this way is
much smaller than the amount that the proposed prefetchd
reads.

V1. EVALUATION
A. Experiment Setup

High-performance storage systems are needed in many
different types of data-intensive applications. To evaluate the
performance of flashy prefetching technique, we choose a wide
variety of benchmarks, including database applications, web
servers, file servers, and scientific computing.

Database test suite (DBT3) is an open source database
benchmark [2] that implements the TPC-H benchmark. DB
is a decision support benchmark with business oriented ad-
hoc queries. We create and populate the database in Postgres
and evaluate a subset of 22 queries. We remove some queries
because they take a too long or too little time to run.

BLAST (Basic Local Alignment Search Tool) [1] is a
widely used algorithm for identifying local similarity between

different biological sequences. We pick the NIH implementa-
tion for searching nucleotide queries in nucleotide database.
The input database is obtained from NCBI and has 12 GB of
non-redundant DNA sequences.

LFS, Sprite large file benchmark [38], performs both reads
and writes on a large file, as well random and sequential read
of the file. We use a file size of 100 GB.

PostMark is a widely used benchmark for email server type
of workloads, which unlike LFS deals with a large number of
small files [28].

WebSearch [45] contains two block-level I/O traces col-
lected from a web search engine. These traces come in SPC
format which is a text file containing a timestamp, offset in
disk, operation size, type of operation, and thread id. In order
to play the traces and also have a test bed for re-running
application traces, we developed a trace replayer that can play
back a series of read operations at a desired speed and with
a desired number of worker processes, typically at six times
normal speed and one worker thread. We report the total I/O
wait time as the performance metric. Note that there is some
difficulty here when using total elapsed time as a metric when
using replayed traces. The original captured SPC timestamps
include time spent waiting for I/O to complete as well as
idle. If a trace is just replayed and prefetching improves 1/O
performance, the replayer will spend less time waiting and
more time idle — but the total elapsed time will still be the
same. To avoid this problem, we consider the total time spent
waiting for I/O operations to complete when running these
benchmarks and measure speedup using these times.

SlowThink is a synthetic benchmark that we developed to
simulate a CPU-intensive application. This application reads
from a file in 1 MB records and performs several iterations
of difference computations on the read bytes. By varying the
number of iterations performed, we can control the applica-
tions run time and I/O throughput. We can vary the interval
time, application throughput scale factor, and examine the
behavior of prefetchd. This benchmark helps guide us to find
the specific cases where the prefetching can be helpful for
SSDs.

The test system has Linux kernel 2.6.28 with an Intel Core2
Quad CPU at 2.33 GHz and 8 GB RAM. We tested four SSDs
and one hard drive, as listed in Table 1. Each storage device is
formatted with an ext2 filesystem, mounted with the noatime
option and filled with one large file which was connected to a
loopback device. The loopback device is then formatted with
an ext3 filesystem and also mounted with the noatime option
for running the benchmarks. The noatime option prevents read
operations to the filesystem from generating metadata updates
which would require writes to the device and is intended
to improve the I/O throughput. The drives used for testing
(especially the hard drive) are not especially fast. We plan on
evaluating our approach with more diverse and faster storage
devices in the future.

le8

le7

1.0
J— [— application reads
« o prefetch read requests
0.8
506
2
£
5
c
x
S
o
Q0.4
’.,‘"‘.
o S
e
—
o
; B ® 40 50 60

block number
=~
=

=~
o

— application reads
[prefetch read requests

30
time (sec)
(a) Zoomed-out view

Fig. 4.

3 4 5 6 7 8
time (sec)

(b) Zoomed-in view

Zoomed-out and -in views of block traces. The X-axis represents time in seconds and the Y-axis represents the 512-byte block number on SSD.

Lines in the figures represent real data access, and dots and arrows represent data prefetching.

700

600

500

I
=3
=]

Throughput MB/sec
w
<)
o

200

100

10 20 30 40 50 60 7
time (sec)

Fig. 5. Prefetchd aggressiveness on the SSD3. The dotted line represents
I/O read operations per second over time from the benchmark and the solid
line represents prefetchd throughput, i.e., aggressiveness over time.

