
An Active Storage Framework for Object Storage Devices

Michael T. Runde Wesley G. Stevens Paul A. Wortman John A. Chandy
University of Connecticut

Storrs, CT
{mtr03003,wgs10001,paul.wortman,chandy}@engr.uconn.edu

Abstract—In this paper, we present the design and imple-
mentation of an active storage framework for object stor-
age devices. The framework is based on the use of virtual
machines/execution engines to execute function code down-
loaded from client applications. We investigate the issues
involved in supporting multiple execution engines. Allowing
user-downloadable code fragments introduces potential safety
and security considerations, and we study the effect of these
considerations on these engines. In particular, we look at
various remote procedure execution mechanisms and the ef-
ficiency and safety of these mechanisms. Finally, we present
performance results of the active storage framework on a
variety of applications.

I. INTRODUCTION

The increasing performance and decreasing cost of pro-
cessors has enabled increased system intelligence at I/O
peripherals. Disk drive manufactures have been using this
trend to perform more complex processing and optimizations
directly inside the storage devices. Such kind of optimiza-
tions have been available only at disk controller level of the
storage stack. Another factor to consider is the current trends
in storage density, mechanics, and electronics, which are
eliminating the bottleneck encountered while moving data
off the media, and putting pressure on interconnects and host
processors to move data more efficiently. This computational
capability at the disk has led to the development of object-
based storage whereby some of the filesystem functionality
is moved to the disk [4], [14], [15], [19]. Developments in
object-based storage systems and other parallel I/O systems
where the data and control paths are separated have demon-
strated an ability to scale aggregate throughput very well for
large data transfers. In these systems, the metadata is placed
on a distinct metadata server that is out of the data path.
There are many parallel storage file systems [7], [8], [20],
[27], [29] based on the idea of separating the metadata from
the data. By separating the metadata, storage management
functionalities are kept away from the real data access, thus
giving the user direct access to data once the authorization to
access the data is received. These file systems can achieve
high throughput by striping the data across many storage
nodes.

In high-performance computing applications where data
throughput is typically more important than metadata la-
tencies, this architecture works well. It however, does not

take advantage of the full promise that object storage offers.
For example, object storage has the capability to specify
attributes that can provide some metadata functionality.
There has been some recent work to exploit object stor-
age in its application to parallel file systems, specifically
PVFS [3], [11], [12]. The computation capability needed to
enable object storage devices can also enable computation
at the storage node in what has been called active disks or
active storage. This active storage computation serves as a
mechanism to enable parallel computation using distributed
storage nodes [2], [18], [25], [30], [31]. Moving portions of
an application’s processing so that it runs directly at the
disk drives can dramatically reduce data traffic and take
advantage of the parallel storage already present in large
systems today. The advantages of moving computation to
the disk has been demonstrated in early work in transaction
processing, data mining and multimedia [24], [26], [23].
Acharya, et al. also applied active disk ideas to a set
of similar applications, including database select, external
sort, data cubes, and image processing, using an extended-
firmware model for next-generation SCSI disks [2]. This
work was later expanded to large scale data processing
using the concept of data filters in the DataCutter/Active
Data Repository framework [6], [9]. Similarly, a group at
Berkeley has independently estimated the benefit of Intel-
ligent Disks for improving the performance of large SMP
systems running scan, hash join, and sort operations in
a database context [17]. While active storage and object
storage arose from the same NASD root, there has been
little work in integrating both active storage and object
storage particularly with respect to the OSD standard that
has emerged from the T10 standards body. The Object-Based
Storage Devices (OSD) specification [5] has introduced a
new set of device-type specific commands into the SCSI
standards family. The specification defines the OSD model
and its required commands and command behavior. The lack
of an active storage OSD platform led to the design of the
active storage OSD framework described in this paper. From
the application layer, the programming model is similar to an
asynchronous RPC. This model provides the most flexibility
to the application and user.

The framework provides a standardized API that can
express a rich set of functionality for both application and
file system developers. The API defines a set of object access

978-1-4673-1747-4/12/$31.00 c© 2013 IEEE

methods along with security and access control mechanisms
built upon the existing OSD security protocols. The archi-
tecture allows for multiple virtual machines or execution
engines to support multiple programming languages. In
particular, we are interested in the mechanisms required to
provide secure and safe execution of active storage functions.

In the remainder of the paper, we describe the implemen-
tation and performance results of the framework for a variety
of applications.

II. ACTIVE STORAGE OSD IMPLEMENTATION

The active storage implementation is built on top of an
open-source OSD stack provided by Panasas. They have
developed an open source OSD initiator called open-osd
that has been included in the Linux kernel as of the
2.6.30 release [1]. In addition, Panasas has also taken over
development of the Ohio Supercomputer Center osc OSD
target [12] and released the code. Since this open-osd/osc
stack is undergoing active development, is being supported
commercially, and has been included in the Linux kernel,
it is an ideal platform on which to build our active storage
framework.

The implementation allows the specification of an active
storage engine on the OSD node. The engine could be
complete operating systems such as Linux, virtual machines
such as Xen, application virtual machines such as Java,
or interpreters such as Perl or Forth. The engine provides
an API that at a minimum will allow methods to access
storage objects and collections given sufficient capabilities.
While our current API does not support these features,
the API could also be extended to provide the ability to
access networking functionality and other low-level device
hardware such as cache, head control, and actuator control.

The current implementation has a C API engine based on
a Linux OSD as well as a Java JVM engine. The engines
are sandboxed so that active storage code will be restricted
to specific operations allowed by the API. Ideally, the OSD
would run a stripped down version of Linux that runs on the
OSD that further limits the reach of active functions. Further
development will include other active storage engines such
as simple engines based on scripting languages such as Perl
or Python.

