
Mercury: Host-side Flash Caching
for the Data Center

Steve Byan, James Lentini, Anshul Madan, Luis Pabón
Michael Condict, Jeff Kimmel, Steve Kleiman, Christopher Small, Mark Storer

NetApp, Inc.
{byan,jlentini,anshul,lpabon,mcondict,kimmel,srk,casmall,mwstorer}@netapp.com

Abstract—The adoption of flash memory in high volume
consumer products such as cell phones, tablet computers, digital
cameras, and portable music players has driven down flash
costs and increased flash quality. This trend is pushing flash
memory into new applications, including enterprise computing.
In enterprise data centers, servers containing flash-based Solid-
State Drives (SSDs) are becoming common. However, data center
architects prefer to deploy shared storage over direct-attached
storage (DAS). Shared storage offers superior manageability,
availability, and scalability compared to DAS. For these reasons,
system designers want to reap the benefits of direct attached
flash memory without decreasing the value of shared storage
systems. Our solution is Mercury, a persistent, write-through
host-side cache for flash memory. By designing Mercury as a
hypervisor cache, we simplify integration and deployment into
host environments. This paper presents our experience building
a host-side flash cache, an architectural analysis of possible
cache attachment points, and a performance evaluation using
enterprise workloads. Our results show a 26% improvement in
the bandwidth observed by the Jetstress benchmark and a 500%
improvement in the I/O rate of an enterprise workload.

I. INTRODUCTION

Modern data centers generally share two key characteristics.
The first is their extensive use of server virtualization. Virtual
machine technology enables better utilization of hardware
resources and therefore reduces data center cost. By separating
the physical machine from the operating system and appli-
cation software, virtual machine technology allows dynamic
allocation of hardware resources. Data center administrators
have the flexibility to move workloads from one server to
another for load balancing, hardware maintenance, and high
availability.

The second characteristic common to most modern data
centers is the extensive use of shared storage, both network
attached storage (NAS) and storage area networks (SAN).
Both NAS and SAN technologies allow for unified and
centralized data management. This makes it easier for data
center administrators to manage a dataset. Administrators
can choose the level of data protection (e.g. none, RAID,
NetApp R© RAID-DP R©, etc.), enable mirroring for disaster
recovery, and carefully configure the backup policies. Another
advantage of shared storage is its scalability. Shared storage
systems allow additional storage space to be added dynam-
ically and for storage space to be reassigned. Finally, cen-

978-1-4673-1747-4/12/$31.00 c© 2012 IEEE

tralization provides opportunities for deduplication to achieve
greater storage efficiency.

The emergence of direct attached flash-based SSDs into
this environment poses some interesting opportunities. Flash
is generally accepted as new tier in the memory hierarchy
between DRAM and magnetic hard disks. In terms of cost per
gigabyte (GB), DRAM capacity is more expensive than flash
capacity, which is more expensive than hard disk capacity. At
the same time, DRAM latencies are less than flash, and flash
latencies are less than hard disk. As a result, flash’s cost per
I/O operation is between DRAM and magnetic hard disks. The
question is therefore how to effectively employ flash devices
within a virtualized, shared storage data center.

With Mercury, we have built a system that uses flash
memory as a write-through cache. A write-through cache
allows the use of a shared storage system’s reliability, avail-
ability, and data management features. This design is also
consistent with the use of virtual machine technology since
guest state is not tied to a particular server. Mercury evaluates
read operations that miss the cache and all write operations
that are successfully completed by the shared storage system
for insertion into the cache. Cache insertions are done in
the background to minimize overheads on the I/O path. For
read hits, Mercury reduces read latencies by using a fast
storage medium, in this case flash, and locating it close to
the application. In a shared storage environment, write latency
can be mitigated using other techniques, such as a low latency
NVRAM buffer [7].

II. ARCHITECTURE

As discussed in Section I, we see two major technology
trends impacting storage systems in the near future: terabyte-
scale second-level storage caches, and pervasive deployment of
hypervisors. Along with the customer requirements discussed
in Section II-A below, these dual technology trends shaped the
architecture of our Mercury prototype.

A. Customer Requirements

Customers of enterprise storage systems expect them to
meet a number of requirements. The storage system must
be highly available. It must provide correct and consistent
access to data. In a storage system with a distributed cache,
the caches must be kept consistent. The storage system must
provide consistently high performance. The customer expects

VM
OS User

Application-
managed

Hypervisor

OS Kernel
Block
cache

Virtual disk
block cache

Caching
HBA

Fabric
cache

Storage Controller
File cache

Block cache

Flash
SSD

Magnetic
Disk

NFS or SMB
cache

NFS or SMB
cache

Block
cache

Flash SSD
DAS

Paging
device

Paging
device

Host

Networked
Storage Server

Mercury
deployment

location

1

2

3

4

5

6

7

2

Fig. 1. Flash deployment locations

the system to meet her desired Service Level Objective (SLO).
It should meet the SLO even after it is restarted from a
scheduled shutdown or a crash or power-failure. Finally, the
customer expects the storage system to integrate with her data-
center management tools, which increasingly is coming to
mean integration with a hypervisor and its data-management
interfaces.

B. Consequences of the Requirements

There is a broad range of possible deployment locations
for flash in a networked storage system attached to virtualized
host processors. Figure 1 illustrates the range of choices.

Flash could be deployed as a peer to disks in the back end of
the storage system (see ¬ in Figure 1) and managed either as
a cache or as a higher-performance hierarchical storage tier.
It could be integrated with the storage system controller as
a logical (file) or physical (block) second-level buffer cache
(­), behind the first-level DRAM buffer cache. It could be
deployed in the network fabric itself (®).

On the host side, flash could be deployed simply as directly-
attached file storage or as a paging device (¯), occupying a
niche similar to drum memory in the early virtual memory
paging systems. It could be deployed as a block- or file-level
cache (°) in a hypervisor or bare-metal OS installation. In
virtualized guest machines, the same deployment choices are
presented recursively (±). Finally, flash could be deployed as
application-managed storage (²).

In the next section we analyze customer requirements to
determine the best location to deploy flash from among these
possibilities.

1) High performance: Our first goal is that a storage system
using flash offer high peak performance. We wish to minimize
the overhead on the cache-hit path. The cost of a network
hop is about the same as the access latency of flash storage.
Consequently locating a flash cache on the storage controller
side of the network doubles the latency for a cache hit.

