
A New High-performance, Energy-efficient Replication Storage System with

Reliability Guarantee

Jiguang Wan 1 , Chao Yin 1 , Jun Wang 2 and Changsheng Xie 1
1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, China

e-mails: jgwan@mail.hust.edu.cn, yinchao408@gmail.com, cs_xie@mail.hust.edu.cn
2 School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL32816, USA

e-mails: jwang@eecs.ucf.edu

Corresponding author: Changsheng Xie

Abstract—In modern replication storage systems where data

carries two or more multiple copies, a primary group of disks

is always up to service incoming requests while other disks are

often spun down to sleep states to save energy during slack

periods. However, since new writes cannot be immediately

synchronized onto all disks, system reliability is degraded.

This paper develops PERAID, a new high-performance,

energy-efficient replication storage system, which aims to

improve both performance and energy efficiency without

compromising reliability. It employs a parity software RAID as

a virtual write buffer disk at the front end to absorb new

writes. Since extra parity redundancy supplies two or more

copies, PERAID guarantees comparable reliability with that of

a replication storage system. In addition, PERAID offers better

write performance compared to the replication system by

avoiding the classical small-write problem in traditional parity

RAID: buffering many small random writes into few large

writes and writing to storage in a parallel fashion. By

evaluating our PERAID prototype using two benchmarks and

two real-life traces, we found that PERAID significantly

improves write performance and saves more energy than

existing solutions such as GRAID, eRAID.

Keywords - reliability; power consumption; performance;

flush disk

I. INTRODUCTION

With the rapid growth of data production in companies,
the requirement of storage space grows very largely as well.
The large-scale parallel I/O system is widely used in high-
performance mass computer systems. Typical applications
need large-scale parallel I/O systems to do mass data
processing. Due to the scale of parallel I/O systems
increasing continuously, the proportion of the energy
consumption of I/O system to the total cost of ownership
(TCO) grows larger and larger. In the data center, the energy
consumption proportion of the disk systems to the whole
systems has reached 27% in 2002. While increasing the
storage system capacity and reducing the average response
time, the energy consumption of storage system will be
higher.

Saving power in computer storage often degrades
reliability, i.e., trade off reliability for power conservation[1].
In replication storage systems, we often power down one or
more disk groups to save energy when the system load is
light. Cite power-proportional layout solutions[2], such as
EERAID[12], GRAID[14], PARAID[11]. However, due to

the deferred writes to be executed on sleep groups in a later
time rather than in parallel with active groups, reliability is
degraded before these operations are finished.

 We have developed an energy efficient replication
storage system without compromising reliability by adding a
parity software RAID (RAID5, RAID6) as a write buffer.
This parity RAID based write buffer is able to buffer many
random small writes into few large writes to produce high
write performance. More importantly, it does not
compromise reliability by writing deferred data to both the
primary group and other groups at the same time right after
we wake up sleeping groups. This salient feature is without
introducing any hardware cost.

Before the new data are flushed to the other non-primary
groups, they may lose new data in the event of disk failures.
In DCD[3], it uses a small log disk as cache disk, but the
cache disk and the data disk are in one disk. Our idea is to
use half of the disk and compose a write buffer into RAID5.
We use the characteristic of RAID5 to guarantee reliability
of the new data in the system, which will be described in
Section III. At the same time, we use the logging write
technology to solve the write performance.

We designed a flush algorithm to prevent the old data
from loss. Because we have used the logging write
technology, the same block data will be stored in different
place of write cache that the performance of read will be
degraded. In order to improve the read speed, we should
reduce the read hit. Then, the read operations are turned to
the primary groups, and the read speed is improved.

The contributions of this paper are described as follows:

 The introduction and evaluation of the storage
system, and its realization called PERAID, capable
of providing ideal reliability of new data and old
data. It also improves the performance without
increasing the energy consumption.