With the ability to download code to a storage peripheral,
there is certainly a concern that this code may perform
unsafe operations on data. The engine sandboxing can limit
any dangerous side effects of method execution by enforcing
time limits on function execution and restricting resources
touched by the method. In addition, the OSD security mech-
anisms require that any command must provide capability
keys that authenticate it in order to operate on an object.
Our active storage access control methods can use the same
OSD security mechanisms.

Though active storage method execution is essentially
function shipping, the existing framework is not sufficient

Bit
Byte

7 6 5 4 3 2 1 0

CDB continuation descriptor header

0 (MSB)
CDB CONTINUATION DESCRIPTOR TYPE (0003H)

1 (LSB)

2 Reserved

3 Reserved PAD LENGTH (p­n)

4 (MSB)
CDB CONTINUATION DESCRIPTOR LENGTH (n­7)

7 (LSB)

CDB continuation descriptor type specific data

8 (MSB)
CODE BUNDLE OBJECT_ID

11 (LSB)

12 CODE BUNDLE API VERSION

13 Reserved

14 (MSB)
METHOD ID

15 (LSB)

16
Method arguments

n

CDB continuation descriptor alignment bytes

n+1
Pad bytes (for eight­byte alignment)

P

Figure 1. EXECUTE FUNCTION Format

to support functional programming models such as MapRe-
duce [10]. The primary deficiency is the ability to send key-
value pairs to storage nodes and also repartition the data
when necessary. Node-to-node communication could address
part of this, but higher level constructs for functional model
support of active objects is beyond the scope of this work.

A. Programming Model

The central programming model that applications use
when using the active storage framework is a remote proce-
dure call (RPC) model. In order to execute a precompiled
function, it is first written to the OSD as an object, with its
attributes having an added field that allows it to be specified
by the type of function such as C, Java, etc. In order to
invoke the function, an execute command is sent to the target
along with a buffer which can contain any information the
function would require, therefore acting as a way to bring
any necessary arguments to the target side for execution.
The command is also able to return data to the client which
can include the final results of the function being run.

1) OSD Changes: In order to implement active storage
remote execution, a few additions had to be made to the
OSD specification. The main change is the addition of an
EXECUTE_FUNCTION command that is used to trigger the
execution of a function already existing as an object on the
target OSD. The command format can be seen in Figure 1.
The OSD command uses continuation descriptors to extend
the send buffers to pass parameters necessary to execute a
remote function - e.g. an encryption remote function that
requires parameters that specify the source and destination
objects as well as the key to use. Return buffers can be
used as simple acknowledgments that the function executed
correctly, the destination of an object where data had been
written or contain the full output of a function as long as
enough space was allocated before the call.

Client iSCSI Target

Execution Engine

OSD Objects
Stored on
Filesystem

OSD Target

OSD Services
RPC Process

RPC

Pipe

iSCSI

Figure 2. High Level View of Active Storage OSD

Several other smaller changes exist as well. These include
an addition to the root information page on the OSD target
containing information as to which virtual machines are
supported. This allows a client to query the target and
determine whether their executable function is compatible
with the engines present on the target system. Another
change is an addition to an object’s attributes to specify
the type of virtual machine that should execute it (C, Java,
Python, etc) as well as information such as the active storage
OSD API version it is compatible with, a range of APIs it is
also compatible with and an implementation version which
can be used to differentiate and identify differing versions
of active storage functions. This attribute is set as part of
a typical set_attributes() call from the client. If the
virtual machine type is not specified or not supported by the
system an error is returned to the client.

The EXECUTE command eventually is decoded on the
target where the correct function object to be executed is
retrieved from the OSD and hard linked into a temporary
working directory where it will be executed. This is the
same directory the engines are chrooted into. The type of
engine to be called is then determined based upon the objects
attributes and started if it has not been already. The engine
then has the location of the executable object passed to
it along with the arguments buffer sent with the execute
command and the size of the return buffer expected. These
are sent across a pipe which connects the iSCSI target with
the engine currently in use. The engine then executes the
function object which can call OSD commands to the target
through the RPC interface and finally writes back the output
data back through the pipe which is returned to the client. At
a high level, the interconnected blocks of an active storage
OSD look like the diagram in Figure 2. It shows the client
on the left and the target on the right as well as some of the
target’s constituent parts, such as the separate executables in
blue and the communication protocols they use.

2) Expressing parallelism: Execution of an OSD active
object function has two major complications with respect to
high performance parallel computation - namely simultane-
ous execution and long running functions.

Simultaneous execution allows for functions to be ex-
ecuted on multiple OSDs simultaneously. Implementating
simultaneous execution can be tricky but allows for great
speedups when information can be spread across multiple
OSDs and processed concurrently. In the current implemen-
tation of the execute method, a timeout can be specified on
the target. If this limit is reached the execute method called
from the client returns without actually having completed
and allows the function to continue its execution in the
background until it completes. One way to allow multiple
OSDs to execute simultaneously is to change the timeout to
zero causing every execute method call from the client to
cause the start of the selected function to return immediately.
In terms of time, this would only be a short command to
tell the target to begin execution of the specified function.
With essentially only a round trip time, a client could iterate
over all the OSDs containing data and start execution in
multiple OSDs almost concurrently. Our measurements show
that the round trip is around one millisecond. The results
utilizing multiple OSDs in this paper were generated using
this method.