Therefore flash storage targeted at providing high IOPS to
a host application is best deployed on the host as directly-
attached local storage.1

Our next consideration is to provide consistent performance,
even after a system crash, power failure, or scheduled down-
time. A terabyte-sized cache takes several hours to warm up
to a high hit-rate. The point of a large flash cache is to help
meet the customers performance SLO. If the customer must
wait an inordinate amount of time after restarting the system
before meeting her desired SLO, the cache is not benefiting the
customer. We therefore conclude that the cache must at least be
persistent across scheduled shutdown and restarts, and ideally
should be durable in the face of system crashes or power
failures.

Finally, in a virtualized data-center, virtual machines may
be live-migrated from one physical host to another. That is,
a running virtual machine may be transparently moved to
another physical host without disturbing its state and with
minimal delay in its processing. The storage system must
offer consistent performance even after migration of a virtual
machine to another physical host. By the argument presented
above, taking a network hop back to the original physical host
to fetch data from its flash cache does not deliver adequate
performance. Consequently the cache must either re-warm
itself quickly, perhaps with the aid of a list of the most-
frequently-accessed blocks from the old cache, or migrate
the most frequently accessed portion of the cache as part of
the virtual machine state. Therefore the flash cache must be
integrated with the hypervisor such that it can participate in
the live-migration of a virtual machine.

2) High Availability: Our customers require a recovery
point objective (RPO) of 0, meaning no data is lost from a
crash or a data-center power-failure. To minimize the chance
of data loss and maximize data availablity, data written to a
direct-attached local flash cache must be protected by storing
a redundant copy or erasure code in some off-node location.

We first considered a symmetric peer-to-peer architecture
with a mirrored write-back cache policy. In such an architec-
ture each physical host would have to discover and negotiate
a pairing agreement with a buddy node to obtain storage
for mirroring its writes. This reduces the amount of flash
available to each host, since space has to be reserved for
the mirrored writes. The off-node mirror write removes much
of the benefit of a write-back cache policy, since to protect
against either a node failure or a data-center-wide power
failure, every write must be synchronously written-through to
persistent storage on the buddy via a network hop before it can
be reported complete to the application. This distributed peer-
to-peer approach also imposes the implementation complexity
of quorum and distributed agreement algorithms. In return
it may offer better scaling at very large scales with a very
high I/O demand. While the implementation complexity is not
insurmountable and the possibility of operating at very large

1There are uses for flash in the storage controller itself that are not directly
related to servicing requests from the host application, for example metadata
caching or write buffering.

scale is attractive, we discarded this architecture due to the
doubling of the already-high cost of flash storage imposed by
the mirroring.

As a better alternative, we selected an asymmetric client-
server architecture with a write-through cache policy. In this
architecture the network storage controller providing the disk
backing store also provides the redundant (mirror) storage
for high availability. This may not be an optimal architecture
for most storage arrays due to the high write load imposed
on the network storage controller. However, NetApp Data
ONTAP R© storage systems have been architected and refined
to excel at writes due to the log-structured write disk access
pattern of the WAFL R© (Write Anywhere File Layout) file
system [7] and the provision of an NVRAM write buffer. The
resulting latency for a write is as good or better than that of a
peer-to-peer architecture and scales well up to the point where
the I/O write demand exceeds the sequential write bandwidth
of the back-end disk subsystem. Moreover, the mirroring of
written data is accomplished using a small NVRAM buffer and
low-cost sequential disk write bandwidth, rather than costly
mirrored flash storage.

One consequence of the asymmetric client-server with
write-through architecture is that the flash can be simply
managed as a read cache rather than as a more-complicated
hierarchically-tiered storage system. The storage system never
has to migrate data from flash to disk nor to forward read
requests to flash on another host; the disk backing store always
contains an up-to-date copy. Thus the asymmetric client-server
write-through architecture simplifies maintaining consistency
between caches and between a cache and the disk backing
store; see Section II-B3.

Customer acceptance of a non-zero RPO (loss of recently-
written data on a crash) would open the architecture to a
write-back flash cache without the necessity of synchronous
mirroring; this could be implemented in either architectural
model. To provide crash consistency, the write-back policy
has to maintain the original write order, including that of
all overwrites. Consequently its performance benefit is not as
much as one would naively expect. We did not consider non-
zero RPO further; it remains an area for future research.

3) Correct and Consistent Data: Multiple hosts with direct-
attach flash caches introduce a pair of cache consistency issues
(see Figure 2): vertical cache consistency between the flash
cache on a physical host and the disk backing storage, and
horizontal cache consistency between caches distributed on
multiple physical hosts.

A system experiences loss of vertical cache consistency
when the host cache contains data different from that on the
backing store. There are two vertical consistency scenarios of
concern. The first scenario has modified data in the host flash
cache which has yet to be written to the disk backing store,
and hence is not visible to the network storage controller; i.e.,
a write-back cache. This modified data is problematic if the
storage controller attempts to snapshot or clone an object at
the backing store; the object does not contain a consistent
set of disk blocks and the modified blocks are not visible

Hypervisor
Host

Storage Array

Array-Side Cache

VM VM VM

Host Cache Host Cache

Hypervisor
Host

Ve
rt

ic
al

 C
oh

er
en

ce

Horizontal Coherence

Hypervisor
Manager

(e.g. vCenter)

Fig. 2. Cache consistency dimensions

to the storage controller. The second scenario has modified
data in the backing store which conflicts with older data in
the host flash cache. Such a scenario might arise when the
storage controller reverts to an older snapshot, or receives
asynchronous mirror changes from a remote primary.2

We address the first scenario with our decision to imple-
ment a write-through caching policy. Addressing the second
scenario requires a communication channel from the storage
controller to the cache whereby the storage controller can
force the invalidation of blocks that may be cached but which
conflict with the new state of the backing store.

A system experiences loss of horizontal cache consistency
when a host cache contains data different from newly-modified
data on another host cache, or newly-modified data is sent
to the backing store from a cache-less host.3 In either case
the result is similar to the second vertical cache consistency
scenario; the state of the other cache(s) and the backing store
diverge from that of the now-stale cache.

A write-through caching policy simplifies implementing
horizontal cache consistency, since it is always correct to
invalidate any cache entry at any time because cache blocks are
never dirty. Any subsequent miss is guaranteed to return the
correct data from the backing store. Consequently, to resolve
horizontal cache conflicts we only require a cache directory
entity with communication channels to each cache, through
which it can invalidate the stale contents of a cache.