 For high write-to-read-ratio I/O workloads, PERAID
could significantly improve write performance by
77% compared to current energy saving solutions
(GRAID, eRAID0 etc) when the request is all write
request. In addition, it conserves energy
consumption by 29.4% compared to RAID10, and
7.7% to GRAID.

 A comprehensive sensitivity study indicates that,
PERAID improves performance when increasing
write-to-read ratio and under random write
workloads, and has degradations for power and
energy consumption when increasing write buffer

size. PERAID is also flexible with write buffers
made of any type of parity based storage architecture
such as RAID5, RAID6.

The rest of this paper is organized as follows. Section 2
describes architecture and the design of PERAID. The
experimental result and evaluation is introduced in Section 3.
Section 4 describes the related work in disk arrays and
motivation. Section 5 is the conclusion.

II. PERAID

A. The Design of PERAID

The power consumption in standby mode is far less than
that in active mode and idle mode, but it needs a lot of
energy to change from standby mode to active mode.
Therefore, considering the energy consumption, we should
design a way of organization which makes a part of disk be
in standby mode as long as possible, and reduce the
transition numbers from the standby mode to active mode as
much as possible. The main standard is the average time of
system response and bandwidth to measure storage system
performance. We should let the parallel system disk be
dormant as much as possible, and ensure that there is a good
prefetching and caching algorithm at the same time.

When the replica is in standby mode, data will be written
to the primary only. The data in the primary will be
inconsistent with that of the replicas after a period of time,
which will lead to the backup data out of date and reduce the
system reliability. A RAID5 write cache is made to enhance
the system reliability in PERAID. In small applications,
write request is no more than 20 GB in a day. So we consider
using a part of the capacity of a RAID5 data disk as a cache.
If any disk is damaged, it will recover the data through the
log cache and the main disk by this way. When one of the
active main disks is damaged, disk array can get complete
log data through the rest of the primary to restore lost data
with the replicas. So, it can improve the reliability of the
system without additional disks.

Primary storage

Primary
replica

Second
replica

Third
replica

Mirror

RAID5 or
RAID6 Cache data

Figure 1. Architecture of PERAID.

Based on the above considerations, the architecture of the
disk array is made as Figure 1 shows. Disks are divided into
two groups. The first part is disk1, disk2, disk3 and disk4
which are organized into RAID0 as the primary. Another
part is eight disks which are organized into two RAID0 as
the replicas. In the first four disks, a little space is made of

RAID5 as write cache. The replica is usually in standby
mode. When read requests come, only the write cache and
primary are used. Upon receiving write requests, PERAID
send them to write cache of RAID5 at first. When the write
cache is full, it will wake up the replicas and flush the data.
The third replica is the same as the second one.

B. The Prototype System

This System runs in a server developed from Linux as
shown in Figure 2. The module between iSCSI-target
module and MD module is what we need to design and
implement, which is responsible for the energy saving of the
RAID10 between processing.

The iSCSI-target module is responsible for the
transformation of iSCSI and the construction of the target. A
RAID10 energy saving processing module which is using
RAID arrays of redundant information through part or all of
the disk in the mirror disks goes into standby mode to save
energy. When the mirror disk goes into standby mode, read
requests of mirror disks will be redirected to the matching
main disk plate while write requests will be written to the
controller buffer, which will wait until the mirror disk turns
into active mode for writing. MD module manages disk array
and realizes software RAID by virtual block equipment. The
system will offer software RAID for the data disk and cache.

Remote server

Iscsi-target module

Cache

management

Hash table

Cluster table

Mem_cache_table

MD module

Disks

Memory

(1)

(2)

(3)

(4)

(5)

(7)

(8)

(6)

Figure 2. The Prototype system of PERAID.

When PERAID receives a write request, it will send it to

the iSCSI-target module, as shown in step 1. Then it refers to

the hash table in step 2. During step 3, if the search hits, it

will get the cluster that the current block is in now.