OSD is built on top of the iSCSI protocol which causes
some problems primarily for long running active storage
code. The first problem is that the protocol has a specified
timeout of approximately 30 seconds. The second problem
is that only the client can submit a iSCSI request meaning
the target cannot send the results of an function without
first being requested to in some way. This limits the ability
for the client to do asynchronous RPC - i.e. sending a
request and not waiting for the return. Functions which
execute synchronously and do not overtake the time limit are
therefore the easiest to handle, but mechanisms still need to
exist to allow both simultaneous execution and long running
functions.

Long running functions, defined as those which take
greater than the maximum allowable iSCSI timeout, have
greater issues to overcome. Since the OSD execute method
would have returned due to the timeout, there is no direct
way to notify the client when the task is completed. One
way to overcome this is to use one or more objects as a way
to pass messages between the client and target. This could
be implemented as simply creating or writing to a specific
object upon completion of the function. When the function
returns due to the timeout, it could include information such
as expected times to completion which could be updated at
various times. It could also possibly be used for sending
control signals to the function as well - for example, creating
a queue of objects for the function to execute on. However,
using the object to indicate completion requires polling,
since the client and a running function can not directly
communicate once started. Although polling can be resource
intensive, if done with knowledge such as the expected
time to completion, it should prove to not be too hard to
implement successfully.

start(indata, outdata)
{

int size;
obj_get_size(indata.srcObj, size);

inBuf = osd_allocate(size);
osd_read(indata.srcObj, inBuf, size);

encBuf = encrypt(inBuf, indata.key);

osd_write(indata.destObj, encBuf);

outdata = size;
osd_free(inBuf);
osd_free(encBuf);
return 0;

}

Figure 3. Example Active Storage Function Code

3) Code Example: Figure 3 shows an slightly
simplified example of an active storage function. The
code implements a simple encryption function. The
osd_read(), osd_write(), obj_get_size(),
osd_allocate(), and osd_free() functions are part
of the OSD API - i.e. OSD functions that can be called
by the active storage function to access the OSD. The
OSD API allows active storage functions to call the full
set of OSD commands and is the only way for active
storage functions to access OSD objects. Note, that the
encrypt() call must be linked in with the downloaded
active storage function since libraries such as libssl are not
available on the OSD.

B. Execution Engines

All the engines have at least some implementation in C
which is the language used in this implementation. Each
engine is compiled into a separate executable and contains
a loop which runs indefinitely taking in jobs through the
pipe interface to the target, executing them, then returning
their output back through the pipe. They share a code base
which contains the common code including setup such as
initialization of their RPC interface and chroot setup. It also
contains the C versions of all the OSD commands available
in the active storage function API. When using fastRPC
special osd_allocate() and osd_free() functions
also exist to allow allocating data to the shared heap as well.

For now, each engine has parts written in C, although
its possible to write them completely in different languages
such as Java it would require rewriting some or all of the
common code between the engines. In order to use other
languages for now they must be able to interface with the
common C code to use the fastRPC interface.

1) C Engine: The c-engine is the simplest of the two
currently implemented engines since it requires no com-
munication between different programming languages and
should also be the fastest. Once an execute request is
received by c-engine, which includes any arguments which
will be sent to the function and an expected output size, the
object is readied to be executed. In this case, the object
is in the form of a shared library. So, first dlopen is
called on it which returns a handle if correctly opened.
The main function in every C executable should be named
start, so dlsym is called to return the address of the
function using the dynamic library handle and is mapped to a
function prototype with the same signature as that used in the
start function. The start() function is simply called
as if it is a local function with its associated arguments,
including a pointer to the arguments which is used as in data
and to an output buffer already allocated to the maximum
expected return size. Once finished, the output buffer is
simply returned by copying it over the pipe back to the main
target to be returned to the client. Finally, dlclose() is
called which closes the handle and allows for a function to
be loaded on the next call to dlopen().

2) Java Engine: The java-engine is the other currently
implemented engine. It allows for the execution of Java
archives (JAR) and provides for the same API calls as the
c-engine which include all those which pass through the
RPC framework. It consists of a combination of Java and C
code and its primary executable is written in C. The java-
engine’s main is simply used to first initialize its side of
the RPC connection, and then begin a loop which waits for
data on the pipe which like c-engine consists of arguments
to be passed to the function that will be called. This loop
then begins executing the Java program by setting up a JVM
which utilizes the Java Native Interface (JNI). The JNI relies
on a set of function headers and implementation as well as
a Java class containing Java versions of the same headers to
call the C code from the Java program. It is through these
that the OSD commands are accessed from Java functions
and once past the translation layer utilize the same code
as those through c-engine. Once the JavaVM is started, JNI
commands are used to call a main() function which is part
of one of two intermediate Java classes that help execute
the Java remote function and the function’s arguments are
passed in as part of that call to its main.

The first Java class is the javaExecuter which is
where the main function is defined which was called
from java-engine. It begins by using the other Java class
called javaClassLoader to read in the appropriate .jar
archive so it can be executed like any Java class. Finally
javaExecuter creates a new instance of the active stor-
age function that was just read in, finds the main method
which will be named ’run’ in active storage Java applica-
tions. The executer then invokes the new instance of the
active storage function that was requested to be run and

passes in the arguments that had been transferred from the
client through java-engine. These arguments also provide for
a return path for data back to java-engine and eventually the
client.

The JARs themselves only contain two files. The first is
the compiled form of the Java class that will be executed
as a .class file. When it is compiled it requires access to
the JNI header class however. The second can be generated
while creating the .jar and consists of a manifest file which
contains a line identifying it as a jar compiled for running
on an OSD. This manifest file is checked when executed.