These cache consistency issues reduce to implementing
some form of software distributed shared memory [4][10].
Aside from correctness issues, we are also concerned with
minimizing the performance overhead of the cache consistency
mechanism. Implementing a strict sequential consistency dis-
tributed shared memory model would be far too expensive both
in performance and design complexity. It would introduce ei-
ther a potential invalidate on each write, with the concomitant
need to communicate with a lock manager on each write, or

2This second vertical consistency scenario could instead be considered as
a form of the horizontal consistency problem, introduced by a “hidden” host
embedded within the storage system.

3For example, a non-cached workstation may connect to the network storage
to provision an existing virtual disk with an updated software installation; stale
copies of this newly-written data must be purged from any caches.

else a complex scheme that implements exponential backoff in
the size of the lock region in an attempt to efficiently discover
the sets of non-shared disk blocks via a form of binary search.

On the other hand, implementing a release consistency
distributed shared memory model [4] seems workable. The
critical region for a virtual disk is acquired when a VM
is started on a physical host and released when the VM is
shutdown or migrated off the physical host. This provides a
relaxed consistency model similar to the NFS close-to-open
consistency model. The performance overhead is low as there
is no consistency overhead in the data access path. However,
implementing release consistency requires the identification
and tracking of the set of blocks belonging to a virtual disk
since they compose the critical region locked by the release
consistency model.

This release consistency model supports the serial reuse
of mutable virtual disks by VMs on different physical hosts.
This feature supports the migration of a VM to another host,
whether as a result of a live-migration, an off-line migration,
or a high-availability fail-over. However, the model excludes
concurrent caching of mutable virtual disks by VMs on
different physical hosts. Such concurrent sharing arises when
multiple VMs share a virtual disk using a cluster file system
or a clustered database.4

We believe this last constraint has little practical import
as caching may simply be disabled for any concurrently-
shared mutable virtual disks. We choose instead to optimize
for serially-reused access to a writeable virtual disk by a single
VM at a time. Note that immutable virtual disks, such as
so-called golden master disks, may be concurrently cached
without difficulty since their contents never change.

4) Hypervisor Integration: As discussed above, to enable
cache consistency through live virtual machine migrations and
data management operations on virtual disks, we believe that
a flash cache should be integrated with the hypervisor.

Within the hypervisor, the cache should be installed above
the file system switch rather than in the block I/O stack beneath
the file systems. We wish to support multiple networked
storage protocols; a cache in the block I/O stack would
not support network file systems such as NFS or SMB. A
cache placed above the hypervisor file system switch plays
nicely with both network file system clients and standard
cluster file systems. It becomes “one cache to rule them all”,
covering SCSI pass-thru LUNs, virtual disk files on cluster
file systems, and virtual disk files on NFS and SMB network
file systems with one implementation. Additionally, a cache
in the hypervisor block I/O stack would require sequential
consistency between caches rather than release consistency, in
order to support concurrent shared access to blocks containing
cluster file system metadata.

4Note that hypervisors offer limited support in their I/O virtualization
stack for VMs which concurrently access a single virtual disk. They do not
typically support virtualization of a concurrently-shared virtual disk. They
instead require shared virtual disks to be simply a pass-through to a physical
SCSI LUN.

KVM/QEMU virtio paravirtualized device

raw block driver
cached LUN

POSIX syscalls through Linux-KVM hypervisor host

iSCSI volume
or

NFS file

raw block driver
flash SSD

SSD
GbE

Linux Guest VM

QEMU virtual disk

hg Mercury caching block
filter driver

QCOW2 copy-on-write

raw block driver
uncached LUN

Fig. 3. Hypervisor integration

Rather than trying to filter and cache the top edge of the
hypervisor virtual file system switch, the cache should be
placed in the hypervisor block I/O virtualization stack (which
itself is located above the file system switch). This placement
limits the interface to be the simpler block or SCSI interface
rather than a full file system interface, and simultaneously
restricts the filtered I/O to be only that issued by virtual
machines. This avoids any confusion between I/O from a guest
VM and that from the hypervisor itself.

Additionally, it allows the cache to associate blocks with the
objects comprising a virtual disk. This association allows the
cache to implement release consistency by managing exclusive
access to the critical region composed of the blocks associated
with the objects comprising a virtual disk. The association also
allows the cache to migrate the cache data and/or frequency
of access metadata for a migrating virtual machine’s disks
without having to track the virtual-to-physical mapping of all
the individual disk blocks.

Most hypervisor block I/O virtualization stacks expose
virtual disks which are composed of a hierarchical tree of
block storage objects. This tree of storage objects is used
to implement copy-on-write shared clones and snapshots. A
copy-on-write layer sits above these block storage objects
and exposes a single virtual disk block storage object to
the guest virtual machine. An immutable lower-level storage
object may be shared by many mutable virtual disk storage
objects. The copy-on-write layer records overwrites of the
shared immutable storage object in a unique writeable storage
object associated with each mutable virtual disk.

If a flash cache were implemented above the copy-on-write
layer, it would view each clone of an immutable lower-level
storage object as a unique virtual disk. It would be forced to
either cache multiple copies of the immutable storage object,

or else discover the duplication introduced by these aliased
virtual disk block addresses via a CPU-intensive signature-
based inline deduplication algorithm.

The flash cache should instead filter the interface below the
copy-on-write-layer and above the block storage objects. This
placement allows the cache to use the “free” deduplication
gained from visibility of the references to shared storage
objects. The cache may tag blocks with the name of their
(possibly shared) storage object rather than the unique name
of their virtual disk, thus unifying the addresses of shared
immutable storage objects. This enables the cache to avoid
caching multiple copies of shared data.

In our prototype, the Mercury flash cache is installed in
QEMU as a block device filter. See Figure 3. It is installed
below the QCOW2 copy-on-write filter and above the block
“devices” that compose the QCOW2 virtual disk.5

C. Preliminary Performance Analysis

We investigated the hit rate of a second-level flash cache
using a simple analytical model. We modeled the ranked-
frequency distribution of block accesses to the disk backing
store as a Zipf’s Law distribution. Assuming a cache uses the
least-frequently-used (LFU) replacement policy, and knowing
the size of the backing store in blocks n and the size of the
cache in blocks k, from [17] we can express its hit rate h as

h =
lnk
lnn

(1)

The Mercury architecture has a two-level cache hierarchy.
The hit-rate of the first-level buffer cache (located in the
operating system or database application) follows Equation 1.
Now we model the second-level Mercury cache as an inclusive
cache. That is, all data in the first-level buffer cache is also
contained in the second-level Mercury cache.6 Consequently,
the hit rate of the combined first- and second-level caches is
also described by Equation 1.