B. Flashy Prefetching at Work

Fig. 4 presents the zoomed-out and -in views of a data
region from the BLAST benchmark. The lines are formed from
a scatter plot of the block id numbers read by the application
as a function of time in seconds. The Y-axis is the block id
number based on 512-byte blocks. Since most of these reads
are sequential, the reads form gently sloping lines. The actions
of prefetch operations in response to application reads are
shown as the dots in the zoomed-out view of Fig. 4(a), and as
the arrows in the zoomed-in view of Fig. 4(b). The horizontal
position of an arrow indicates the time a prefetch operation
is requested and its vertical extent shows the amount of data
that is prefetched.

Clearly, the application does not read the data entire se-
quentially on the device — it goes through different stages
that consist of sequential reads, seeks, random reads, etc. In
addition to the gaps that exist between data accesses, the
varying slopes show that the throughput available from the
device and obtained by the application is not entirely constant.

Data prefetching, presented by upwards arrows in the Fig-
ure, shows that the prefetching occurs just before those blocks
are accessed by the application, except for the gaps where
prefetchd mispredicts the next blocks. The changing sizes of
the arrows indicate that prefetchd adapts the speed of data
prefetching in runtime to match the needs of the application.

We also measure the aggressiveness of the prefetchd against
the performance of the real application. Fig. 5 presents the
numbers collected from running BLAST. It is clear that
prefetchd is able to follow the application trend closely and
adjust its aggressiveness accordingly.

C. Performance Speedup

We evaluate prefetchd by running all four benchmarks. As
shown in Fig. 6, flashy prefetching performs well on all the
benchmarks — prefetchd achieves average 31%, 22%, 10%, and
28% speedup on the hard drive, solid-state drive, and two SSD
RAIDs, respectively. Speedup was measured by dividing the
run time without prefetchd by the run time with prefetchd. In
the base case without prefetchd, the default I/O configuration
for the Linux system is used, including some limited readahead
by the kernel, normal file caching in the page cache, use of
the buffer cache, etc. Note that while all benchmarks already
run much faster on solid-state drives, prefetchd is still able
to achieve a significant amount of improvements of 20% on
average. Prefetchd provides the best performance speedups on
the LFS benchmark, that is, 3.44, 2.9, 1.09, and 1.97 times on
four tested devices. Note that the speedup over two times is not
shown in the figure. For the database benchmarks, prefetchd
delivers on average 9%, 13%, and 15% improvements on
the single SSD, and two SSD RAIDs. For the hard drive,
some database scripts result in small performance slowdowns,
indicating the need for less aggressive prefetching.

In addition, we evaluate prefetchd by running a number
of DB scripts on all four SSDs. The results are presented
in Fig. 7, where most scripts can expect a speedup of up to
6% on average on four SSDs. In some cases, e.g., DB script

1.8
1.6
1.4

212

208
0.6
0.4
0.2

websearch1 websearch2 blast dbt3-1 dbt3-2 dbt3-3

Fig. 6.

ilunitnanag

BOHDD
ossp1
B8SSD1 RAID
®SSD2 RAID

dbt3-4 dbt3-5 dbt3-6 dbt3-7 dbt3-11 dbt3-13 dbt3-19

Prefetchd performance using flashy prefetching for different benchmarks and devices. Benchmark speedup is on the y-axis. Values above 2.0 are

omitted (including for websearch2 at 2.02) to more clearly show variation between the other benchmarks.

1.2
Qo
S
g SSD1
& = SSD2
ESSD3
08 mSSD4
1 2 3 4 5 6 7 8 10 12 13 14 16 18 19
DB scripts
Fig. 7. Prefetchd performance using flashy prefetching for different SSDs

19 on SSD4, prefetchd achieves a more than 10% speedup.
Prefetchd does not always provide good performance benefits,
e.g., when running the query script 6, it experiences small
slowdowns on some devices. We think that there are two
reasons for this. First, some SSDs have difficulty dealing with
the many writes in some of the database queries. Second,
this partly confirms previous belief [14], [40] that because
SSDs have good random access performance, the help from
data prefetching may be limited. However, we believe that the
feedback monitoring component in our flashy prefetching can
be enhanced to minimize this effect, which we will explore as
part of future work.

Also note that in many instances the speedups achieved on
the HDD exceed those on an SSD, especially for benchmarks
performing large, contiguous reads such as LFS. It is harder
to achieve the same speedup on an already-fast device since a
smaller fraction of the workload is spent in I/O. On a real
system, the situation is more complicated due to multiple
simultaneous reads and non-linear access patterns, but the
basic idea described above limits the speedup of simple
benchmarks on fast devices.