Otherwise, it will get the current cluster. If the hash hits, it

inquires the cluster data whether in memory or not. If it is in

memory, it calculates the value of pos, copies the memory,

updates the map simultaneously in step 4, and enters cache

management in step 6. If it is not in memory, it redistributes

a hash node and inserts it into the same block in the list in

step 5. If the hash table is a miss, it inserts hash node, at the

same time it updates the information in step 7. It then

calculates the value of pos, copies memory, and updates the

map simultaneously. Finally, it inquires the cluster whether

it is used up or not. If the number of used clusters is more

than an 80% threshold value, it wakes up the thread to pour

disks.

When a read request is made, PERAID will refer to the
hash table at first, too. If the search hits, PERAID will read
the data from the cache, otherwise it will read the data from
main disk. If the search is a miss, it will get the current
cluster to redistribute a hash node and refresh the node
information. The other operation is the same as receiving a
write request.

C. Data Structure

PERAID uses a hash table to keep the relationship
between cache and data disks as shown in Figure 3.
Considering the reliability of the system, the hash table
whose size is 4 KB is stored in chain of NVRAM. The main
variables are explained below:

Cluster_id records the cluster number of block;
Mem_cache_id records the index of the memory cache

list;
Clu_offset cluster is the offset in the cluster. It can fix the

position of the data in the cache through the cluster number
and the offset of the cluster in order to search conveniently.

Map is an optional unit of eight mapping. There are eight
sectors and each sector records in 1 bit. When the value is
one, it means it is effective and the data in the sector is new.
If it is zero, the things are opposite.

block_id1

.

.

.

block_id2

block_idn

cluster_id

mem_cache_id

map

Hash

disk_cache+

Node Node Node

clu_offset

Figure 3. The structure of hash table.

D. Flush Disk

PERAID can improve the write performance in logging
writes, but it will reduce read performance. It needs to read
the same LBA data from different positions of the cache and
combine them into read request data while having read hits.
In order to improve read performance, we need to reduce
read hits. We should flush the block which has been read
many times first to reduce the read time. The principle of
flush disk is described as follows:

 Release the buffer space.

 Flush disk read more than once and reduce read hits.

 Flush the block which has been written many times
preferentially.

 Follow the spatial locality.
Cache sets are organized in the form of stripes, which is

divided into blocks of 4k bytes. Data is written to cache sets
according to addresses from low to high, in order. So we
should choose the right stripe to flush. The data to be flushed
is put on the memory at first, and it is reorganized in memory
before being written to disk. Our algorithm is better than
FIFO and LRU to do this. We can analyze the advantage of

our algorithm from the flush process, which is described as
follows:

 Choose the appropriate stripe. We choose the highest
frequency stripe which contains the blocks to be read
and written many times. At the same time, we should
select the stripe which shares the same blocks with
the selected stripe. If we use the algorithm of FIFO,
we should then choose the stripe one by one, which
will lead the highest frequency stripe not to be
flushed. The LRU is just opposite, which chooses
the stripes to visit the lowest recently. It will be
contrary to our original intention.

 Reduce the data reconstruction in memory window.
We will consider the stripes only inside the window.
We should reduce the I/O numbers of the flush disk
and reduce the movement of the disk head. We
calculate the correlation of stripes through iteration,
which will be described clearly in the next section.
At this point, neither FIFO nor LRU will be
considered.