However, the hit-rate of the second-level cache alone is
much smaller than that predicted by Equation 1. The first-
level cache satisfies the most frequent requests, leaving only
requests from the long flat tail of the Zipf distribution to be
satisfied by the second-level cache. Consequently the second-
level cache sees a request stream with little locality and hence
has a low hit rate.

We find the hit rate h2 of the second-level cache by
subtracting the hit rate h1 of the first-level cache from the
hit rate h of the combined cache and scaling it by the miss
rate 1−h1 of the first level cache, since the second-level cache
sees only the misses from the first level cache:

5In QEMU, each QCOW2 storage object is represented by a virtual QEMU
device. Such “devices” may be either a file or a physical device in the
underlying hypervisor.

6The final Mercury implementation may differ somewhat from this model.
We have experimented with write-around policies and may in the future
implement heuristics such as sequential I/O bypass which would make the
cache not strictly inclusive. However, we do not anticipate implementing
Mercury as a victim cache, and so the model still provides an approximate
upper-bound on the hit rate.

Fig. 4. L2 Hit Rate vs. Cache Size

h2 =
h−h1

1−h1
(2)

Figure 4 shows the hit rate of the second-level cache as a
function of its size for first-level cache sizes of 0.5%, 1%, and
2% of the backing store. For reasonable second-level cache
sizes, the hit rate is alarmingly low, between 40% and 60%.

The overall mean service time ts of the second-level cache
is just the linear combination of the hit and miss service times
weighted by the hit and miss rates:

ts = h2th +(1−h2)tm (3)

In general tm � th. Consequently, in analogy to Amdahl’s
Law, as the secondary cache hit rate falls below 100% the
overall system service time quickly becomes dominated by the
cost of the cache misses, even though the majority of requests
are serviced as cache hits. It is therefore essential to minimize
the cache overhead in order to minimize the harm introduced
by the cache. At the low hit-rates predicted by Zipf’s Law, a
cache with significant hit and miss overhead could be slower
than no cache at all.

This preliminary performance analysis informed the detailed
design process, where care was taken to minimize the cache
overheads. The resulting trade-offs are described below in
Section III.

D. Prototype

Our initial prototype is focused on the performance and
persistence requirements and on implementing the correct
placement within the hypervisor. Although the architecture and
design takes them into consideration, we leave the implemen-
tation of durability and cache consistency, as well as further
performance improvements, as future work.

III. DESIGN

The cache is divided into two sub-modules: the Operations
Manager (OM) and the Storage Manager (SM). The OM is
responsible for the management of the cache’s in-memory data

structures and contents. The SM maintains the on-flash data
structures.

The cache processes an I/O command depending on the
command’s type, either a read or a write, and whether it is
a cache hit or miss. Figure 5 shows a simplified flow of I/O
through the cache. Briefly, a read hit can be serviced from the
cache device. A read miss is forwarded to the backing device,
and may be inserted into the cache when it completes. A write
hit invalidates the cache’s old version of the targeted blocks.
Both a write hit and miss are forwarded to the backing device.
As with a read miss, a write may be inserted into the cache.

Start Write?

Hit?

Hit?

Invalidate

Perform
I/O

Insert into
cache

Read from
cache

Yes

NoYes

No (read)

No

Yes

Fig. 5. Simplified I/O Flow Chart

We wait for a successful acknowledgment from the backing
device before inserting data into the cache, which keeps the
cache’s contents consistent with the backing device. Once a
successful acknowledgment is received, an I/O command’s
data is copied to an in-memory buffer, called a log chunk, and
the command is completed to the upper layer. The log chunk is
written to the cache device when full. This process allows I/O
commands to complete without waiting for the cache device
to be updated.

Data from a read miss or write is not inserted under certain
conditions. In our results, we evaluate one of these policies,
write around caching. In write around caching, all writes
bypass the cache under the assumption that data written will
not be read in the near future.

There are some subtle details that complicate the situation.
One issue is that an I/O command can be unaligned with our
cache. We term a backing device’s smallest addressable unit a
sector. Typically devices have 512 byte sectors, but our design
allows for other sector sizes. An I/O command is defined by its
device offset in sectors, called the logical block address (LBA),
and its length in sectors. In contrast, our cache is divided into
cache blocks. A cache block is one or more contiguous sectors.
By default, we use a cache block size of 8 sectors (4 kilobytes
(KB)). By unaligned, we mean that the LBA of the start or
end of the I/O is not aligned on a cache block boundary. For
these operations, the unaligned blocks bypass the cache, with
unaligned write hits generating an invalidate to their containing
cache block. Another complication is that an I/O command
can target multiple blocks, some of which are hits and some
of which are misses. To address this, we combine runs of hits
and misses into a single operation.

A. In-Memory Data Structures

The cache’s in-memory data structures are used to determine
if an I/O command is a cache hit. Since this query is performed
for every I/O command, the cache needs to efficiently answer
this question. We use two in-memory data structures to identify
cache hits: a cache headers array and an address map hash
table.

Each cache block is tracked in the cache headers array.
A cache header describes its corresponding block’s backing
device (16-bits), backing device LBA (48-bits), a checksum of
the block’s contents (32-bits), and information on the block’s
usage (32-bits). The memory used by a single cache header is
128-bits (16 bytes).

To determine if an I/O is a hit, the cache could linearly scan
the cache headers array. An I/O that overlapped a header’s
LBAs would be a hit. This algorithm would produce correct
results, but, at O(n) time for a cache with n entries, the
overhead is too high for a large cache.

Instead, we use a dictionary data structure, called the
address map, to quickly determine if an I/O targets any cached
blocks. Our dictionary maps (backing device, LBA) keys to
cache header array indices. The address map is implemented
as an open address hash table with linear probing. Each lookup
on this data structure runs in O(1) expected time.

An important design choice is whether to keep these cache
data structures entirely in main memory, or to store them on
the cache device and page portions into main memory. As
we explain above, the cache is only effective if it imposes a
minimal amount of overhead. Therefore, we must keep these
data structures entirely in main memory so that determining
if an I/O is a hit or miss runs at memory speed.