3) Execution Engine Support: Since the engines are sep-
arate pieces of code for security reasons, they need a way to
access the OSD objects once they are committed to disk. The
fastest way would be to use some of the same code as the
iSCSI OSD server and open the directory where the objects
are stored and access the objects directly from the engines.
This, however, causes problems by acting in opposition to
both types of security that were to be implemented. This
method was however tested just to gauge the speed of the
RPC OSD servers that were eventually used as a comparison
to the fastest possible connection. These RPC servers are
actually based off of much of the same code as the main
iSCSI target, but instead of providing an iSCSI interface
they provide one only through RPC allowing the engines to
be segregated from the rest of the machine.

C. Secure Implementation

In order to limit the potential damage of any harmful
code we utilize two methods which added together provide
a significant barrier against attempts to affect more than just
the OSD objects. The two methods are chroot sandboxing
and multiprocess implementations.

1) chroot Sandboxing: We begin by sandboxing our
execution engines individually using the operating system
chroot command. This command is called during the
initialization of the engine and limits the engine’s view of the
surrounding file system to only a specific directory we create
and populate with only a limited selection of libraries and
initial configuration files. This allows control over both what
functions are available and the directories that are accessible
from inside the active storage functions being run within one
of the engines.

By limiting and controlling the libraries available to the
downloaded code it is also possible to further decrease the
potential damage by modifying those libraries. Although
providing a large number of libraries allows additional
functionality, it also can expose the ability for code to run
functions that could be dangerous to the system that reside
alongside a library containing other important or useful
functions. To solve this it would be possible to create active
storage specific versions of common libraries that remove
any functionality deemed harmful. Libraries could also be
created to provide additional functionality such as inter-OSD

target communications which could allow active storage
functions to communicate to other targets or even active
storage functions running on those targets.

2) Multiprocess Implementation: Sandboxing can prevent
active storage functions from causing damage to objects
outside the sandbox. However, there is a potential for
other unauthorized activity by active storage functions. For
example, consider an active storage function that is linked
directly in the same process to libraries that provide OSD
services such as create object, read object, write object, etc.
These libraries will have code that check for capabilities that
enforce OSD security mechanisms. However, if the active
storage function is in the same process space as the OSD
services library, the function could theoretically sidestep
these checks and access objects that it may or may not
have access to. The solution to this is to implement the
OSD services library in a separate process from the engine
executing the active storage function. That requires an RPC
mechanism to communicate between the engine and the
OSD services library. This split allows the engine to remain
in its sandboxed environment but still be able to access the
stored objects, though indirectly.

Remote Procedure Calls (RPC) are a type of inter-process
communication (IPC) and are used here to allow a separation
between the execution engines and the OSD targets for
security purposes. As opposed to other IPCs which are
usually fairly simple such as pipes or shared memory areas
RPCs essentially allow functions to be called to the remote
process. The specified function calls to be remotely executed
have to be packaged up with their parameters in order
to be sent to a waiting process typically over switched
network protocols such as TCP or UDP. RPC is typically
used for communications over IP networks but can also
be used locally on a machine between two processes that
have the ability to execute those functions. Output data is
then returned to the process that started the RPC. RPC is a
very robust framework and is used as a basis for the Linux
Network File System (NFS).

One of the advantages of RPC that led to its use here is the
ability to communicate out of a sandboxed environment such
as the one that is used here. The RPC implementation will
be used to allow aforementioned sandboxed active storage
functions to retain their ability to interact with the OSD such
as through reads, writes, etc.

At the bottom and supported by several individual active
storage functions is the code to be executed. In the case
of a C program it is a shared library and with Java, it is
a Java archive (JAR). These active storage functions are
then executed from within execution engines that exist on an
active storage enabled OSDs. It is also through these engines
that OSD commands sent from the running downloaded code
are able to make their way across an RPC interface and
out of the sandboxed environment before being executed at
the RPC target. The RPC API currently includes the most

important OSD commands, though not all, including read,
write, get attributes, etc. The RPC API is the only way to
access the OSD objects from the active storage functions.

RPCs have two ends, one is built into each engine and
the other is a separate process that interfaces directly to
the OSD and is effectively an RPC version of the iSCSI
target reusing much of the same code. This system allows
the engines running their untrusted code to exist in their
sandboxed environment while still being able to access the
objects stored on the OSD. The RPC target is however only
able to handle one request at a time and sends back its result
when the OSD command is finished.

Our original implementation of RPC used the standard
SunRPC/ONC library [28]. SunRPC is a relatively heavy
RPC implementation designed to allow distributed systems
communication across multiple heterogeneous computers.
As a result, it supports object serialization/deserialization
and machine-independent data transfers. For the purposes of
our requirements, these were features that were beyond our
needs. Since all RPC calls are to the local machine, there is
no need for machine-independent data conversions and data
transfers do not need to be performed through socket calls
but can be done through other local IPC mechanisms such
as shared memory.

FastRPC: The FastRPC [16] system is designed to
provide a fast intranode RPC mechanism using shared
memory as well as a secure way to call functions in a piece
of code that was either not trusted or had the possibility of
crashing. One example of which is an image decoder that
could contain exploits and could be run separately from the
main program to limit possible unwanted activity including
access to private data. FastRPC uses two simpler and faster
methods of communication between the two processes and
only works in one direction (master calls functions on the
slave) which for active storage purposes is from the engine
in its sandbox to the OSD services process.

The first communication type it uses is a pipe which
is used to send the function prototype to the slave. This
includes a number to reference which function is requested
and any data necessary to run that function such as its
arguments. This pipe is also used to send back any return
arguments. Because the heaps are not synchronized between
the processes, variables passed by their pointer would not
normally work and these limits would make it impossible to
call the OSD functions. Pass by reference is required in order
to allow for large buffers. This is accomplished by using a
shared heap that is mapped to both processes (engine and
OSD services) with the same starting address and size. This
heap can have large data structures allocated on it which
enables the functions to pass pointers instead of having to
copy the structures or buffers as an argument. This is used
in all the OSD commands such as read and write to move
their possibly large buffers between the sandboxed engines
and the OSD services process.