III. EVALUATION METHODOLOGY

A. Experimental Setup

PERAID is an implementation based on the Linux soft
RAID. Here, we will introduce all parameters for our
PERAID prototype and the configuration of our baseline
systems. We compare PERAID with GRAID, standard
RAID10 and ERAID. We implement PERAID with 8 disks
to compose RAID10, each primary disk reserves 20 GB to
perform as four members of RAID5 as a write cache. We
implement GRAID with 4 primary disks, 4 mirror disks and
1 log disk. We implement RAID10 and ERAID with 4
primary disks and 4 mirror disks. When receiving requests
normally, it means that there is no operation of flushing the
disk. There are 4 disks running in our system, 5 disks
running in GRAID, 8 disks running in RAID10 and 4 disks
running in ERAID. When flushing the disk, all the disks will
run. The performance evaluation is conducted on a platform
of server-class hardware with an Intel(R) Xeon(R)5110
1.60GHz processor and 2G DDR memory. In the system, the
disk module is 500GB hard disk and runs in Fedora Linux 8
i386 operating system, which connect in 1000M Ethernet
card.

Yellow line

data collection serverdata collection server

Backplane

disk1 disk2

power

Dc port1

Red line

Dc port2

hub

ZH-102

Storage
server

Storage
server

client

Internet

disk3 disk4 disk5 disk6 disk7 disk8

Figure 4. The topological structure of PERAID.

We use the ZH-102 portable wave analysis device to test
the energy consumption. When testing, we connect the direct
current (DC in short) port of the ZH-102 with the power
supply circuit in the storage server disk. Through the
Ethernet, the ZH-102 sends data to a data collection server.
A storage server, the ZH-102 and the data collection server
connection topological structure are shown in Figure 4.
Among them the yellow line voltage is 12V and the red line
voltage is 5V.

We use three true traces collected from the real work
environment as loaded to evaluate the performance and
energy consumption. They are financial-1 and financial-2,
which is described in TABLE I. In the client, we use the
trace tools btreplay to replay the trace. Through the replay,
the request in the trace is sent to PERAID in the form of
iSCSI request.

TABLE I. SPC TRACE INFORMATION

Trace File
Write Request

Ratio

Average Request

Size (KB)

Total Request

Number

Financial-1 76.84% 3.38 5，334，987

Financial-2 17.65% 2.39 3，699，195

B. Experimental results

1) Performance comparison

a) Compare PERAID with other disk arrays.

We use financial-1 and financial-2 to test the response
time. In financial-1 the size of read request is 2707MB and
the size of write request is 14901MB. In financial-2 the size
of read request is 6778MB and the size of write request is
1860MB. We set the value of chunk as 32k and the value of
stripe 96k, which will prove to be the best value of stripe in
the latter experiments. The number of stripes for memory is
100, which means the member is 96*100k. The speed of
trace is 64 which will also prove to be the best value in the
latter. Figure 5(a) and Figure 5(b) show the test data of
financial-1 and financial-2.

(a) average response time of financial-1 (b) average response time of financial-2

Figure 5. average response time with different trace.

PERAID has an advantage in writes because it uses write
logging in the cache. From Figure 5(a) we can see that the
average response time of reads is less than GRAID and
RAID0, but it is almost equal to that of RAID10. The
average response time of writes is much less than any of the
others. In financial-1, the ratio of write request is much
larger than read request. This will lead to PERAID having an
average response time much less than any of the others. The
average response time of PERAID is 67.21% less than that

of GRAID, 67.23% less than that of ERAID0 and 67.00%
less than that of RAID10.

In Figure 5(b), the ratio of read requests is about double
than write requests. We can conclude that the performance of
PERAID is not very good in this situation from the figure.
Note that we can’t see PERAID in average response time of
writes because it is too small for us to see. In TABLE V we
can see that the write request ratio is 17.65% and under our
algorithm SRWLW the write response time is very small.
From the test we get, its value is 0.016. The average response
time of PERAID is 14.04% less than that of GRAID, 14.10%
less than that of ERAID0 but 16.73% more than that of
RAID10. The reason that the average response time of
PERAID more than that of RAID10 is that our system deals
with write requests well but not with read requests. In the
latter experiment, we tested the ratio of reads and writes in
PERAID, and the average response time is less than other
systems.