To calculate the memory overhead of these data structures,
we use the following example. Suppose we have a 512GB
cache device and use a 4KB cache block size. The memory
overhead is approximately equal to the sum of the cache
headers array size and the address map size. The 512GB cache
in our example would require 134,217,728 entries in the cache
headers array. Since each cache header entry is 16 bytes, the
total size of the cache header array would be 2GB. The address
map is implemented using an array of 4 byte entries. To make
hash collisions infrequent, this array is 1.5 times larger than
the number of cache headers. This results in a 768MB address
map in our example. Therefore, the total memory overhead is
around 2.75GB for a 512GB cache. From this example, we
see that the ratio of memory to cache space is about 0.5%.
Another way to look at this is that every 4KB cache block
requires 22 bytes of memory: 16 bytes in the cache headers
array and 6 bytes in the address map.7 This memory overhead
can be decreased by using a larger cache block size (e.g., using
16KB instead of 4KB would decrease the memory overhead by
a factor of 4), but further experiments are needed to understand
how this effects the cache’s hit rate.

7Each entry is a four-byte index into the header array. We over-provision
by 50% to reduce the expected number of probes; hence, 1.5× 4 = 6 bytes
per entry.

B. Block Replacement Policies

When the cache is full (which is the steady state), the
cache must evict cached blocks. The Mercury cache supports
two block replacement policies: First In First Out (FIFO) and
CLOCK [2].

The FIFO replacement algorithm evicts all blocks in the
oldest chunk regardless of the number of times a block has
been used in the past. Since FIFO will be evicting all blocks,
the cache can optimize the cleaning process and eliminate
reading the oldest chunk into memory. By eliminating this I/O
operation, the FIFO policy decreases the I/O load on the flash
device. In our experience, use of the FIFO algorithm results in
a lower hit rate than CLOCK. The trade-off between FIFO’s
reduction in cleaning overhead versus its lower hit rate are
shown in Figures 7, 8, 9, 10, 11, and 15.

Mercury also supports a version of the CLOCK replacement
algorithm. Our CLOCK implementation maintains a usage bit
for each block in the cache. As the cache cycles through
the chunks, blocks that have been read since the last pass
are retained, and blocks that have not are evicted. While the
CLOCK algorithm results in a higher hit rate, it does require
reading each chunk of the cache during the cleaning process.

C. On-Flash Data Structures

The flash device contains cached data from one or more
backing devices. When designing Mercury’s on-flash data
structures, we had the following goals in mind:

a) Cache Persistence: From the beginning, we recog-
nized the importance of supporting a persistent cache. As our
results demonstrate, the amount of time necessary to warm
a large second level cache is significant. Without support for
persistence, the cache would need to be re-warmed on each
restart. To support persistence, each cached data block has
an associated metadata entry. Mercury uses this metadata to
reconstruct its in-memory data structures on a reboot.

b) Flash Awareness: Another goal was to use a flash-
friendly access pattern. Flash devices generally perform best
when written sequentially, rather than randomly [1]. For this
reason, our on-flash data structures use log-structured updates.
This minimizes the flash write amplification, achieving better
performance and less wear-out.

c) Space Efficiency: An additional goal was to maximize
space on the cache device for data blocks by using the smallest
possible metadata entries. The metadata needed for each data
block is contained in a cache header. One of the items in a
cache header, the backing device description, needed to be
compressed. A backing device description may be hundreds
of bytes in length (e.g. a SCSI logical unit name or NFS
export with DNS name and path). Although only a few backing
devices are cached at one time, there may be millions of
blocks in the cache for a single backing device. Obviously,
duplicating these large backing device descriptions in every
block’s metadata would be wasteful. In our design, the backing
device description is stored once, in a single location and
assigned a unique small integer identifier. The compact integer
identifier, rather than the large backing device description, is

stored in the metadata for each cache block. A useful side
effect of this arrangement is that all cache blocks for a given
backing device can be quickly invalidated by invaliding the
backing device’s integer identifier. Mercury uses this technique
to quickly invalidate cached blocks when caching is disabled
for a backing device.

Address Map

Header Array

Current
Chunk

In memory
On flash

Superblock Map
Region Chunk 0 Chunk 1 Chunk 2 Chunk 3 Chunk 4 ••• Chunk n

Log Region0 W X
Block Addresses

Fig. 6. Cache Data Structures

To achieve the goals above, the Mercury SM provides two
on-flash data structures: a map for storing backing device
descriptions and a log for storing cache blocks and their
metadata. The flash device is split into three regions (see
Figure 6). The first region is a superblock that contains the
cache’s configuration. The second region contains a map of
(key,value) pairs. The size of the map is rounded up so that
the start of the next region is aligned to a flash erase block
size boundary (offset X = an erase block size multiple). The
third region contains a circular log of metadata and data.

When the cache is rebooted, the OM and the SM coopera-
tively replay the log and rebuild the in-memory data structures.
If multiple metadata entries exist for the same (backing device
identifier, block index) pair, the entry in the newest log chunk
is the correct one. A metadata entry with an invalid backing
device identifier is for a backing device that is no longer being
cached, and therefore can be ignored.

As with any device, it is possible for the cache device to
malfunction. The on-flash data structures are designed to detect
the full spectrum of possible device errors [12]:
• Latent Sector Errors
• Corruptions
• Torn writes
• Lost writes
• Misdirected writes
Correcting cache data in the presence of these device errors

is not a goal of the on-flash data structures. Since the cache
is write-through, a malfunctioning cache device is ignored.
The cache disables itself, and notifies the system administrator
of the error. While the cache is disabled, I/O commands are
transparently directed to the backing store.

Our current implementation does not support durability, but
we have designed our cache with this in mind. A durable cache

is able to terminate execution at an arbitrary point without
corrupting cached data. Events like a software fault or power
loss would results in such a termination. The challenge is
to persistently invalidate cached data on a write hit before
sending the write to the backing device. The invalidation must
be made persistent before the write is sent to the backing
device because the cache might terminate at any time between
the write being issued to the backing device and the new data
being inserted into the cache. Our design for durability is to
add the invalidation to the chunk metadata and flush the chunk
metadata region to the cache device. The cache devices we
are targeting have battery-backed write buffers. Therefore this
operation will be analogous to writing the invalidation to an
NVRAM device.

D. Optimizations

While implementing Mercury, we identified several perfor-
mance optimizations to our original design.