FastRPC Security: This limitation of RPCs is that only
methods defined and implemented on the remote side can be
run since no actual code is passed over the connection, just
the arguments and eventually the return data. The RPC API
is limited to those used to access the OSD and is the only
means provided to the active storage functions to access data
outside of their environment ensuring along with the chroot
that private data such as system files cant be accessed. This
provides an additional layer of protection here since it means
the code that will actually run on the RPC target can be
considered trusted, limiting the untrusted code execution to
the sandboxed engine.

FastRPC also has similar security implications as the
original RPC interface, although with slightly different
mechanisms due to being designed to work only on a single
machine. FastRPC also allows only the predefined functions
to be called from within the engine and also will only be
running trusted code on the FastRPC target which imple-
ments these functions. This RPC sends similar information
compared to the Sun version though its differences are
mostly in how. Here the engine is only sending a number
which is used to reference which function is to be executed
on the remote side along with the arguments that are part of
the function being called instead of having to pack up any
large data structures before being sent off.

Unlike the original RPC, the engine and FastRPC interface
have a shared memory heap on which they can allocate
memory and can pass pointers as the arguments instead
of having to copy large amounts of memory over the pipe
interface between the two. It would, therefore, be easy to
write program code into the shared heap as it would be
for any buffer and attempting to have it executed. It would,
however, require finding a way to have the OSD services
process somehow begin executing that code.

III. RESULTS

Active storage enabled OSDs have a chance to increase
performance for data intensive applications in several ways.
The first is the ability to do data intensive operations on
the storage node where the data is stored instead of having
to transfer it to the client for computation, also reducing
network congestion. The second is that when using a system
with multiple OSDs, one can split the data equally among the
OSDs then simultaneously call an active storage function on
all OSDs. This allows for potential parallelism by reducing
the time needed to do certain data intensive tasks by a factor
of the number of nodes that can be utilized.

A. Performance

Since OSDs are a network storage system, it is a safe
assumption that a storage node or set of nodes could contain
all the data of interest to someone and in these tests we
make that assumption. The multi-node results were taken
from experiments performed on a 16-node cluster where

Figure 4. Local vs. Active Storage

each node contains two 1.8 GHz dual core CPUs, 2 GB
of memory, and a 80GB 7200 RPM SATA drive used
for testing. The standard Linux kernel (2.6.38) was used
with buffer caching enabled. They nodes are all connected
through a dedicated gigabit network switch.

B. Impact of Data Transfer

This first test shows the results for an AES encryption,
then decryption of a 128MB file. Both local and active
storage based tests worked on a 4MB block size and would
read, encrypt or decrypt, then write the result to an object
which holds the output. Times were recorded from the
client and include any overheads associated with either
the iSCSI protocol and/or active storage functions and are
in milliseconds. These overheads will be quantified in a
following section however. The object to be acted upon
already existed on the OSD and was generated with a
random file generator. The numbers are the averages of 10
runs with variances between runs being less than 250 ms.

Figure 4 shows how much active storage can decrease
the total times for even a very CPU intensive operation
such as encryption. Here the active storage versions take
approximately 2/3 the time that the local version takes.
Figure 5 shows a closer look at why the AS version is faster
by looking at only read, write, and encrypt/decrypt times.
These times are from the same test as the previous graph.

Even without any of the overheads shown here, we can see
the total times are almost exactly the same as the previous
graph. The time needed to do the actual AES operations is
fairly static between local and AS versions with local being
faster for encryption but AS faster for decryption. The read
and write times are very different though. The ability to
work on data locally (in the case of the AS times) removes
the need to shuffle the data across the network and is able
to almost completely remove the data transfer time, leaving
only the AES operation as the main contributing time.

Figure 5. Local vs. Active Storage Breakdown

C. Evaluation of Multiple OSDs

One of the biggest areas impacted by active storage is
when multiple OSDs can be used simultaneously to quickly
handle large data heavy applications. Several active storage
functions were run on the cluster utilizing up to 8 nodes
as AS enabled OSDs. These included a function to simply
count the number of occurrences of a value, a simple version
of grep and AES encryption. They were run on 1, 2, 4, and
8 nodes and used files of sizes 128, 156, 512, and 1024 MB.
These files were generated with a random file generator so
the pattern matching and simple grep program were able
to locate data instead of searching a zeroed out file. Five
runs of each test were completed at each combination of
the number of nodes and file size. The average time was
taken across all five runs and the speedup compared to a
single Active OSD was then calculated where a speedup of
2 would indicate a halving of time. The standard deviation
was also calculated as a percentage of the total execution
time in order to compare the variation among runs whose
run times can vary drastically.

The first is a function we call wordcount, which simply
reads in any size buffer and looks for appearances of a
specific 8-bit character, in this case a space. It is the simplest
program used in our testing and represents an application
that is only read intensive with very little output other than
a single number.

Figure 6 shows the speedup in multiples compared to
the first run for the different file sizes. The lines for the
various file sizes overlap each other as they had very
similar speedups. The scaling of speedup with the increasing
number of OSDs is nearly perfect with little deviation. The
relative standard deviation of the speedup is only 3.51%
which is consistent with the near perfect speedup seen.

The second function is a version of grep. This function
simply takes from the client the string that is being searched
for along with object ids for its input and output. Instead
of text files with line breaks, we use randomly generated
files for large file sizes. As a result, the grep function reads

Figure 6. Active Storage Wordcount Results

Figure 7. Active Storage Grep Results

through the input object 128 characters at a time which is
about the length of a normal line of text. If it finds a match
it writes the output line to the output object. In this case
the word ”the” was used as the search word and showed up
numerous times in every random file.