D. Prefetching Accuracy

In this section, we evaluate the prediction accuracy of our
prefetching algorithm. The accuracy is calculated by dividing
the amount of prefetched and subsequently used data by the
total used data. The word used here means read by the appli-
cation. Fig. 8 presents the accuracy for different benchmarks
on various devices. On average, prefetchd achieves more than
60% accuracy for all the benchmarks. Prefetchd achieves over
70% accuracy for most database benchmarks. The average
accuracy for database benchmarks is 68% for the hard drive,

and about 72% for SSD and SSD RAIDs. The only exception
is the two WebSearch benchmarks, which we suspect is caused
by the existence of the large amount of random accesses.
Although the prediction has low accuracy for the WebSearch
traces, prefetchd provides a good 25% average improvement
on four devices. If not counting the WebSearch benchmarks,
our proposed flashy prefetching predicts with about 70%
accuracy.

E. Prefetching Cost

We further examine prefetchd’s cost that is defined as the
ratio of the amount of prefetched data (true and false positives)
to the amount of data read by the application. A lower cost
indicates less data preloaded by the prefetchd. On average,
prefetchd reads 77% more data than the benchmarks, with 60%
for the single SSD and an average of 90% for the two RAIDs.
The fastest device of four, SSD2 RAID tends to read more
data and have a lower cost. Fig. 9 presents the prefetching
costs on all four devices. In a few cases like LFS and DBT3-
1, prefetching may incur cost as high as four times depending
on the type of the device.

VII. RELATED WORK

There has been a rich set of prior research on data prefetch-
ing on hard disks, which we cannot possibly enumerate. Some
representative techniques include probability graph [20], data
compression [15], data mining [31], semantics-aware [11],
[43], address tracking [18], [19], compiler support [33], [10],
off-line information [26], [27], and hints [12], [37]. Data
prefetching can also be done at both block level (e.g., [31],
[16]) and file level (e.g., [42], [30], [50], [47]), and has been
closely studied with caching [48], [50], [19], [8], [51]. In

accuracy
I g 4
» o © -

o
)

0 M [——
ifs websearch1 websearch2 blast dbt3-1 dbt3-2 dbt3-3

Fig. 8.
prefetched and used data divided by total used data.

sl

websearch1 websearch2 blast dbt3-1 dbt3-2 dbt3-3

cost

Fig. 9.

.

dbt3-4 dbt3-5 dbt3-6 dbt3-7

BOHDD
ossp1
BSSD1 RAID
®SSD2 RAID

dbt3-4 dbt3-5 dbt3-6 dbt3-7

dbt3-11 dbt3-13 dbt3-19

Prefetchd accuracy using flashy prefetching for different benchmarks and devices. Benchmark accuracy is on the y-axis, measured as the amount of

OHDD
ossp1
8ssD1RAID
@SSD2 RAID

dbt3-11 dbt3-13 dbt3-19

Prefetchd cost using flashy prefetching for different benchmarks and devices. Prefetchd cost is on the y-axis, defined as the ratio of the amount of

prefetched data (true and false positives) and the amount of data read by the application. Values above 3.0 are omitted to more clearly show variation between

the other benchmarks.

addition, prefetching techniques are common for fetching data
from main memory on high-performance processors into pro-
cessor caches where similar challenges about I/O bandwidth
and pollution apply, notably [44], [21].

Our proposed flashy prefetching is orthogonal to techniques
previously applied to hard disks in the sense that we focus
on emerging flash-based solid-state drives and SSD based
RAIDs whose high throughput provides new opportunities and
challenges for data prefetching. In particular, sharing the self-
monitoring and self-adapting approach as in [41], we work
on the adaptation of prefetching aggressiveness in runtime to
meet the needs from applications and stress SSDs within a
reasonable range. In essence, our technique is also similar to
freeblock scheduling [32] that utilizes free background I/O
bandwidth in a hard drive. We believe that our technique
can be potentially combined with a few existing prefetching
techniques, e.g., [12], [50], [47].

Note that SSD devices are performing data prefetching on a
small scale by utilizing parallel I/Os and an internal memory
buffer. Work has been started to measure and understand this
effect [13], [29], [22]. In comparison, our proposed prefetching
is designed and implemented in the software layer, which can
be used to complement the hardware-based approach.