One optimization was related to inserting data into the
cache. Originally, a single buffer was used for insertions to
the cache device. We expected all devices to have sufficient
internal memory to buffer the write data, complete the write
command, and asynchronously move the write data to their
internal flash chips. In practice, this did not prove to be
the case. We encountered devices that required multiple,
parallel write commands in order to achieve their maximum
performance levels. In light of this, we enhanced our cache
insertion algorithms to use a configurable number of write
buffers.

Related to our write buffering optimization, we also added
chunk read-ahead. Some block replacement algorithms, such
a CLOCK, retain previously cached data during log cleaning.
These algorithms require the oldest log chunk be read into
main memory for processing. To accelerate their performance,
the cache anticipates requests for these chunks by performing
log read-ahead. Log read-ahead is aided by the fact that log
writes are performed sequentially. A cache log chunk that has
been read will not be written until after it has been cleaned,
and therefore the in-memory copy cannot become inconsistent
with the contents of the cache device before it is used.

Another optimization was consolidating multiple contiguous
operations into a single operation. Initially the cache issued
individual I/O operations for each block. For example, a 5
block I/O command might hit on 3 blocks, and miss on the
other 2. Rather than fetching the 3 cache hits using 3 cache
reads, our implementation detects contiguous cache blocks and
issues a single I/O. This optimization was necessary to achieve
high performance with multi-block I/Os.

IV. IMPLEMENTATION

To test our approach in a real system, we integrated Mercury
with the Linux KVM/QEMU hypervisor. We implemented
our cache in user-space by creating a dynamically loadable
Mercury library that is linked to QEMU. This approach
allowed us to insert Mercury just below the copy on write
(COW) layer in QEMU’s I/O stack without modifying QEMU

source code. Our implementation contains 41,000 source lines
of code (SLOC [20]) consisting of the Mercury cache, utilities,
and unit tests. In this implementation, there is a separate cache
for each VM. In the future, we plan to develop a single cache
shared across VMs.

V. EVALUATION

We evaluate Mercury with the help of two widely used
benchmarks. The first benchmark we use is Microsoft Ex-
change Jetstress. The second is an enterprise workload, which
simulates OLTP workloads [3]. For both benchmarks, we use
the experimental setup described in Section V-A below.

A. Experimental Setup

For our experiments, we used one host system which was
an x3550 IBM Server with two 6 core Intel R© Xeon R© CPU
E5645 processors running at 2.40GHz, a 1 Gbps network
interface card, and 48GB of RAM. The system runs Red
Hat Enterprise Linux 6.1 with the 64-bit Linux R© kernel,
KVM version 2.6.32-131.17.1, and QEMU version 0.15.1.
All experiments were run inside a single virtual machine. A
NetApp FAS3270 with 7200 RPM 1695.4GB SATA disks was
used as the iSCSI target. The LUN size was 1 TB and it was
created on an 11 disk RAID-DP aggregate. Table I shows the
cache devices used in our tests.

B. Jetstress

Microsoft R© Exchange Jetstress is a benchmark used for
simulating an Exchange Server workload on a storage system.
We run the Jetstress benchmark inside a Windows R© 2008 64-
bit VM, with 8 virtual processors, and 4GB virtual DRAM.
The database has a maximum cache size of 256MB, and
averages approximately 241MB. The dataset is between 800-
900GB, 73% of the transactional database I/Os are 32 KB, and
the read percentage is around 63%. The benchmark measures
the peak storage subsystem throughput by adjusting the I/O
intensity based on the observed IOPS of the system.

1) Methodology: As a write-through cache, Mercury does
not accelerate the performance of a 100% write workload.
Since Jetstress only issues writes to the log disk, we use a
dedicated flash drive without a Mercury cache for the log disk.

Before each experiment, we cleared the NetApp storage
system’s iSCSI cache, rebooted the VM to clear the guest
buffer cache, used the NetApp SnapshotTM feature to revert the
Jetstress database to its initial state, and cleared the Mercury
cache by formatting it. For experiments that varied the cache
size, we partitioned the cache device to the desired size, and
filled the other unused partition with junk to trigger garbage
collection.

We configured QEMU to use the Linux libaio asynchronous
I/O interface with the Linux CFQ I/O scheduler. Previous
work using SSDs as a swap device found that flash per-
formed best with the Linux NOOP I/O scheduler [15]. How-
ever, this previous work used synchronous I/Os, rather than
asynchronous I/Os. For synchronous I/Os, the Linux CFQ

TABLE I
FLASH DEVICES USED

Name Capacity Type Sequential Read Sequential Write Random Read Random Write
latency bandwidth latency bandwidth latency bandwidth latency bandwidth

PCIe Flash Device X 320GB SLC 25 us 376.5 MB/s 30 us 390 MB/s 65 us 231 MB/s 275 us 92.5 MB/s
SSD Y 100GB SLC 100 us 135 MB/s 105 us 115 MB/s 240 us 110 MB/s 225 us 39 MB/s
SSD Z 300GB MLC 105 us 185 MB/s 103 us 125 MB/s 245 us 155 MB/s 450 us 55 MB/s

scheduler optimizes for disk devices by doing unexplicit an-
ticipatory scheduling. In contrast, CFQ batches asynchronous
I/Os together into a single queue (one queue per priority).
For the Mercury I/O access pattern, we did not find any
advantage of NOOP over CFQ. The only difference in how
they handle asynchronous I/O requests is that NOOP merges
adjacent requests. Given our workload of random reads and
sequential writes to the block device, most adjacent read
requests don’t qualify for merging, and adjacent writes are
already buffered.