Figure 7 shows a similarly concentrated grouping, with
all file sizes scaling fairly close to optimally. The relative
standard deviation, again, is very small and is very close to
the previous test at 3.76%.

The last function provides AES encryption or decryption.
It takes in arguments of an encryption key, input object and
output object. It represents a program that has reads and
writes along with a CPU intensive task. The results shown in
Figure 8 are only from encryption though decryption shows
near identical results as seen in Figure 5.

This more write and CPU-intensive program shows
slightly superlinear with sizes of 1024MB. This is most
likely due to the total read and write size of 2048MB which
will not fit into the disk cache of a single OSD which has
2048MB RAM. With smaller sizes, the reads and writes are
cacheable. Also, tests with 2 or more OSDs used at most
1024MB reads and writes which will fit in the cache. The
relative standard deviation here was slightly higher than the
other two at 5.15%.

Figure 8. Active Storage AES Encrypt Results

D. Overhead Analysis

A system such as this one with multiple layers and
communication methods being used concurrently has many
possible significant sources of overheads. A single EX-
ECUTE FUNCTION OSD call from the client must be
encoded and sent over the iSCSI link to the main OSD target.
It is then passed to an engine for execution over a pipe. The
object to be executed has to be either loaded as a shared
library in the case of a C function or read in as a class if it
is a Java function. While executing, the functions must also
use RPC in order to call OSD commands instead of calling
them directly. Finally when the functions return, their return
data is sent back over the pipe out of the engine back to the
iSCSI target, then over iSCSI back to the client.

These overheads exist as two kinds. The first is fairly
independent from the function being called and includes
iSCSI latency and the time needed to communicate from
the iSCSI target to the engines and back. This overhead
is actually quite small however. A test was run using a
“no-op” function which is executed on a remote target.
This function only takes in a typical input (PID and OID)
which is only 128 bytes, and returns 96 bytes of hard-coded
information without making any RPC calls or doing any
arithmetic operations. This, therefore, is a measure of these
latencies and averaged over ten runs was only 415us with a
maximum of 552us.

The second depends on the number of OSD commands
that are called from the function and include all communi-
cation over the RPC interface and for Java the additional
interface between Java and C. These add up as multiple
OSD commands are called and have the greatest possibility
of slowing the executing functions down, especially when
many small accesses are used.

1) Impact of Sandboxing: If security was not of im-
portance, a RPC system would not be needed to allow
OSD commands to pass from the function being executed
to the OSD system. This allows the engine to have the
OSD code compiled into itself which gives the executing
functions direct access to OSD commands without having

Figure 9. Active Storage FastRPC vs Direct

to use any communication system. For testing, this direct
communication system was implemented and represents the
fastest possible way to interact with the OSD and its objects.
This direct method, therefore, does not perform chroot(),
does not exist in a sandbox or use RPC.

Figure 9 shows the read and write times that were
collected as part of an AES encryption function in C. These
are the total read and write times collected from inside the
AES function that was being executed. The file size was
64MB which resulted in 16 - 4MB reads and 16 - 4MB
writes and these were averaged out over ten runs. The times
reflect that taken for all 16 reads or writes not for a single
read or write.. One function was run using fastRPC through
an engine that was sandboxed while the other did not use
RPC, was not sandboxed, and communicated directly to the
OSD files. We can see that reads take approximately the
same amount of time with only a .4ms slowdown or 1.9%
for RPC. Writes have a larger difference of 8.9ms or 12.9%.
The speed of the AES encryption which was not shown in
the graph remained unaffected, the direct function actually
averaged a few milliseconds slower than the RPC encrypt,
but over 8̃00ms the difference of 14ms should be due to
run- to-run variations that are typically greater than this
difference.

2) Impact of RPC: The current communication method
between the engines and the OSD objects is through fas-
tRPC due to its speed in comparison to other tested RPC
frameworks such as SunRPC which was initially used in
this system. Figure 9 can also be viewed as showing the
slowdowns caused by using RPC over direct calls. SunRPC
was also tested in the same group, but is not included in
a graph due to its large increases in both read and write
times. SunRPC reads took approximately 169 times longer
while writes took 26 times longer. This is due to SunRPC
being designed for communication not just between local
processes but between those processes across networks.

Figure 10. Active Storage Client vs Engine Times

FastRPC benefits greatly from being designed only for
local communications. This allows its speeds to be very
similar to those achievable without any interprocess com-
munication. Although the small increases in time due to
fastRPC compared with direct calls are near those of run
to run variations, they always show at least some increase
in time compared to direct OSD calls.

3) iSCSI and Asynchronous Timing: When testing asyn-
chronous active storage functions, total times cannot be
determined from the client due to the iSCSI target returning
the execute function method immediately. The timing must
therefore be done from within the engines and covers the
time necessary to load the function and execute it. The
data for the results section utilizing multiple active storage
OSDs was obtained this way by timing the call to the shared
library that contains the function to execute. This, however,
does not include either the iSCSI latency or that from the
communication between the iSCSI target and the engine
being used. This section will quantify the additional time
that was not accounted for in those tests.

Figure 10 shows the results for a 128MB AES encryption
then decryption averaged over ten runs. The execute com-
mand was used synchronously so the client times include the
time required to execute as well as the additional overheads
such as the iSCSI transfer times. The engine execute time
only covers the time to execute the active storage function
and is measured the same as the tests covering multiple
OSDs asynchronously. The difference between the two times
is very small with the client registering an extra 1.6ms for
the encrypt and 1.7 ms for the decrypt. These represent a
very small overhead unless very small objects are to be acted
upon. It is due to this small value that this overhead was not
mentioned by value in the previous section which focused
on scaling across multiple OSDs.