Current operating systems do not have a good support for
data prefetching on solid-state drives. For example, Windows
7 recommends computer systems with SSDs not use features
such as Superfetch, ReadyBoost, boot prefetching, and appli-
cation launch prefetching, and by default turns them off for
most SSDs [4]. The key reason is that such features were
designed with traditional hard drives in mind. It has been

shown that enabling them provides little performance benefit
[5]. Linux developers also realize the need to have a tunable
I/O size as well as the need for more aggressive prefetching
[49]. Development efforts on improving prefetching perfor-
mance on SSDs are ongoing, and we believe that our findings
will be beneficial in this area.

FAST is a recent work that focuses on shortening the
application launch time and utilizes prefetching on SSDs for
quick start of various applications [25]. It takes advantage
of the nearly identical block-level accesses from run to run
and the tendency of these reads to be interspersed with CPU
computations. This approach even uses the blktrace API with
an LBA-to-inode mapper instead of using a loopback device
like prefetchd. A similar work to FAST is C-Miner [31], which
discovers block correlations to predict which blocks will be
accessed. This approach can cope with a wider variety of
access patterns while prefetchd is limited to simpler strided
forward and backward patterns. Our approach differs from
these two in that it can handle request streams from multiple
simultaneous applications and includes an aggressiveness-
adjusting feedback mechanism. We believe that incorporating
block correlations would improve prefetchd’s accuracy in
some cases and plan to investigate this approach in the future.

We would also like to point out that some researchers
have expressed reservations against data prefetching on solid-
state drives. IotaFS chooses not to implement prefetching
among the file system optimizations it used for SSDs [14]. In
addition, FlashVM [40] found out that disabling prefetching
can be beneficial to some benchmarks. As we have discussed

before, prefetchd is not always helpful — for some benchmarks,
prefetchd has limited benefits and may even lead to some
modest regressions, which we plan to further investigate in
the future.

VIII. CONCLUSIONS

We have designed and implemented a data prefetcher for
emerging high-performance storage devices, including flash-
based solid-state drives that detects application access patterns,
retrieves data to match both drive characteristics and applica-
tion needs, and dynamically controls its aggressiveness with
feedback. Currently, the prefetcher works well for a number of
I/O intensive applications. We implement a prototype in Linux
and conduct a comprehensive evaluation on hard drive, SSDs,
as well as SSD RAIDs, with a wide range of data-intensive
applications and benchmarks, where the prototype is able to
achieve a 20% speedup and a 65-70% prefetching accuracy
on average.

IX. ACKNOWLEDGMENTS

The authors are grateful to the anonymous reviewers for
their feedback and suggestions. This work is in part sup-
ported by the National Science Foundation under grants OCI-
0937875 and 10S-1124813.

REFERENCES

[1] “Basic local alignment search tool,” www.ncbi.nlm.nih.gov/BLAST/.

[2] “Database test suite,” http://osdldbt.sourceforge.net/.

[3] Linux man page for readahead system call. [Online]. Available: http:
/Iwww.kernel.org/doc/man-pages/online/pages/man2/readahead.2.html

[4] MSDN blogs. engineering windows 7.support and q&a for solid-state
drives. [Online]. Available: http://blogs.msdn.com/b/e7/archive/2009/05/
05/support-and-q-a-for-solid-state-drives-and.aspx

[5]1 Super-fast ssds: Four rules for how to treat
them right. [Online]. Available: http://itexpertvoice.com/home/
super-fast-ssds-four-rules-for-how-to-treat-them-right/

[6] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis, M. Manasse, and
R. Panigrahy, “Design tradeoffs for SSD performance,” in USENIX
Annual Technical Conference, 2008, pp. 57-70.

[7]1 J. Axboe and A. D. Brunelle. (2007) blktrace user guide.

[8] S. H. Baek and K. H. Park, “Prefetching with adaptive cache culling for
striped disk arrays,” in USENIX Annual Technical Conference, 2008, pp.
363-376.

[9] A. Beckmann, U. Meyer, P. Sanders, and J. Singler, “Energy-efficient

sorting using solid state disks,” in 2010 International Green Computing

Conference. 1EEE, 2010, pp. 191-202.

A. D. Brown, T. C. Mowry, and O. Krieger, “Compiler-based 1/O

prefetching for out-of-core applications,” ACM Trans. Comput. Syst.,

vol. 19, no. 2, pp. 111-170, 2001.