2) Results:
a) Accelerates performance: For PCIe Flash Device X,

as cache size increases from 0% to 30% in Figure 7, we
observe a 26% improvement in the bandwidth, and a cache
read hit rate of up to 73%. As can be seen in Figure 12,
Mercury succeeds in offloading traffic from the back-end
storage system. Thus in spite of being a write through cache,
it improves both the read and write bandwidth. The read
latency improves by up to 21% and the write latency worsens
marginally by up to 6% (Figure 8) because every write to the
storage system also results in a write to the flash cache. A 10%
PCIe Flash Device X cache has around 3.5% better bandwidth
than a 10% SSD Y cache and 6.6% lower read latency.

b) Large Sequential Reads: From Figure 9, we observe
that sequential reads by the application for the purpose of
background database maintenance are polluting the cache. The
hit rate is reduced from 73% to 65% for a 30% cache, thereby
reducing the IOPS by approximately 13.5%. Caching these
sequential reads is not generally useful because their contents
are seldom read again. Thus heuristics to detect sequential
reads and bypass the cache in such cases would be useful.

c) Write Through vs. Write Around: We observe that the
write through policy is significantly better than a write around
policy. As shown in Figure 11, the steady state hit rate after
warmup is 90% better, although the warmup time is around
30 minutes for both. With the FIFO page replacement policy,
read IOPS, write IOPS, and read latency is 35-50% better with
write through (see Figure 9 and Figure 10). There is also a
small amount of improvement in the write latency.

d) CLOCK vs. FIFO Replacement Policy: The perfor-
mance observed by the application is nearly equivalent with
FIFO and CLOCK (see Figure 9 and Figure 10). With the write
through policy, the warmup time and steady-state hit rate is
the same for both (see Figure 11).

e) Cache Overhead and Back-end Read Response Time:
From Figure 13, we observe that the read response time
improves by 31% or 2.2 ms when caching using Mercury at
up to a 73% read hit rate. However, given that the random
read latency of the flash device is 65 us (Table V-A), we

Fig. 7. Bandwidth variation with cache size, device type

Fig. 8. Latency variation with cache size, device type

would expect the response time to be much less than 5 ms
if the storage system’s read response time was unchanged. In
fact, we observe that the storage system’s read response time
increases to 17.8 ms from 7.3 ms, an increase of approximately
144%, and in Figure 12 we observe that the storage system’s
read bandwidth decreases by about 66%. The cache changed
the storage system’s workload, and, as a result, decreased both
read IOPS and read latency. We believe, but have not proven,
that this is a result of greater seek time over-head on the
storage system.

C. Enterprise Workload

In addition to the Jetstress evaluation, we used an enter-
prise workload to exercise Mercury. The experimental setup
described in Section V-A was used with a Fedora 16 Linux
guest running kernel version 3.1.1-fc16.x86 64.

Fig. 9. Bandwidth variation with replacement policy, write policy, back-
ground maintenance (on/off), with PCIe Flash Device X, 30% cache

Fig. 10. Latency variation with replacement policy, write policy, background
maintenance (on/off), with PCIe Flash Device X, 30% cache

Fig. 11. Jetstress warmup time with PCIe Flash Device X

Fig. 12. Jetstress bandwidth between host and storage system with PCIe
Flash Device X

Fig. 13. Jetstress response time overheads (flash writes done asynchronously)
with PCIe Device X

This test used twenty four iSCSI LUNs on the NetApp
FAS3270 with a RAID-DP aggregate consisting of 12 SATA
disks. Eight LUNs were used for each of the three types
of Application Storage Units (ASUs). The Data Store (ASU
1) and the User Store (ASU 2) LUNs where cached using
Mercury, while the Log (ASU 3) was not cached. The test
consisted of a twenty four hour cache warmup stage using 50
Business Scaling Units (BSUs), where each BSU generated 50
I/Os per second. For comparison, we also included test results
limiting the size of the PCIe Flash Device X to the capacity
of the SSD Y device.

Once the caches were warmed up as shown in Figure 14, we
then compared their average latencies using different numbers
of BSUs. Without the cache enabled, the test was only able
to reach about 2000 IOPS before having a latency larger than
30ms. Figure 16 shows how Mercury increases the I/O Rate
for a guest by more than 500%. The figure also shows the
I/O rate’s dependency on cache size. Lower latency does help
the PCIe flash device to achieve about a 20% increase over

Fig. 14. Enterprise workload warmup times for multiple cache device types
and sizes using a write-through policy and a CLOCK replacement algorithm.

Fig. 15. Enterprise workload comparison of FIFO and CLOCK block
replacement policies using a PCIe flash device over a twenty four hour period.

the equally sized SSD Y, but cache size has a more profound
effect on the maximum I/O rate.

VI. RELATED WORK

Caches have been studied in a number of different contexts.
Previous research has investigated the benefits of locally
caching remote data to improve performance. The Andrew File
System [8] and the Coda file system [11] are two prominent
examples of distributed file systems that use this approach. A
more recent example in this area is the Linux FS-Cache [9],
which may be used to cache data from an NFS server. An
analogous system in the area of block storage is iCache [5],
which locally caches iSCSI data. In contrast to these systems,
the Mercury cache is protocol agnostic. As described above,
our cache is capable of caching data from a variety of different
sources including NAS protocols (e.g. NFS, SMB), SAN
protocols (e.g. iSCSI, FCP), and locally attached devices (e.g.
HDDs). This attribute distinguishes the Mercury cache from
these systems.

Fig. 16. Enterprise workload average response time for BSU values ranging
from 10 to 300 using a cache write-through policy and a CLOCK replacement
algorithm. A response time of over 30ms fails the tests.

Fig. 17. Comparison of write through versus write around policies for
enterprise workloads.

Several studies have investigated second level caching. The
Capo [18] cache is similar to Mercury. Like Mercury, Capo is
a persistent, second level cache that attaches to a hypervisor.
Unlike Mercury, Capo is designed to store cached data on
a rotating magnetic hard disk drive rather than a solid state
flash device. Another second level cache using magnetic
media is Disk Caching Disk (DCD) [13]. In the case of
DCD, the cache did not operate in a virtualized environment.
Mercury’s advantage over these approaches is that its cache
data structures were designed from the ground up to work with
the unique characteristics of flash memory devices.

Other researchers have combined caching and solid state
flash devices. FlashVM [15] enables the Linux memory
management subsystem to use a flash drive as a swap de-
vice. FlashVM stores anonymous pages, which are inherently
volatile and not persistent. By definition, file-backed pages
are not stored on the swap device. Therefore, unlike Mercury,
FlashVM is not an I/O cache and is not persistent. Another
system that combines caching and flash is FlashTier [16].

Instead using the interface of commodity SSDs, FlashTier is
designed to work with a specialized solid-state cache device.