Because the ratio of write request is bigger in financial-1,
the effect is more obviously. The data can be parallel
processed in RAID10 because the data can be read from
main disks and mirror disks at the same time. And with the
read ratio increased in financial-2, the response time of
RAID10 is less than RAID0 and the others.

b) Compare in PERAID with different parameters.

In order to verify the performance analysis in the third
section, we use the tool Iometer to test the response time in
different random ratios. We test it in 100% write ratio and
the request size is 4KB. SRWLW algorithm deals with the
random request so that the random ratio of request has little
effect on PERAID. We can conclude from Figure 6 that the
response time of GRAID, ERAID and RAID10 will increase
with the random ratio request increasing, but it will have no
effect on PERAID. The line of PERAID is almost a
horizontal line. When the request is write and random
request, the response time of PERAID will be the lowest
which will be 78.1% less than GRAID, 74.4% less than
ERAID and 79.4% less than RAID10.

Figure 6. average response time with different random write ratio.

2) Energy consumption comparison
The ZH-102 can measure the value of dc lines in real time.

The data acquisition server records the current value every
one second. In measuring the total energy consumption of
the system, it shows the change of the energy consumption
system more clearly in power change than current changes.
The power uses the equation P = IU. The parameters that the

power cord line voltage is 12 V, and red line voltage is 5 V.
Combined with the data portable wave record instrument
measured, it will be easy to calculate the change of the power
system.

We first test an offline flush disk. We use the trace
financial-1 and financial-2 to test the energy as Figure 7(a)
and Figure 7(b) shows. We set the cache to 16G, which
means the cache is big enough that it will not flush the data.
We can see that ERAID performs best, because it opens 4
disks and has good energy efficiency, but at the expense of
reliability. PERAID is 29.4% less than RAID10, and 7.7%
less than GRAID. The gap between RAID10 and ERAID is
based on two reasons [14]. The first reason is due to
synchronous write and low write bandwidth in RAID10,
which is explained in the performance comparison. The
reason why GRAID is higher than PERAID is because there
is a log disk in GRAID. At the end of PERAID and
GRAID’s line, there is a sudden increase curve. It is because
the system flushes the disk and the energy consumption will
increase.

(a) Power curve of financial-1. (b) Power curve of financial-2.

Figure 7. Power curve of different trace.

Secondly, we test an online flush disk. We use the trace
financial-1 and set the cache as 2G, 4G, 8G and 16G as
Figure 8 shows. With the capacity of cache increase, the
flush time will delay and the energy will be less. We can
calculate that the energy consumption when the cache is 16G
is 4.3% less than 8G, 21.1% less than 4G, and 26.9% less
than 2G. The reason is when flushing the disk, the energy
will increase. So we will increase the capacity of the cache to
delay the flush time. The best situation is to flush in its spare
time such as at night.

Figure 8. Energy consumption when flushing disk.

IV. RELATED WORK

In this section, we discuss the disk array layouts which
are popular. Then we discuss the reliability research, which

always use the MTTDL to prove the reliability of the system.
At last, we discuss the small write technology which we used
in the cache.

A. Disk Array layouts

Since RAID has been invented in 1988 by G. A. Gibson
[9], the reliability has been a concern by every researcher.
MAID[8] puts forward a kind of energy consumption disk
array which has an alternative tape library as a backup
system. It will organize a group of disks into the form of
RAID0, and define a part of disk as hot disk while others as
cold disk. Hot disk is active for a long time while cold disk is
at low energy consumption status. This technology has
solved the energy-efficient problem, but it does no effect on
reliability.

The main idea of PDC[10] is to migrate the popular disk
data to a subset of the disks array dynamically, so that the
load becomes unbalanced and most of the disks can be sent
to low-power modes. In realization, it puts the files visited
the most on the first disk while putting the second-highest
files in the second disk, and so on. PARAID or EERAID is
almost the same as PDC. ERAID[13] saves energy by
spinning down partial disk groups. Through its time-window
control scheme, it can control the tradeoff between energy
conserving and performance degradation. All four papers
also have the same defect that they have no concern on the
reliability but aim at the energy conserving.