Figure 11. Active Storage C vs Java Times

E. Evaluation of Multiple Execution Engines

Currently two engines are implemented enabling both C
and Java code to be executed. The C engine is the simplest
of the two due to it being able to use common dynamic
library loading, unloading, and execution commands. The
Java engine however must load the Java function into the
Java virtual machine and also pass all OSD commands
through the Java to C interface before passing over the
same RPC interface also used by C functions. This should
cause a decrease in performance in addition to the typical
performance difference between similar Java and C code.
The code used between languages is very similar in all cases,
only switching out any necessary function calls and using
data types relative to each.

Figure 11 shows a comparison between the total execution
times of both grep and wordcount run in both languages. The
times were taken from the client with neither performing any
writes. With a 32MB file size the C version is much faster
for both functions with speedups 3-4 times the Java version.
This difference is due to slower Java execution as well as
Java to C interface inefficiencies. In order to remove any
purely language related execution time issues and focus on
the Java to C interface, a new function was created to simply
copy an input object to a destination object using as little
code as possible. It performs the copy in 4MB chunks and
includes timers for the read and writes.

The file copy was run with a 128MB file which would
require 32 4MB reads and 32 4MB writes. Figure 12 shows
read times while Figure 13 shows the write times. Times
were taken from two locations, the first from inside the
function being executed which are named either function
read or function write times. The second set was taken from
the engine which recorded the times to make the RPC calls
for either the reads or writes. The times were then combined
to get the totals for each set of reads and writes.

The engine read and write times are fairly consistent

Figure 12. Active Storage C vs Java Read Times

Figure 13. Active Storage C vs Java Write Times

between languages. This is expected since the RPC calls to
the OSD Services RPC process are the same for both Java
and C. However, the timing for the function calls shows
a difference. C shows almost no overhead, as expected, in
calling the RPC OSD functions. An overhead, however, can
be seen when comparing the function times for both Java
reads and writes and is approximately 200ms for each. This
number does not include any JavaVM setup times since it is
derived by timing only read and write calls inside the Java
active storage functions. This time is therefore attributable to
the time needed to cross the Java to C interface. It includes
the JNI interface as well as memory allocations, copies,
and frees that are necessary to allow the Java functions to
utilize fastRPC due to them not being able to perform these
functions directly to the shared heap. We are investigating
methods to allow Java to directly call the fastRPC routines
without making the Java to C transition.

IV. RELATED WORK

There has been little work in the integration of OSD and
active storage. Recent work has examined the use of active
disk principles in the Lustre parallel file system [21]. Their
work also uses a “filter” in the object storage target stack
that processes streams of data from defined active objects.
The model is similar to the active disk streamlet model
proposed by Acharya et al [2]. While object-based, it is not
compatible with the OSD standard. John et al. used an object
oriented model that mapped OSD objects to a class and set
of methods. The execution paradigm is also asynchronous
RPC, but can only operate on a single object. More recently,
Xie et al. described an OSD active storage framework that
defines special function objects that are linked to particular
objects [32]. Similar to the filter/stream model, the function
objects are invoked automatically whenever the associated
object is read or written. Security is provided because of
the limited streams/filter API and functions are assumed
to be vendor-only. Earlier versions of this work allowed
for policy specifications as well as integration with recon-
figurable hardware [22], [33]. Again, the filter model is
limited to a single or small set of objects and limits the
types of applications as well. For example, functions can
not create new objects or conditionally access other objects.
Our model provides a much richer API allowing functions
to be much more full-featured. The closest to our work
is iOSD from the Ohio Supercomputer Center [13]. They
also use an RPC model and allow functions full access to
objects. However, they do not allow different virtual machine
execution engines.

V. CONCLUSIONS

We have presented a design of an active storage system
using OSDs. The execution model is based on the use of
remote procedure calls whereby functions are downloaded
to an OSD for execution. The design allows for multiple ex-
ecution engines with high sandboxed security and relatively
low overhead. Performance results show scalability across
multiple OSDs.

ACKNOWLEDGMENT

This work was supported in part by a National Science
Foundation High End Computing University Research Ac-
tivity grant (award number CCF-0937879). Any opinions,
findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect those of the National Science Foundation.

REFERENCES

[1] http://www.open-osd.org.

[2] A. Acharya, M. Uysal, and J. Saltz, “Active disks: Program-
ming model, algorithms and evaluation,” in Proceedings of
the International Conference on Architectural Support for
Programming Languages and Operating Systems, 1998.

[3] N. Ali, A. Devulapalli, D. Dalessandro, P. Wyckoff, and P. Sa-
dayappan, “An OSD-based approach to managing directory
operations in parallel file systems,” in Proceedings of the
IEEE International Conference on Cluster Computing, 2008,
pp. 175–184.

[4] Information Technology - SCSI Object Based Storage Device
Commands (OSD), ANSI, Mar. 2002.

[5] Information Technology - SCSI Object Based Storage Device
Commands -2 (OSD-2), ANSI, Jan. 2008.

[6] M. Beynon, R. Ferreira, A. Sussman, and J. Saltz, “DataCut-
ter: Middleware for filtering very large scientific datasets on
archival storage systems,” in Proceedings of the IEEE/NASA
Goddard Symposium on Mass Storage Systems and Technolo-
gies, 2000.

[7] P. J. Braam and R. Zahir, “Lustre technical project summary,”
Cluster File Systems, Inc., Mountain View, CA, Technical
Report, Jul. 2001.