Other block caching systems have also been proposed. The
DM-Cache [6] system transparently caches blocks using a
local disk device. DM-Cache plugs into the Linux operating
system’s device-mapper layer. This system was later extended
by Facebook for use with solid state devices [14] and re-
named FlashCache. FlashCache, as a device mapper plug-in,
supports only SAN protocols and locally-attached disk. Unlike
Mercury, it cannot cache NAS protocols. The set-associative
cache lookup employed by FlashCache results in contiguous
extents in the backing store address space being broken up
into widely-separated 4KB blocks on the flash device. Thus
inserting or retrieving multiple 4KB blocks requires multiple
I/O commands to the flash device. The Mercury cache instead
inserts extents contiguously, resulting in less I/O overhead
when accessing the flash device. FlashCache performs cache
insertion synchronously, resulting in a high read-miss penalty
as the slow write to flash is completed before FlashCache
signals the completion of the read I/O to the application.
Mercury performs cache insertion asynchronously on read-
misses, providing a lower read-miss penalty.

Similarly, Bcache [19] integrates with the Linux block
device layer and stores data on flash storage devices. Like
FlashCache, it supports SAN protocols and locally-attached
disk, but, unlike Mercury, it cannot cache NAS protocols.
Bcache maintains the contiguity of extents on flash via a B-
tree structure rather than Mercury’s extent-preserving logging.
Like Mercury, Bcache performs read-miss insertions asyn-
chronously, giving a low read-miss penalty.

There are also several commercial products that target host-
side caching using flash storage devices. Notable among these
are Fusion-io’s IOTurbine, Marvell’s DragonFly, FlashSoft,
and EMC Lightning. Unfortunately, detailed public specifi-
cations are unavailable, so contrasting their approach with
Mercury is difficult at this time.

VII. CONCLUSION

Flash memory devices represent a new tier between DRAM
and magnetic media in terms of both price and performance.
The challenge is how to efficiently use this new tier of the
memory hierarchy. We believe that flash memory devices are
best utilized as persistent caches. We have explored several
different attachment points and concluded that a hypervisor’s
virtual I/O stack represents the best location for such a cache.
At this layer, the cache is transparent to applications and
operating system software, capable of caching a variety of
protocols (NAS, SAN, and local devices), and deployment
is simpler than a per-operating system or per-application
approach. We have described our experience designing and
implementing this cache in the Linux KVM/QEMU hypervi-
sor. Our results demonstrate the benefits of this approach, and
evaluate different configurations of our cache with two impor-
tant macro-benchmarks: Jetstress and an enterprise workload.

VIII. ACKNOWLEDGMENTS

We thank Al Andux and Jeffrey Heller for their advice
and support. We also thank members of NetApp’s Advanced
Technology Group (ATG), our anonymous reviewers, and
Mohit Saxena for their valuable comments and suggestions.

REFERENCES

[1] F. Chen, D. A. Koufaty, and X. Zhang, “Understanding intrinsic char-
acteristics and system implications of flash memory based solid state
drives,” in SIGMETRICS/Performance, 2009, pp. 181–192.

[2] F. Corbato, “A paging experiment with the multics system,” in
Festschrift: In Honor of P. M. Morse, 1969, pp. 217–228.

[3] S. Daniel and R. E. Faith, “A portable, open-source implementation of
the SPC-1 workload,” in Workload Characterization Symposium, 2005.

[4] K. Gharachorloo, D. Lenoski, J. Laudon, P. B. Gibbons, A. Gupta, and
J. L. Hennessy, “Memory consistency and event ordering in scalable
shared-memory multiprocessors,” in ISCA, 1990, pp. 15–26.

[5] X. He, Q. Yang, and M. Zhang, “A caching strategy to improve iSCSI
performance,” in LCN, 2002, pp. 278–288.

[6] E. V. Hensbergen and M. Zhao, “Dynamic policy disk caching for
storage networking,” in IBM Research Report (RC24123), 2006.

[7] D. Hitz, J. Lau, and M. A. Malcolm, “File system design for an NFS
file server appliance,” in USENIX Winter, 1994, pp. 235–246.

[8] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satya-
narayanan, R. N. Sidebotham, and M. J. West, “Scale and performance
in a distributed file system,” ACM Trans. Comput. Syst., vol. 6, no. 1,
pp. 51–81, 1988.

[9] D. Howells, “FS-Cache: A network filesystem caching facility,” in
Proceedings of the Linux Symposium, 2006.

[10] P. J. Keleher, A. L. Cox, and W. Zwaenepoel, “Lazy release consistency
for software distributed shared memory,” in ISCA, 1992, pp. 13–21.

[11] J. J. Kistler and M. Satyanarayanan, “Disconnected operation in the coda
file system,” ACM Trans. Comput. Syst., vol. 10, no. 1, pp. 3–25, 1992.

[12] A. Krioukov, L. N. Bairavasundaram, G. R. Goodson, K. Srinivasan,
R. Thelen, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Parity
lost and parity regained,” in FAST, 2008, pp. 127–141.

[13] T. Nightingale, Y. Hu, and Q. Yang, “The design and implementation of
a dcd device driver for unix,” in USENIX Annual Technical Conference,
General Track, 1999, pp. 295–307.

[14] P. Saab, “Releasing Flashcache in MySQL at Facebook Blog,” http:
//www.facebook.com/note.php?note id=388112370932 Retrieved April
27, 2010.

[15] M. Saxena and M. M. Swift, “FlashVM: Virtual memory management
on flash,” in USENIX Annual Technical Conference, 2010.

[16] M. Saxena, M. M. Swift, and Y. Zhang, “FlashTier: A lightweight,
consistent and durable storage cache,” in EuroSys, 2012.

[17] D. N. Serpanos, G. Karakostas, and W. H. Wolf, “Effective caching
of web objects using zipf’s law,” in IEEE International Conference on
Multimedia and Expo (II), 2000, pp. 727–730.

[18] M. Shamma, D. T. Meyer, J. Wires, M. Ivanova, N. C. Hutchinson,
and A. Warfield, “Capo: Recapitulating storage for virtual desktops,” in
FAST, 2011, pp. 31–45.

[19] W. Stearns and K. Overstreet, “Bcache: Caching beyond just RAM,” in
LWN.net, July 2, 2010.

[20] D. A. Wheeler, “More than a gigabuck: Estimating gnu/linux’s size,”
http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html Retrieved
March 12, 2012.

NetApp, the NetApp logo, Go further, faster, Data ONTAP, RAID-
DP, Snapshot, and WAFL are trademarks or registered trademarks of
NetApp, Inc. in the United States and/or other countries. Microsoft
and Windows are registered trademarks of Microsoft Corporation.
Linux is a registered trademark of Linus Torvalds. Intel and Xeon
are registered trademarks of Intel Corporation. All other brands or
products are trademarks or registered trademarks of their respective
holders and should be treated as such.