AutoRAID[27] mixes RAID1 and RAID5 to achieve a
good tradeoff between performance and energy. The
architecture of PERAID is of similar design.

GRAID adds a separate log disk on the basis of RAID10
so that it has two replicas in writing new data or reading old
data. Its reliability can be guaranteed. On the other hand,
hardware added in GRAID leads to increase loading time
and uncertainty, which is not advisable.

Rabbit[18] and Sierra[19] are about power-proportional
distributed storage. They all put reliability in an important
role and complete multi-replications. When a primary node
fails, the non-primary one will be activated to restore the
data in the primary. Besides this, each replica are grouped
into gear groups. When one of the primary servers fails, gear
in non-primary groups will spin up to recover the fails.

B. The Small Write technology

Parity Logging[15] is the first paper to introduce the
logging technique used in disk arrays by D. Stodolsky, which
is used to overcome the small write problem of RAID5. In
1995, Log-structured Array[16] was proposed which
combines LFS, RAID5 and a non-volatile cache. LSA writes
the updated data into new disk locations instead of writing in
place to improve the write performance of RAID5. Similar to
Parity Logging, Logging RAID[17] is also proposed to solve
the small write problem of RAID5. Parity Logging, LSA and
Logging RAID are all based on RAID5.

Storage system designers should consider how to balance
performance, power consumption and reliability. It motivates
us to propose a RAID system with a high proportion of
performance and energy consumption without degrading
reliability. Our proposal has the main advantage of keeping a

high proportion of performance and energy consumption
without requiring any additional hardware.

V. CONCLUSIONS

In this paper, we develop a high-reliability, high-
performance and energy-efficient storage system named
PERAID. It has multiplex replicas to provide power
proportionality for general reads and writes. It saves power
by spinning down the replica groups without migrating data
and imposing extra requirements. It uses part of a primary
disk composing parity software RAID5 as a write buffer to
prevent data loss while receiving write requests. This parity
RAID merges many random small writes into few large
writes to gain high write performance. At the same time, it
provides a flush disk mechanism to accelerate the flush rate
and choose the right time to flush.

Implementing the system and doing experiments with
real system traces, our results show that PERAID is effective
in improving performance and saving energy. The result
shows that PERAID’s performance is better than that of
other disk arrays especially when write ratio in request more
than 80 percent. At the same time, PERAID can save energy
29.4% compared to RAID10, and 7.7% compared to GRAID.

We will see in Table II the performance and energy in
different disk arrays. From the table we can see that the
composite score of PERAID is the highest.

TABLE II. PERFORMANCE AND ENERGY IN DIFFERENT DISK ARRAYS

Scheme Performance Energy Efficient Reliability

PERAID 1 2 2

GRAID 3 3 3

RAID10 4 4 1

ERAID 2 1 4

There is still much work to do in the future which mainly
contains two directions. First, because of experimental
conditions, we have not tested the performance and energy
efficient of the replica which will be the next experiment.
Second, we also can make the cache to be RAID10, RAID1
and so on. The purpose is to find out which combination is
the best for performance, energy efficiency and reliability.

In conclusion, we believe that PERAID is an attractive
disk array design: one that offers high performance, while
achieving significant energy savings.

ACKNOWLEDGMENT

This Research is supported by the National Basic
Research Program (973) of China (No. 2011CB302303), the
National Natural Science Foundation of China (No.
60933002), the Natural Science Foundation of Hubei
province (NO. 2010CDB01605), the HUST Fund under
Grant (Nos.2011QN053 and 2011QN032), the Fundamental
Research Funds for the Central Universities, the US National
Science Foundation Grant CCF-0811413, CNS-1115665,
and National Science Foundation Early Career Award
0953946.