[8] P. H. Carns, W. B. Ligon, III, R. B. Ross, and R. Thakur,
“PVFS: A parallel file system for linux clusters,” in Pro-
ceedings of the Annual Linux Showcase and Conference, Oct.
2000, pp. 317–327.

[9] C. Chang, R. Ferreira, A. Sussman, and J. Saltz, “Infras-
tructure for building parallel database systems for multi-
dimensional data,” in Proceedings of the International Paral-
lel Processing Symposium, 1999.

[10] J. Dean and S. Ghemawat, “MapReduce: Simplified data
processing on large clusters,” Communnications of the ACM,
vol. 51, no. 1, pp. 107–113, Jan. 2008.

[11] A. Devulapalli, D. Dalessandro, N. Ali, and P. Wyckoff,
“Attribute storage design for object-based storage devices,”
in Proceedings of the IEEE/NASA Goddard Symposium on
Mass Storage Systems and Technologies, 2007, pp. 263–268.

[12] A. Devulapalli, D. Dalessandro, P. Wyckoff, N. Ali, and
P. Sadayappan, “Integrating parallel file systems with object-
based storage devices,” in Proceedings of Supercomputing,
2007, pp. 263–268.

[13] A. Devulapalli, I. T. Murugandi, D. Xu, and P. Wyckoff,
“Design of an intelligent object-based storage device,”
Ohio Supercomputer Center, Tech. Rep. [Online].
Available: http://www.osc.edu/research/network file/projects/
object/papers/istor-tr.pdf

[14] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W.
Chang, H. Gobioff, C. Harding, E. Riedel, D. Rochberg,
and J. Zelenka, “A cost-effective, high-bandwidth storage
architecture,” in Proceedings of the International Conference
on Architectural Support for Programming Languages and
Operating Systems, Oct. 1998.

[15] G. A. Gibson and R. Van Meter, “Network attached storage
architecture,” Communications of the ACM, vol. 43, no. 11,
pp. 37–45, Nov. 2000.

[16] M. Hearn, “Security-oriented fast local RPC,” M.S. thesis,
Dept. of Computer Science, University of Durham, 2006.

[17] K. Keeton, D. A. Patterson, and J. M. Hellerstein, “The in-
telligent disk (IDISK): A revolutionary approach to database
computing infrastructure,” University of California at Berke-
ley, Tech. Rep., May 1998, white Paper.

[18] ——, “A case for intelligent disks (IDISKs),” SIGMOD
Record, vol. 27, no. 3, pp. 42–52, Sep. 1998.

[19] M. Mesnier, G. R. Ganger, and E. Riedel, “Object-based
storage,” IEEE Communications Magazine, vol. 41, no. 8,
Aug. 2003.

[20] D. Nagle, D. Serenyi, and A. Matthews, “The Panasas Ac-
tiveScale storage cluster - delivering scalable high bandwidth
storage,” in Proceedings of Supercomputing, Nov. 2004, pp.
53–62.

[21] J. Piernas, J. Nieplocha, and E. J. Felix, “Evaluation of
active storage strategies for the lustre parallel file system,”
in Proceedings of Supercomputing, Nov. 2007.

[22] L. Qin and D. Feng, “Active storage framework for object-
based storage device,” in Proceedings of International Confer-
ence on Advanced Information Networking and Applications,
apr 2006.

[23] E. Riedel, “Active disks - remote execution for network-
attached storage,” Ph.D. dissertation, Electrical and Computer
Engineering, Carnegie Mellon University, 1999, tech. Report
no. CMU-CS-99-177.

[24] E. Riedel, C. Faloutsos, G. R. Ganger, and D. F. Nagle,
“Data mining on an OLTP system (nearly) for free,” in
Proceedings of the ACM SIGMOD International Conference
on Management of Data, May 2000.

[25] E. Riedel, C. Faloutsos, G. A. Gibson, and D. Nagle, “Ac-
tive disks for large-scale data processing,” IEEE Computer,
vol. 34, no. 6, pp. 68–74, Jun. 2001.

[26] E. Riedel, G. A. Gibson, and C. Faloutsos, “Active storage for
large-scale data mining and multimedia,” in Proceedings of
International Conference on Very Large Data Bases (VLDB),
Aug. 1998.

[27] F. Schmuck and R. Haskin, “GPFS: A shared-disk file system
for large computing clusters,” in Proceedings of USENIX
Conference on File and Storage Technologies, Jan. 2002, pp.
231–244.

[28] R. Srinivasan, “RPC: Remote procedure call protocol speci-
fication version 2,” Sun Microsystems, Tech. Rep. Network
Working Group RFC 1831, Aug. 1995.

[29] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and
C. Maltzahn, “Ceph: A scalable, high-performance distributed
file system,” in Proceedings of the Symposium on Operating
Systems Design and Implementation, Nov. 2006, pp. 307–320.

[30] R. Wickremesinghe, J. S. Chase, and J. S. Vitter, “Distributed
computing with load-managed active storage,” in Proceedings
of the IEEE Symposium on High Performance Distributed
Computing, Jul. 2002.

[31] J. Wilkes, “DataMesh research project, phase 1,” in Proceed-
ings of USENIX File Systems Workshop, May 1992, pp. 63–
69.

[32] Y. Xie, K.-K. Muniswamy-Reddy, D. Feng, D. D. E. Long,
Y. Kang, Z. Niu, and Z. Tan, “Design and evaluation of oasis:
An active storage framework based on t10 osd standard,” in
msst, 2011.

[33] Y. Zhang and D. Feng, “An active storage system for high
performance computing,” in Proceedings of International
Conference on Advanced Information Networking and Appli-
cations, 2008, pp. 644–651.