N. C. Burnett, J. Bent, A. C. Arpaci-Dusseau, and R. H. Arpaci-

Dusseau, “Exploiting gray-box knowledge of buffer-cache manage-

ment,” in USENIX Annual Technical Conference, 2002, pp. 29—-44.

F. Chang and G. A. Gibson, “Automatic I/O hint generation through

speculative execution,” in Proceedings of the third symposium on Op-

erating Systems Design and Implementation. ~USENIX Association,

1999, pp. 1-14.

F. Chen, D. Koufaty, and X. Zhang, “Understanding intrinsic charac-

teristics and system implications of flash memory based solid state

drives,” in Proceedings of the eleventh international joint conference on

measurement and modeling of computer systems, 2009, pp. 181-192.

H. Cook, J. Ellithorpe, L. Keys, and A. Waterman. Iotafs:

Exploring file system optimizations for ssds. [Online]. Available:

http://www.stanford.edu/~jdellit/default_files/iotafs.pdf

K. M. Curewitz, P. Krishnan, and J. S. Vitter, “Practical prefetching via

data compression,” in Proceedings of the ACM SIGMOD international

conference on management of data, 1993, pp. 257-266.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

X. Ding, S. Jiang, F. Chen, K. Davis, and X. Zhang, “Diskseen:
exploiting disk layout and access history to enhance i/o prefetch,” in
USENIX Annual Technical Conference, 2007, pp. 20:1-20:14.

W. Fengguang, X. Hongsheng, and X. Chenfeng, “On the design of a
new linux readahead framework,” SIGOPS Oper. Syst. Rev., vol. 42, pp.
75-84, July 2008.

B. S. Gill and D. S. Modha, “SARC: sequential prefetching in adaptive
replacement cache,” in USENIX Annual Technical Conference, 2005.
B. S. Gill and L. A. D. Bathen, “AMP: adaptive multi-stream prefetching
in a shared cache,” in Proceedings of the 5th USENIX conference on
File and Storage Technologies, 2007.

J. Griffioen, “Performance measurements of automatic prefetching,”
Proceedings of the International Conference on Parallel and Distributed
Computing Systems, pp. 165—170, 1995.

Y. Guo, P. Narayanan, M. A. Bennaser, S. Chheda, and C. A. Moritz,
“Energy-efficient hardware data prefetching,” IEEE Trans. Very Large
Scale Integr. Syst., vol. 19, no. 2, pp. 250-263, Feb. 2011.

H. Huang, S. Li, A. Szalay, and A. Terzis, “Performance modeling and
analysis of flash-based storage devices,” in IEEE 27th Symposium on
Mass Storage Systems and Technologies, 2011, pp. 1-11.

Intel, “Intel X-25M SSD Specification,” http://download.intel.com/
design/flash/nand/mainstream/mainstream- sata- ssd-datasheet.pdf, 2009.
“Intel 510 SSD Specification,” http://download.intel.com/
pressroom/kits/ssd/pdf/Intel_SSD_510_Series_Product_Specification.
pdf, 2011.

Y. Joo, J. Ryu, S. Park, and K. Shin, “FAST: quick application launch
on solid-state drives,” in Proceedings of the 9th USENIX conference on
File and Storage Technologies, 2011, pp. 19-19.

M. Kallahalla and P. J. Varman, “Optimal prefetching and caching
for parallel i/o sytems,” in Proceedings of the thirteenth annual ACM
symposium on parallel algorithms and architectures, 2001, pp. 219-228.
——, “Pc-opt: Optimal offline prefetching and caching for parallel i/o
systems,” IEEE Trans. Comput., vol. 51, no. 11, pp. 1333-1344, Nov.
2002.

J. Katcher, “Postmark: a new file system benchmark.” Network Appli-
ance Tech Report TR3022, Oct. 1997.

J. Kim, S. Seo, D. Jung, J.-S. Kim, and J. Huh, “Parameter-aware
i/o management for solid state disks (SSDs),” IEEE Transactions on
Computers, vol. 99, 2011.

T. M. Kroeger and D. D. E. Long, “Design and implementation of
a predictive file prefetching algorithm,” in USENIX Annual Technical
Conference, 2001, pp. 105-118.