REFERENCES

[1] Hyeonsang Eom and Jeffrey K. Hollingsworth. Speed vs.
accuracy in simulation for i/o-intensive applications. IPDPS,
IEEE Computer Society Press, 2000. 315~322.

[2] Jun Wang, Xiaoyu Yao, and Huijun Zhu. Exploiting in-memory
and on-disk redundancy to conserve energy in storage systems.
IEEE Trans. Comput, 2008, 57(6): 733~747.

[3] Y. Hu and Qing Yang . DCD---Disk Caching Disk: A New
Approach for Boosting I/O Performance. The 23rd Annual
International Symposium on Computer Architecture,
Philadelphia PA May, 1996.

[4] Maximum Institution Inc., Power, heat, and sledgehammer,
White Paper, 2002.

[5] H. Kim, EJ Kim, RN Mahapatra. Power Management in Raid
Server Disk System Using Multiple Idle States. In Proceedings of
International Workshop on Unique Chips, 2005.

[6] Gurumurthi S, Sivasubramaniam A, Kandemir M, Franke H, etc.
Reducing Disk Power Consumption in Servers with DRPM.
Volume: 36,Issue: 12,page(s): 59- 66, 2003.11.

[7] D. Colarelli and D. Grunwald. Massive Arrays of Idle Disks For
Storage Archives. In Proceedings of the 15th High Performance
Networking and Computing Conference, November 2002.

[8] Ethan Miller and Randy Katz. An analysis of file migration in a
unix supercomputing environment. In USENIX Winter Technical
Conf. Proceedings, 1993. 421~433.

[9] D. A. Patterson, G. A. Gibson, and R. H. Katz. A case for
redundant arrays of inexpensive disks (RAID). In Proceedings of
the 1988 ACM SIGMOD international conference, Chicago,
Illinois, USA, June 1988.

[10] E. Pinheiro and R. Bianchini. Energy Conservation Techniques
for Disk Array-based Servers. In ICS'04, Jun. 2004.

[11] C. Weddle, M. Oldham J. Qian, A. A. Wang, P. Reiher and G.
Kuenning. PARAID: The Gear-Shifting Power-Aware RAID. In
FAST'07, Feb. 2007.

[12] D. Li and J. Wang. EERAID: Energy-Efficient Redundant and
Inexpensive Disk Array. In I I th ACMSIGOPS European
Workshop, Sep. 2004.

[13] D. Li, J. Wang. eRAID A Queuing Model Based Energy Saving
Policy. In Proceedings of the 14th IEEE International
Symposium on Modeling, Analysis, and Simulation. Boston.
2006. New York: ACM, 2006. 77~86.

[14] Bo Mao, Dan Feng, Hong Jiang, et al. GRAID: A Green RAID
Storage Architecture with Improved Energy Efficiency and
Reliability. In proceedings of the 16th Annual Meeting of the
IEEE International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems
(MASCOTS'08). Baltimore, MD. USA. Sep 8-10, 2008. 113~120.

[15] D. Stodolsky, G. Gibson, and M. Holland. Parity Logging
Overcoming the Small Write Problem in Redundant Disk Arrays.
In ISCA '93, May. 1993.

[16] J. Menon. A Performanee Comparison of RAID-5 and log-
Struetured Arrays. In HPDC'95, Aug. 1995.

[17] Y. Chen, W. Hsu, and H. Young. Logging RAID An Approach to
Fast, Reliable, and Low-Cost Disk Arrays. In Euro-Par'00, Aug.
2000.

[18] Hrishikesh Amur, James Cipar, Varun Gupta, Michael Kozuch,
Gregory Ganger, and Karsten Schwan. Robust and flexible
power-proportional storage. In Proc. Symposium on Cloud
Computing (SOCC), Indianapolis, IN, June 2010.

[19] Eno Thereska, Austin Donnelly, and Dushyanth Narayanan.
Sierra: Practical Power-proportionality for Data Center Storage.
EuroSys’11, April, 2011.