Z. Li, Z. Chen, S. M. Srinivasan, and Y. Zhou, “C-Miner: mining block
correlations in storage systems,” in Proceedings of the 3rd USENIX
Conference on File and Storage Technologies, 2004, pp. 173-186.

C. R. Lumb, J. Schindler, and G. R. Ganger, “Freeblock scheduling
outside of disk firmware,” in Proceedings of the Conference on File and
Storage Technologies, 2002, pp. 275-288.

T. C. Mowry, A. K. Demke, and O. Krieger, “Automatic compiler-
inserted i/o prefetching for out-of-core applications,” SIGOPS Oper. Syst.
Rev., vol. 30, no. SI, pp. 3—-17, Oct. 1996.

OCZ, “OCZ Vertex SSD Specification,” http://www.ocztechnology.com/
products/flash_drives/ocz_vertex_series_sata_ii_2_5-ssd, 2009.

——, “OCZ Vertex 2 SSD Specification,” http://www.ocztechnology.
com/ocz-vertex-2-sata-ii-2-5-ssd.html, 2011.

A. E. Papathanasiou and M. L. Scott, “Aggressive prefetching: an idea
whose time has come,” in Proceedings of the 10th conference on Hot
Topics in Operating Systems - Volume 10, 2005, pp. 6-11.

R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka,
“Informed prefetching and caching,” SIGOPS Oper. Syst. Rev., vol. 29,
no. 5, pp. 79-95, 1995.

M. Rosenblum and J. K. Ousterhout, “The design and implementation of
a log-structured file system,” ACM Trans. Comput. Syst., vol. 10, no. 1,
pp. 2652, Feb. 1992.

Samsung, “Spinpoint m7 hard disk specification,” http:
/Iwww.samsung.com/global/system/business/hdd/prdmodel/2009/1/
13/728799m7_sheet_0.5.pdf, 2009.

M. Saxena and M. M. Swift, “FlashVM: revisiting the virtual memory
hierarchy,” in Proceedings of the 12th conference on Hot Topics in
Operating Systems, 2009, pp. 13—13.

M. Seltzer and C. Small, “Self-monitoring and self-adapting operating
systems,” in The Sixth Workshop on Hot Topics in Operating Systems,
May 1997, pp. 124 -129.

E. Shriver, C. Small, and K. A. Smith, “Why does file system prefetching
work?” in USENIX Annual Technical Conference, 1999, pp. 6-35.

[43]

[44]

[45]
[46]

(471

M. Sivathanu, V. Prabhakaran, F. 1. Popovici, T. E. Denehy, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Semantically-smart disk
systems,” in Proceedings of the 2nd USENIX conference on File and
Storage Technologies, 2003, pp. 6-22.

S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback directed
prefetching: Improving the performance and bandwidth-efficiency of
hardware prefetchers,” in Proceedings of the 2007 IEEE 13th Interna-
tional Symposium on High Performance Computer Architecture, 2007,
pp. 63-74.

UMass, “Umass trace repository,” http://traces.cs.umass.edu, 2007.

L. Useche, J. Guerra, M. Bhadkamkar, M. Alarcon, and R. Rangaswami,
“Exces: External caching in energy saving storage systems,” in [EEE
14th International Symposium on High Performance Computer Archi-
tecture, Feb. 2008, pp. 89-100.

G. Whittle, J.-F. Paris, A. Amer, D. Long, and R. Burns, “Using multiple
predictors to improve the accuracy of file access predictions,” in 20th

(48]

[49]

[50]

[51]

IEEE/11th NASA Goddard Conference on Mass Storage Systems and
Technologies, Apr. 2003, pp. 230-240.

T. M. Wong and J. Wilkes, “My cache or yours? making storage more
exclusive,” in USENIX Annual Technical Conference, 2002, pp. 161-
175.

F. Wu, “Sequential File Prefetching in Linux,” Advanced Operating
Systems and Kernel Applications: Techniques and Technologies, p. 218,
2010.

C. Yang, T. Mitra, and T. Chiueh, “A decoupled architecture for
application-specific file prefetching,” in USENIX Annual Technical Con-
ference, FREENIX Track, 2002, pp. 157-170.

Z. Zhang, A. Kulkarni, X. Ma, and Y. Zhou, “Memory resource
allocation for file system prefetching: from a supply chain management
perspective,” in Proceedings of the 4th ACM European conference on
Computer systems, 2009, pp. 75-88.

